Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Clinical and molecular features of an infant patient affected by Leigh Disease associated to m.14459G > A mitochondrial DNA mutation: a case report

  • Dario Ronchi1,
  • Alessandra Cosi1,
  • Davide Tonduti2,
  • Simona Orcesi2,
  • Andreina Bordoni1,
  • Francesco Fortunato1,
  • Mafalda Rizzuti1,
  • Monica Sciacco1,
  • Martina Collotta1,
  • Sophie Cagdas3,
  • Giuseppe Capovilla3,
  • Maurizio Moggio1,
  • Angela Berardinelli2,
  • Pierangelo Veggiotti2 and
  • Giacomo P Comi1Email author
BMC Neurology201111:85

DOI: 10.1186/1471-2377-11-85

Received: 7 March 2011

Accepted: 12 July 2011

Published: 12 July 2011

Abstract

Background

Leigh Syndrome (LS) is a severe neurodegenerative disorder characterized by bilateral symmetrical necrotic lesions in the basal ganglia and brainstem. Onset is in early infancy and prognosis is poor. Causative mutations have been disclosed in mitochondrial DNA and nuclear genes affecting respiratory chain subunits and assembly factors.

Case presentation

Here we report the clinical and molecular features of a 15-month-old female LS patient. Direct sequencing of her muscle-derived mtDNA revealed the presence of two apparently homoplasmic variants: the novel m.14792C > G and the already known m.14459G > A resulting in p.His16Asp change in cytochrome b (MT-CYB) and p.Ala72Val substitution in ND6 subunit, respectively. The m.14459G > A was heteroplasmic in the mother's blood-derived DNA.

Conclusions

The m.14459G > A might lead to LS, complicated LS or Leber Optic Hereditary Neuropathy. A comprehensive re-evaluation of previously described 14459G > A-mutated patients does not explain this large clinical heterogeneity.

Keywords

Leigh Syndrome mitochondrial DNA LHON MT-ND6 MT-CYB mitochondrial Complex I

1. Background

Leigh Syndrome (LS, OMIM 256000) is a subacute necrotizing encephalomyelopathy characterized by bilateral symmetrical necrotic lesions of gray matter nuclei in the basal ganglia, diencephalon, cerebellum or brainstem. The onset is usually in early infancy and patients manifest an heterogeneous set of symptoms, such as regression or psychomotor delay, weakness, hypotonia, truncal ataxia, intention tremor associated with lactic acidosis in the blood, cerebrospinal fluid or urine. The prognosis is poor and, in most cases, patients die before age of 5 years. It is the most frequent cause of inherited mitochondrial disorder in infancy (1:40,000) [1].

LS inheritance is complex since patients may present mutations in mitochondrial DNA (mtDNA) or in nuclear genes, which predominantly encode for proteins involved in respiratory chain structure and assembly or in coenzyme Q10 biogenesis [2]. Among maternally inherited forms, most of the mutations lay within genes encoding Complex I (ND1-6) and V (ATP6, ATP8) mitochondrial subunits [3].

Here we report the clinical, biochemical and molecular features of a pediatric patient affected by Leigh Syndrome associated with the mitochondrial DNA mutation m.14459G > A within MT-ND6 gene.

2. Case Presentation

Case report

The proband is a 15-month-old female patient born from healthy nonconsanguineous Italian parents after a regular pregnancy and delivery. Feeding problems and gastroesophageal reflux were noted from the first weeks of life. At the age of 3 months, after the first vaccination, she started to present dystonic postures of the trunk initially misdiagnosed as related to gastroesophageal reflux. At the age of 5 months, after the second vaccination, she started to present irritability, inconsolable crying, psychomotor regression and generalized seizures. She was treated with endorectal diazepam, and after that she had no others seizure episodes. At 7 months of age, after an intercurrent viral illness, she was referred to our department in Pavia. The clinical picture was characterized by psychomotor delay, dystonic-dyskinetic tetraparesis, startle reaction to sudden acoustic stimuli, episodic central apneas. Plasma amino acids revealed high level of alanine, valine, isoleucine and lysine with abnormal ratio alanine:lysine (3.7, range of normality = 1.5-2.5). Urinary organic acids revealed high level of lactic, pyruvic, fumaric and 3-ketoglutaric acids. High levels of lactic and pyruvic acids were also demonstrated both in plasma and CSF. MRI showed bilateral symmetric hyperintense lesions on T2-weighted images in the basal ganglia, thalami and ventral mesencephalum (Figure 1A). Brain CT scan didn't show calcification. Fundus oculi showed retinal depigmentation; assessment of VEPs revealed evidence of a conduction delay and ERG showed retinal involvement. Auditory brainstem responses, ECG and echocardiogram were normal.
https://static-content.springer.com/image/art%3A10.1186%2F1471-2377-11-85/MediaObjects/12883_2011_Article_490_Fig1_HTML.jpg
Figure 1

Neuroradiological and molecular features in our proband. A. Brain MRI showed bilateral symmetric hyperintense lesions on T2-weighted images in the head of caudate, putamen (top left), thalami (top right) and ventral mesencephalum (bottom left); these lesions were hypointense in T1-weighted images (bottom right). B. PCR-RFLP analysis of m.14459G > A mutation. The transition m.14459G > A creates a restriction site for endonuclease MaeIII in mutated amplicons obtained using a modified primer set previously described (FOR14430*-RC14710) producing two fragments of 251 and 29 base pairs (the latter is not visible on the agarose gel) while wild type molecules remain uncut. C. PCR-RFLP analysis of m.14792C > G variant. The variant m.14792C > G is recognized by restriction endonuclease HinfI which cuts mutated PCR-amplified fragments (encompassing 14400-14963 nucleotides) producing molecules of 392 and 171 base pairs. Control samples are from healthy unrelated independent subjects.

A treatment with riboflavine 50 mg/day, thiamine 150 mg/day 300 mg: 1/2 cp, carnitine 100 mg/kg/day was started.

At 8 months of age she started to present external ophthalmoplegia and absence of pupillary reaction. Hereafter the clinical picture remained stable.

A muscle tissue biopsy was normal at the morphological and histochemical studies, with the exception of a mild increase in acid phosphatase staining at subsarcolemmal level in a few fibres.

Family history for neurological disorders was negative. General clinical assessment of her mother was normal.

Results

Spectrophotometric determination of the activity of mitochondrial Complex I in muscle showed a residual activity of 36% compared to controls (CI/CS = 5.9 nM/min/mg protein, control values = 16.5 ± 2.6 normalized to citrate synthase, CS).

Large-scale mtDNA rearrangements and mtDNA depletion was excluded by Southern Blot and quantitative PCR assays on muscle-derived DNA.

Direct sequencing of muscle-derived mtDNA revealed the presence of two apparently homoplasmic variants: the novel m.14792C > G and the already known m.14459G > A resulting in p.His16Asp change in cytochrome b (MT-CYB) and p.Ala72Val substitution in ND6 subunit, respectively. Their presence was confirmed by specific PCR-RFLP assays. The sequence also showed that the patient belongs to the mitochondrial haplogroup H2a2, consisting to European ethnic groups.

The mother's mtDNA was homoplasmic for MT-CYB variant and heteroplasmic for the MT-ND6 mutation with a mutational load estimated less than 2% by PCR-RFLP analysis (Figure 1B and Figure 1C).

3. Conclusions

The variant m.14459G > A has been so far reported in six patients affected by Leber's hereditary optic neuropathy (LHON), in seven probands mainly showing dystonia and in four LS/Leigh-like Syndrome (LLS) patients [49]. Clinical, biochemical and genetical features of the aforementioned probands are summarized in Table 1. Phenotypic manifestations of this variant are expressed in both sexes with approximately equal frequency. However, the reason for the striking difference in the clinical outcome of the m.14459G > A mutation between patients is unknown.
Table 1

Clinical, biochemical and molecular features of m.14459G > A mutated patients:

Reference

Patient

Sex

Ethnic group

Age

Age of Onset

Phenotype

Clinical features

Neuroradiology

Residual CI activity

m.14459G > A Mutational load (%)

Current Study

A

F

Caucasian Haplogroup H2a2

18 m

2 m

LS+Dystonia

Psycomotor delay, hypotonia, dystonia.

MRI: lesions in the basal ganglia and mesencephalum.

36% (muscle)

> 99 (muscle) >99 (blood)

Shoffner et al. [5]

B1-1 (proband)

F

African-American

19y

3 m

LHON

Loss of bilateral vision, optic atrophy

MRI: lesions in caudate nucleus and right putamen

3% (muscle)

>99

Shoffner et al. [5]

B1-2 (proband's mother)

F

African-American

42y

42y

LHON

Loss of bilateral vision, optic atrophy

NP

NP

50

Shoffner et al. [5]

B2

F

Caucasian

13y

3y

Dystonia

Dysarthria, dystonia, quadriparesis

CT: bilateral hipodensity in the putamina. MRI: bilateral lesions in putamen and caudate.

NP

50

Funalot et al. [7]

C2

M

Caucasian Haplogroup T

†32y suicide

18y

LLS+LHON

Bilateral visual failure, hearing loss, ataxia, extrapiramidal signs

MRI: hyperintensity in dorsal midbrain; bilateral lesions in the third ventricle walls.

NP

40

Gropman et al. [9]

D1 (proband)

F

Hispanic

4y

3y

Dystonia

Anarthria, dystonia, spasticity, encefalopathy, neurofibromatosis

MRI: bilateral hyperintensities of the putamen. MRS: elevated lactate.

76% (muscle)

>99

Gropman et al. [9]

D1-2 (proband's mother)

F

Hispanic

35y

34y

 

neurofibromatosis, muscle weakness

MRI: bitemporal signal abnormalities

NP

>99

Gropman et al. [9]

D1-3 (proband's brother)

M

Hispanic

7y

2y

Dystonia

neurofibromatosis, hemiparesis, cognitive delay

MRI: right sided putaminal infarcts, thickened corpus callosum

NP

>99

Gropman et al. [9]

D1-3 (maternal cousin)

F

Hispanic

5y

5y

-

Hemiparesis

MRI: bilateral putaminal infarcts MRS: elevated lactate

NP

>99

Kirby et al. [6]

E1-1

F

?

†7y

9 m

LS

Motor delay, hypotonia, seizure, dystonia.

CT: bilateral low density lesions of the basal ganglia

25% (fibroblasts)

97 (fibroblasts)

Kirby et al. [6]

E1-2 (proband's brother)

M

?

†10 m

3 m

LS

Hypotonia, neurological and developmental regression, seizure. Metabolic acidosis.

-

6% (muscle) 46% (liver)

97 (muscle, liver)

Kirby et al. [6]

E2

F

?

†8 m

6 m

LS

Developmental delay, athetosis, hypotonia.

MRI: cerebral atrophy, involvement of basal ganglia and medial thalamic nuclei.

15% (fibroblasts) 16% (muscle) 37% (liver)

97 (muscle, liver)

Jun et al. [4]

G1-1 (proband)

F

Hispanic (Native American). Haplogroup D

10y

2y

Dystonia

Dystonia, corticospinal tract dysfunction, dysarthria.

CT: bilateral low density lesions in putamen progressing to the caudate

-

99 (blood)

Jun et al. [4]

G1-2 (proband's brother)

M

Hispanic (Native American). Haplogroup D

13y

13y

Dystonia

Dystonia, intellectual impairmeint.

NP

NP

99 (blood)

Jun et al. [4]

G1-3 (proband's mother)

F

Hispanic (Native American). Haplogroup D

32y

32y

LHON

Bilateral optic atrophy.

NP

NP

73 (blood)

Jun et al. [4]

G1-4 (maternal cousin)

M

Hispanic (Native American). Haplogroup D

?

?

LHON

-

NP

NP

99 (blood)

Jun et al. [4]

G1-5 (maternal relative)

M

Hispanic (Native American). Haplogroup D

?

5y

Dystonia

Dystonia

CT: abnormal basal ganglial lucencies

NP

99 (blood)

Tarnopolsky et al. [8]

E1-1 (proband)

F

Caucasian

45y

8y

Dystonia

Dystonia

MRI: hiperintensities signal in putamen

N

34 (blood)

Tarnopolsky et al. [8]

E1-2 (proband's brother)

M

Caucasian

49y

19y

LHON

Visual loss, hearing loss

NP

NP

18 (blood)

Tarnopolsky et al. [8]

E1-3 (proband's brother)

M

Caucasian

56y

?

-

Visual changes, hearing loss, muscle weakness.

NP

NP

21 (blood)

Tarnopolsky et al. [8]

E1-4 (proband's mother)

F

Caucasian

78y

76y

-

Stroke episodes.

CT: hipodensity in right frontal periventricular region

NP

4 (blood)

Tarnopolsky et al. [8]

E2

M

Caucasian

17y

16y

LHON

Optic nerve pallor, visual loss.

MRI: normal

NP

26 (blood)

NP: not performed; CI: Complex I,% values refer to activity compared to controls.

Patients so far described belong to different ethnic groups and they likely present different mtDNA haplogroups although a precise definition of the haplotypes is available in few subjects. The available haplotypes include H, T (West Eurasia and Middle East) and D (East Asia and Americas). This fact suggests that the mutation arose independently several times in a period of time relatively recent.

Although mitochondrial haplogroups could influence the phenotypic expression of LHON and LS associated variant [1012], no evidence has been produced for m.14459G > A and haplotype H2a2 disclosed in our patient.

Clinical manifestations of m.14459G > A transition seem to mainly affect central nervous system and skeletal muscle. CNS, brainstem and optic nerve are often compromised but some patients may present more systemic manifestations. Dystonia is the most occurring feature described alone or associated to LS/LLS.

The transition m.14459G > A is considered a rare causative mutation for LHON [13]. Our proband had delayed VEP, together with signs of retinal involvement, probably reflecting multiple sites of affection along the optic pathways. The involvement of visual pathway in 14459G > A-mutated patients is generally a later event in contrast to dystonia that develops in the early childhood. To date the co-existence of LLS and LHON has been clearly described in a single proband [7].

Laboratory findings are inconsistent and the elevation of lactate level in blood and/or CSF found in some LS patients, as wells as in our proband, is not peculiar to this molecular defect.

Neuroradiological examinations, when performed, showed lesions in brainstem and basal ganglia in LS and dystonia patients. A positive result at MRI investigation could address the diagnosis of dystonia or LS although exceptions to this correlation have been reported.

Muscle biopsy did not show striking signs of mitochondrial impairment: in our proband no ragged-red or cytochrome c oxidase-negative fibers were observed. Minor changes such as mild variations in fiber size and accumulation of subsarcolemmal mitochondria have been reported in a few patients [5, 7, 8]. As in the case of other mutations affecting structure or assembly of Complex I, histological analysis may not prove helpful in uncovering mitochondrial pathology.

Spectrophotometric analysis of the activity of respiratory chain complexes has been reported in early onset patients who underwent muscle biopsy. Residual activity of Complex I ranges from 3 to 76% compared to control. Secondary defects have been also observed in Complex III [5]. Fibroblasts culture established from two LS patients confirmed a severe reduction of enzymatic activity [6]. In our patient we observed a strong reduction of Complex I activity in skeletal muscle, compatible with the marked hypotonia observed.

Analysis of transmitochondrial cybrids previously confirmed that m.14459G > A leads to the impairment of Complex I activity [14].

No obvious correlation between mutant load and clinical features is observed. High levels of heteroplasmy in blood have been described in LHON, dystonia and LS patients. In the first report [4], even an asymptomatic subject had 99% of mutant mtDNA in lymphoblasts but it was suggested that it could be due to an artifact of transformation and cell culture [6]. Tissues derived from LS patients generally present a virtually homoplasmic state [6], as in the case of our proband. Conversely, mutant DNA detected in blood from LHON patients differs widely, with heteroplasmy ranging from 18 to 99%.

The pathological manifestation of the m.14459G > A mutation is thought to be highly tissue-specific, depending also on the levels of heteroplasmy present in each organ or tissue involved and this fact could explain the different clinical phenotypes [5]. The existence of secondary mtDNA variants able to modify the disease presentation of a primary mutation has been suggested before [15, 16]. In our proband, we observed a novel homoplasmic variant m.14792C > G, which was absent in 162 Italian healthy controls. The proband's mother was homoplasmic for this nucleotide change (and heteroplasmic for the m.14459G > A mutation). Since her general clinical assessment was normal, the MT-CYB variant is unlikely to have a pathogenic significance.

Unfortunately, no cytochrome b region sequence data are available for the previously reported 14459G > A-mutated subjects. Moreover, some of the reported probands, who share the same maternal lineage, present very heterogeneous symptoms [8, 9]. These elements suggest that other factors, external to mitochondrial DNA, are relevant to explain the clinical heterogeneity of m.14459 mutation, making the contribution to disease of the novel m.14792C > G variant purely speculative. The assessment of respiratory chain activity in transmitochondrial cybrids derived from the proband and her mother would be helpful to settle this point but this analysis is unfortunately not feasible, due to the unavailability of primary cell cultures.

Consent

Written informed consent was obtained from the patient's parents for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor in Chief of this journal.

List of abbreviations

LS: 

Leigh Syndrome

mtDNA: 

mitochondrial DNA

PCR-RFLP: 

polymerase chain reaction - restriction site length polymorphism

LHON: 

Leber's hereditary optic neuropathy

CNS: 

central nervous system

CSF: 

cerebrospinal fluid.

Declarations

Acknowledgements

Gratitude has to be expressed to the patient's family for participating in this research. We wish to thank especially the 'Associazione Amici del Centro Dino Ferrari' for their support. The work was partially supported by the Italian Telethon grant GUP09004 "Construction of a database for a nation-wide Italian collaborative network of mitochondrial diseases".

Authors’ Affiliations

(1)
Centro Dino Ferrari, Department of Neurological Sciences, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico
(2)
Foundation IRCCS Istituto Neurologico C. Mondino
(3)
Epilepsy Center, Department of Child Neuropsychiatry, C Poma Hospital

References

  1. Rahman S, Blok RB, Dahl HH, Leigh syndrome, et al: Clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996, 39: 343-51. 10.1002/ana.410390311.View ArticlePubMedGoogle Scholar
  2. Tucker EJ, Compton AG, Thorburn DR: Recent advances in the genetics of mitochondrial encephalopathies. Curr Neurol Neurosci Rep. 2010, 10: 277-85. 10.1007/s11910-010-0112-8.View ArticlePubMedGoogle Scholar
  3. Wong LJ: Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve. 2007, 36: 279-93. 10.1002/mus.20807.View ArticlePubMedGoogle Scholar
  4. Jun AS, Brown MD, Wallace DC: A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc Natl Acad Sci USA. 1994, 91: 6206-10. 10.1073/pnas.91.13.6206.View ArticlePubMedPubMed CentralGoogle Scholar
  5. Shoffner JM, Brown MD, Stugard C, Jun AS, Pollock S, Haas RH, Kaufman A, Koontz D, Kim Y, Graham JR, et al: Leber's hereditary optic neuropathy plus dystonia is caused by a mitochondrial DNA point mutation. Ann Neurol. 1995, 38: 163-9. 10.1002/ana.410380207.View ArticlePubMedGoogle Scholar
  6. Kirby DM, Kahler SG, Freckmann ML, Reddihough D, Thorburn DR: Leigh disease caused by the mitochondrial DNA G14459A mutation in unrelated families. Ann Neurol. 2000, 48: 102-4. 10.1002/1531-8249(200007)48:1<102::AID-ANA15>3.0.CO;2-M.View ArticlePubMedGoogle Scholar
  7. Funalot B, Reynier P, Vighetto A, Ranoux D, Bonnefont JP, Godinot C, Malthièry Y, Mas JL: Leigh-like encephalopathy complicating Leber's hereditary optic neuropathy. Ann Neurol. 2002, 52: 374-7. 10.1002/ana.10299.View ArticlePubMedGoogle Scholar
  8. Tarnopolsky MA, Baker SK, Myint T, Maxner CE, Robitaille J, Robinson BH: Clinical variability in maternally inherited leber hereditary optic neuropathy with the G14459A mutation. Am J Med Genet A. 2004, 124: 372-6.View ArticleGoogle Scholar
  9. Gropman A, Chen TJ, Perng CL, Krasnewich D, Chernoff E, Tifft C, Wong LJ: Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am J Med Genet A. 2004, 124: 377-82.View ArticleGoogle Scholar
  10. Torroni A, Petrozzi M, D'Urbano L, Sellitto D, Zeviani M, Carrara F, Carducci C, Leuzzi V, Carelli V, Barboni P, De Negri A, Scozzari R: Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet. 1997, 60: 1107-21.PubMedPubMed CentralGoogle Scholar
  11. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, Pyle A, Elson J, Howell N, La Morgia C, Valentino ML, Huoponen K, Savontaus ML, Nikoskelainen E, Sadun AA, Salomao SR, Belfort R, Griffiths P, Man PY, de Coo RF, Horvath R, Zeviani M, Smeets HJ, Torroni A, Chinnery PF: Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet. 2007, 81: 228-33. 10.1086/519394.View ArticlePubMedPubMed CentralGoogle Scholar
  12. D'Aurelio M, Vives-Bauza C, Davidson MM, Manfredi G: Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells. Hum Mol Genet. 2010, 19: 374-86. 10.1093/hmg/ddp503.View ArticlePubMedGoogle Scholar
  13. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF: Inherited mitochondrial optic neuropathies. J Med Genet. 2009, 46: 145-58.View ArticlePubMedGoogle Scholar
  14. Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC: Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol. 1996, 16: 771-7.View ArticlePubMedPubMed CentralGoogle Scholar
  15. Johns DR, Smith KH, Savino PJ, Miller NR: Leber's hereditary optic neuropathy. Clinical manifestations of the 15257 mutation. Ophthalmology. 1993, 100: 981-6.View ArticlePubMedGoogle Scholar
  16. Lodi R, Montagna P, Cortelli P, Iotti S, Cevoli S, Carelli V, Barbiroli B: 'Secondary' 4216/ND1 and 13708/ND5 Leber's hereditary optic neuropathy mitochondrial DNA mutations do not further impair in vivo mitochondrial oxidative metabolism when associated with the 11778/ND4 mitochondrial DNA mutation. Brain. 2000, 123: 1896-902. 10.1093/brain/123.9.1896.View ArticlePubMedGoogle Scholar
  17. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2377/11/85/prepub

Copyright

© Ronchi et al; licensee BioMed Central Ltd. 2011

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.