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Abstract

Background: Despite negative neuroimaging findings many athletes display neurophysiological alterations and
post-concussion symptoms that may be attributable to neurometabolic alterations.

Methods: The present study investigated the effects of sports concussion on brain metabolism using 1H-MR
Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the
same age (mean: 22.5 years) and education (mean: 16 years) within both the acute and chronic post-injury phases.
All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI.

Results: Concussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1) cortices in
the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed
in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological
increase of m-I:Cr levels in M1 that was only present in the chronic phase.

Conclusions: These results confirm cortical neurometabolic changes in the acute post-concussion phase as well as
recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex
pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.
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Background
The perception of sports concussions has undergone a
gradual overhaul throughout the past decade where an
injury that was once considered to be inconsequential
has come to be understood within the neuropsychologi-
cal and medical communities to be an injury with quan-
tifiable changes to the brain that are both transient [1-3]
and persistent [4-7]. According to the current literature,
transient changes are by far more abundant as most of
these occur within the acute phase where athletes exhi-
bit neurocognitive changes [8-10] in addition to neuro-
physiological alterations [11-15]. Persistent changes have
also been documented [4-7,16-19], though some doubt

their clinical legitimacy, citing litigation and other sec-
ondary gains as confounds [20-23].
There is a disproportionate amount of research focusing

on the acute post-injury phase owing largely to the fact
that this is where the most overt effects of a sports concus-
sion can be detected. The acute post-injury phase has no
strict cut-off but is generally understood to be within
three months though 80-90% of patients exhibit full recov-
ery within the first 10 days [24,25]. Thus the chronic phase
is understood to be anywhere from three months and out-
ward post-injury in accordance with the DSM-IV-TR defi-
nition of Post-concussion Syndrome [26].
Indeed, most of the quantifiable changes associated

with sports concussion are either subclinical or recovered
in the acute phase [25,27]. Typically, post-concussive
symptoms all but disappear within 2-3 weeks of concus-
sion [24,28,29] with only a small percentage of cases
exhibiting post-concussion effects past the acute phase
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[7,30-32]. Neuropsychological findings are similar, with
typical neurocognitive recovery taking place on the order
of days to weeks, well within the 3-month window
[1,10,15,33-35] though it can take longer in some cases,
particularly if the injury is not properly managed
[13,36,37].
Brain imaging studies conducted across the post-con-

cussion timeline reveal variable results contingent upon
the imaging technique used [[38] for review, see [39]].
Morphological changes are difficult to characterize using
technologies like CT [40,41] and MRI [41,42] regardless of
proximity to injury. Even in emergency room cases where
patients are scanned within 72 hours of injury, MRI did
not reveal any consistent pattern of injury across patients
with injuries categorized as mild [43]. However, more
recent studies have found subtle changes in the white mat-
ter of mild traumatic brain injury in non sports-related
patients in the acute phase [44] and well after the acute
phase [45] that are otherwise undetectable with conven-
tional imaging techniques. Given their lack of precision in
detecting signs of injury in concussion, the utility of CT
and MRI in characterizing sports concussion is quite lim-
ited except in the most severe cases where symptomatol-
ogy is either abnormally prolonged or severe [46].
Other imaging changes have yielded strong patterns of

results in the acute (fMRI) and chronic post injury phases
(transcranial magnetic stimulation-TMS, event related
potentials-ERPs). Functional changes have been charac-
terized, sharing an apparent link to symptomatology
[2,3,5,47,48]. Of note, all of these studies were conducted
within the acute phase when athletes were still expressing
elevated symptoms. That is to say, functional alterations
are linked to symptomatology and these changes dissi-
pate concurrently with self-reported symptoms and neu-
rocognitive recovery. Because of the strong effect of
functional recovery shown there are no fMRI studies
investigating sports concussion in the chronic phase.
Electrophysiological techniques such as TMS [4,16,17]
and ERP paradigms [18,49-51] have demonstrated altera-
tions at various time points post injury with some
remarkably enduring effects well passed the acute phase,
even decades after the last injury.
With the paucity of data implicating any morphological

changes and the lion’s share of studies reporting func-
tional changes, sports concussions are largely understood
to be a functional injury [52]. This has been demon-
strated more directly by three studies that used 1H-mag-
netic resonance spectroscopy (MRS) to characterize the
post-concussion metabolic spectra [53-55]. Consistent to
these studies is a diminished level of N-acetylaspartate
(NAA) which is thought to be indicative of reversible
neuronal and/or mitochondrial dysfunction [56]. In
accordance with the decrease in energy (ATP) produc-
tion [57], NAA levels fall in the acute post injury phase

[53,54], but can recover in injuries that do not involve
substantial permanent tissue destruction [56]. Indeed,
Vagnozzi and colleagues [54] demonstrated metabolic
recovery of NAA levels after 30 days in singly concussed
athletes. All of this strongly suggests that there is meta-
bolic recovery after a sports concussion, at least as it
concerns NAA, but can the same be said of all
neurometabolites?
Previous research has suggested that monitoring NAA

levels is sufficient to conclude “full cerebral metabolic
recovery” [54] after injury. Such a statement is based on
two assumptions. The first is that NAA is the only neuro-
metabolite to be affected after a concussion. Our pre-
vious work [53] demonstrated a decrease in glutamate
levels in primary motor cortex in the acute post injury
stage. This decrease in glutamate is consistent with the
hypoglycolic state that is known to occur after closed
head injury [57,58]. Indeed, while there is an immediate
post-impact spike in glutamate and glycolysis, the co-
occuring drop in cerebral blood flow leads to an
extended energy crisis owing to the lack of available cal-
cium resulting in impaired oxidative metabolism [57].
This drop in glutamate has been shown to correlate with
injury severity in humans, and has been shown to persist
for 2-4 weeks [58]. Other studies have demonstrated
metabolic alterations in choline following mTBI [59-62].
Given that metabolites other than NAA have been shown
to be affected due to concussion, neurometabolic recov-
ery cannot be presumed based on NAA recovery alone.
The second assumption presumes that even if other neu-
rometabolites are affected by a concussion, all neurome-
tabolites recover at the same rate. The current study
aims to investigate this notion by comparing spectra
obtained within one week (2-5 days) post concussion ver-
sus spectra obtained six months after the injury in the
same athletes. Two regions of interest were employed.
The first region of interest, the dorsal-lateral prefrontal
cortex, was chosen based on both electrophysiological
[49,51,63] and fMRI studies [2,3,5,47,48] that implicate
this region in the effects of sports concussion. The sec-
ond region, primary motor cortex, was chosen as a region
of interest based on the alterations in intracortical motor
inhibition seen in concussed athletes [4,17]. Each region
of interest was imaged in the left and right hemispheres
for a total of four spectra per subject. Within each region
of interest, three neurometabolites will be analyzed using
relative quantitation methods: NAA, glutamate, and
myo-Inositol. N-acetylaspartate is present at exception-
ally high concentrations in the brain second only to glu-
tamate, and is the largest peak in spectra of healthy brain
tissue [56] and is thought to be a key contributor in mye-
lin lipid formation as well as an osmoregulator [64].
Glutamate, a member of the family of biogenic amines, is
the most frequently occurring neurotransmitter in the
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central nervous system [65,66]. The role of glutamate is
different depending on the type of receptor that it binds
with: at ionotropic receptors glutamate is excitatory,
whereas at metabotropic receptors it is modulatory [65].
However, glutamate has a role beyond that of neuro-
transmitter. It is also an important neurometabolite used
in the production of nitrogen which is key in the synth-
esis of proteins and nucleic acid, and essential to the pro-
duction of other important molecules including GABA.
Myo-Inositol is synthesized throughout the body, but
mostly within the brain where its concentration is also
the greatest [67]. It serves as a precursor molecule for
inositol lipid synthesis, but also as an osmolyte. In line
with previous research we hypothesized a recovery of
NAA [54] and glutamate levels [58,68] in all regions of
interest. However, we further hypothesized that myo-ino-
sitol levels would be increased in the chronic phase rela-
tive to the acute phase in concussed athletes in all
regions of interest based on what has been demonstrated
in other TBI studies [69,70].

Methods
Participants
All participants in this study were active players for uni-
versity level intervarsity sports teams and were recruited
with help from the team physician and physiotherapists.
The following exclusion criteria were applied to select the
athletes who took part in this study: a history of alcohol
and/or substance abuse; psychiatric illness; learning dis-
ability; neurological disorders (seizure disorder, central
nervous system neoplasm, or brain tumour); and TBI
unrelated to contact sports. None of the athletes who par-
ticipated in this study was taking psychotropic medications
at the time of testing. The study was composed of one
experimental group (N = 10) examined at two different
time points and a control group (N = 10) composed of
athletes who had no history of head injury, sports related
or otherwise, also scanned at two different time points.
The experimental group consisted of 10 athletes who suf-
fered a sports concussion. They were first scanned within
the 5 days of injury (mean = 81.92 hours, SD = 46.74
hours). The second scan took place six months after the
initial scan for the concussed group (mean = 6.375, SD =
.41) and 18 months after the initial scan for controls
(mean = 18.24, SD = 10.29). Though there is a vast differ-
ence in time between scans, the follow-ups for control ath-
letes should not demonstrate significant change,
neurometabolites remaining relatively stable in the unin-
jured brain [71]. Symptoms scores were taken from both
groups at each time point using the Post Concussion
Symptom Scale (PCSS).
All head injuries were classified as mild, with Glasgow

Coma Scale scores ranging between 13 and 15 at the
time of injury. A standardized concussion-history form

was administered to obtain detailed information about
the number of previous concussions (if any), approximate
date(s) of each concussion, descriptions of the injury(ies),
nature and duration of relevant postconcussion symp-
toms (confusion and/or disorientation, retrograde and/or
anterograde amnesia, and loss of consciousness). Con-
cussed athletes followed the return to play protocol that
was adopted after the second consensus statement on
concussions in sport [72] and re-endorsed after the third
international consensus statement on sports concussion
[52]. In brief, the athletes followed a graded return to
play beginning with complete rest, followed by light phy-
sical activity. From there, athletes progressed to sport-
specific exercise and then non-contact drills before
returning to game play. As is standard for return to play,
athletes only advanced to the next stage of physical activ-
ity if they remained symptom free at the previous one.

Neuroimaging
MR Imaging
All studies were performed at the Unité de Neuroimagerie
Fonctionelle (UNF) of the Centre de Recherche de l’Insti-
tut Universitaire de Gériatrie de Montréal, using a
Siemens 3-T whole-body MRI system (Siemens, Erlangen,
Germany). This study was approved by the Research and
Community Ethics Boards at the UNF and the Université
de Montréal and done in compliance with the code of
ethics as stated in the Declaration of Helsinki. All subjects
gave informed consent following careful screening for
MRI compatibility.
MR Spectroscopy
We positioned our regions of interest using a rigorous
anatomical localization protocol. Subjects were placed in
the scanner and underwent a localizer scan prescribed
parallel to the hippocampus (anterior commissure-pos-
terior commissure). Voxels were then prescribed for the
dorsolateral prefrontal cortex (DLPFC) (16 mm ×
16 mm × 16 mm), and primary motor cortex (M1)
(16 mm × 20 mm × 32 mm) of the left and right hemi-
spheres (see Figure 1). All voxels were placed on an
AC-PC-oriented oblique axial slice corresponding to the
region of interest first on a sagittal view, and then con-
firmed using coronal and axial views to ensure adequate
distance from ventricles, fatty tissue, and bone. Single-
voxel 1H-MRS spectroscopic measurements were per-
formed using a PRESS (Point RESolved Spectroscopy)
sequence (TE (echo time) = 30 ms, TR (repetition time) =
1500 ms, 256 acquisitions, 1200 Hz bandwidth, 1024
points, duration 6:30 minutes) on a 12-channel head coil.
To ensure that all four regions of interest could be cap-
tured within reasonable scan duration and to ensure the
behavioural quiescence of our participants in the scanner
we opted for a moderate TR and shorter TE to balance
between T1- and T2-associated signal losses and scan
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time. Outer-volume suppression bands contiguous with
the PRESS-selected volume were automatically placed in
all three dimensions based on the voxel size of each ROI.
Linear Combination (LC) model (Provencher, 1993),

an operator-independent spectral analysis software that
estimates metabolite concentrations and their ratios
relative to creatine/phosphocreatine (Cr) using a set of
basis reference spectra acquired from individual metabo-
lites on our MR instrument was used for metabolite
quantitation. NAA/Cr, Glu/Cr and mI/Cr were only
analyzed if the estimated uncertainties calculated as Cra-
mer-Rao lower bounds (%SD) were less than 20%. The
LCModel operator was blind to group membership.
Statistics
Statistical analyses were done using SPSS (PC version
16.0). Coefficients of variance (CV) were calculated for
each metabolite for metabolite ratios that had overall CV

values < 20% (i.e., NAA/Cr, Glu/Cr and mI/Cr). The
values from the left and right hemispheres were averaged
for both regions of interest in the current study. The
rationale for averaging the regions of interest across
hemispheres is twofold: First, the literature suggests no
lateralization effects in the regions used in the current
study (Zimmerman et al., 2008; King et al., 2008; Szent-
kuti et al., 2004; Geurts et al., 2004). Second, it is not
known if the effects of a concussion are greater at the site
of impact or whether any resulting changes are distribu-
ted diffusely, regardless of impact site. Because we could
not otherwise be certain as to which side of the brain
received the impact in the concussed athletes, we opted
to combine the spectra from both hemispheres within
each region of interest. The different metabolites in any
given voxel are unrelated in principle and are not corre-
lated (Braun et al. 2002). As such, the metabolite ratios of

Figure 1 Typical spectrum and regions of interest. A. Proton spectrum of a control subject in M1 showing the peaks corresponding to the
metabolites of interest, creatine (Cr), myo-inositol (mI), glutamate (Glu), and N-acetylaspartate (NAA). Concentrations are derived from the area
under the peaks. B. Regions of interest (ROI) for MRS data acquisition depicted in the sagittal, coronal, and axial planes in the dorsolateral
prefrontal cortex (DLPFC) (middle; 16 mm × 16 mm × 16 mm), and C. primary motor cortex (M1) (bottom; 16 mm × 20 mm × 32 mm). Spectra
were recorded in both the left and right hemispheres.
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the two groups were compared using 2-way group × time
repeated measures ANOVA for each metabolite in each
ROI. Tests of the simple effects were carried out on
metabolites in regions that differed between concussed
and control athletes. Also, tests of the simple effects were
also carried out on metabolites in ROIs that had been
found to differ significantly between control and con-
cussed athletes in our previous work carried out in the
acute phase only [53].

Results
Total symptom scores from the PCSS revealed a signifi-
cant interaction (F (1,18) = 23.23; p = .000), where there
was a significant effect of time (F (1,18) = 24.73; p =
.000), and a main effect of group (F (1,18) = 5.94; p =
.025), where concussed athletes were significantly more
symptomatic in the acute post-injury phase (p = .003),
but were statistically equivalent to controls in the
chronic post-injury phase (p = .43) (results not shown).
Analyses of Glu:Cr in the DLPFC revealed no significant

interaction (F (1,18) = 0.11; p = .75), no main effect of Time
(F (1,18) = 1.23; p = .28) and no main effect of Group
(F (1,18) = 2.28; p = .15) (Figure 2A). Similar results were
found for m-I:Cr where there was no interaction (F (1,18) =
0.33; p = .58), no main effect of Time (F (1,18) = 0.02; p =
.96), and no main effect of Group (F (1,18) = 0.72; p = .41)
(Figure 2B). Though there was no significant interaction of
NAA:Cr in DLPFC (F (1,18) = 0.69; p = .42) and no effect
of Time (F (1,18) = 0.24; p = .63), there was a main effect of
Group (F (1,18) = 6.87; p = .017). As seen in Figure 2C, the
concussed group differed from the control group at both
time points.
Within M1, Glu:Cr concentrations (Figure 3A) showed

a significant time by group interaction (F (1,18) = 9.21;
p = .007). There was also a significant main effect of
Time (F (1,16) = 6.07; p = .024); while there was not a
significant main effect of Group, there was a trend
(F (1,18) = 3.48; p = .08). A simple effect analysis revealed
a significant difference between control and concussed

athletes in the acute phase (p = .009) but not in the
chronic phase (p = .64). Further within group simple
effects comparisons revealed no significant differences
between time points for the control group (F (1,9) =
0.004; p = .95) while the concussed group did show a sig-
nificant difference over time (F (1,9) = 11.01; p = .009).
By contrast, m-I:Cr concentrations showed an interaction
trend toward significance (F (1,18) = 2.84; p = .1), a trend
in main effect of Time (F (1,18) = 2.79; p = .10) and no
significant differences between Groups (F (1,18) = 2.75;
p = .115). Despite the nonsignificance, as the group by
time interaction showed p-values with a trend toward
significance, further simple effects analyses were con-
ducted (see Figure 3B). Analyses of the between-group
effects revealed no significant differences in the acute
phase (p = .93) but a significant difference in the chronic
phase (p = .037). Within group differences between the
acute and chronic phases did not reveal any significant
differences in the control subjects (F (1,9) = 0.013; p =
.91) but did reveal significant changes across time in the
concussed subjects (F (1,9) = 5.23; p = .048). A pattern of
results similar to what was shown in DLPFC was also
shown in M1 concentration of NAA:Cr (see Figure 3C).
There was no significant interaction (F (1,18) = 1.90; p =
.19), nor was there a significant main effects of time
(F (1,18) = 2.41; p = .14); however, the groups tended to
differ at both time points (F (1,18) = 3.10; p = .095).

Discussion
The current study investigated neurometabolic differ-
ences between 10 non-concussed athletes and 10 con-
cussed athletes of similar age and education in the acute
and chronic post-injury phases. In the DLPFC, NAA:Cr
levels remained lower in the concussed group across
time. All other comparisons in DLPFC revealed no signif-
icant differences or trends. Within the motor cortex
there were variable changes depending upon the meta-
bolic ratio in question. Concussed athletes demonstrated
a recovery of Glu:Cr levels across time (Figure 3A).

Figure 2 Spectra in DLPFC. A. Line graph of the mean Glu/Cr ratios, B. represents the means of m-I:Cr ratios and C. represents NAA:Cr ratios
for control (black lines, n = 10) and concussed (gray bars, n = 10) athletes in the dorsolateral prefrontal cortex (DLPFC) at the acute and chronic
post injury time points. Values are the mean of 24 voxel spectra (10 left hemisphere, 10 right hemisphere) per group. Standard errors of the
means are represented by vertical bars. G represents a group effect and an asterisk indicates a statistically significant difference of p ≤ 0.05.
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Levels of m-I/Cr were equal between control and con-
cussed athletes in the acute post-injury phase but there
was a significant difference in the chronic phase suggest-
ing metabolic disruptions that emerged over time as
opposed to being immediately reactionary to the injury.
NAA/Cr levels in M1 tended to distinguish control and
concussed athletes at both time points, suggesting a simi-
lar pattern as was seen in the DLPFC.
The profiles of Glu:Cr and m-I:Cr in the DLPFC

demonstrate stability within and between groups. This is
consistent with the findings of Shutter et al. [73] who
found that Glu:Cr levels were not predictive of outcome
in patients with good outcomes either immediately post-
injury or eight months post-injury relative to controls. It
is difficult to draw parallels with other findings involving
either increases or decreases in Glu:Cr levels as other
studies have taken spectra from different brain regions
and in more severely injured populations [74,75].
Though we have previously demonstrated changes in
Glu:Cr in primary motor cortex, we did not see similar
alterations in DLPFC suggesting that there are biome-
chanical influences that are present in primary motor
cortex that are not present in prefrontal areas [53,76].
Similarly, m-I:Cr levels were also very stable both across
time and between groups.
The nature of the NAA:Cr findings was unexpected

given the current literature implicating decreased levels
of NAA:Cr [53,54,62,77]. Indeed, past research investigat-
ing the time course of NAA alterations report mixed
results as one moves chronologically further away from
the point of injury. Vagnozzi and colleagues [54] report
recovery within 30 days, except for those athletes who
received a second concussive blow during the acute
phase. We reported a similar finding in a group of 12 ath-
letes who were scanned days after sustaining a concus-
sion [53]. Conversely, Cohen and colleagues [77] found
that whole brain NAA levels remained depressed in
patient groups that were days to over a year post injury.

Other studies have found diminished NAA levels in simi-
lar brain regions ranging from days [70] to one month
[62] to months [78] to a year [79] post-injury. Though
our results are consistent with the latter group of studies
showing continued depression of NAA:Cr levels, they are
contrary to those of Vagnozzi and colleagues [54]. The
exact nature of why there is continued depression is not
immediately evident, but a few explanations for these
metabolic alterations are plausible. Firstly, the current
study’s sample is composed of student athletes. Though
the athletes followed the return to play protocol as speci-
fied in the consensus statements [52,72], they continued
to take classes and in most cases resume practice within
one week after the injury during the season in addition to
continued physically demanding training in the months
after the season when the follow-up data were obtained.
This continued cognitive and physical effort may protract
a full recovery [12,52,80] even when return to play proto-
cols are properly followed such that a return to precon-
cussion levels does take place, but outside of the window
used in the current study. Another possibility that may
explain the continued metabolic depression is perhaps
unique to contact sports like football and hockey. Even
though no athletes reported a second concussion in a sin-
gle season, sustaining subconcussive blows during prac-
tices and games may have also delayed metabolic
recovery, even without resulting in a second injury as
some studies suggest there are consequences, even if
short lived, to sustaining multiple subconcussive blows
[81,82]. Finally, it is also possible that sustaining a con-
cussion persistently lowers NAA:Cr levels. There is
ample evidence to suggest this is the case after a mTBI
[70,77,79]. Future studies charting the time course of
metabolic injury and recovery need to be conducted in
order to determine whether there is recovery, in whom
there is recovery, and when the recovery occurs. Though
the current study investigates sports concussion, which
are not necessarily equivalent to mTBI, the comparison

Figure 3 Spectra in M1. A Line graph of the mean Glu/Cr ratios, B represents the means of m-I:Cr ratios and C. represents NAA:Cr ratios for
control (black lines, n = 10) and concussed (gray bars, n = 10) athletes in the dorsolateral prefrontal cortex (DLPFC) at the acute and chronic
post injury time points. Values are the mean of 24 voxel spectra (10 left hemisphere, 10 right hemisphere) per group. Standard errors of the
means are represented by vertical bars. I represents an interaction of Group and Time, T represents an effect of time, and G represents a group
effect. Statistically, t represents a trend where p ≤ .10 and an asterisk indicates a statistically significant difference of p ≤ 0.05 and a double
asterisks indicates p ≤ .01.
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is still worth making until more data specific to sports
concussion becomes available.
Results from primary motor cortex paint a more com-

plex picture of the metabolic state of the brain after a con-
cussion. While depressed in the acute phase, Glu:Cr levels
in concussed athletes rebound to those of control athletes
in the chronic phase, elegantly demonstrating metabolic
recovery. There is no precedent for Glu:Cr recovery in the
mildly brain injured population, let alone in the sports lit-
erature. However, given the seemingly short lived meta-
bolic disturbance of glutamate levels as illustrated in the
neurometabolic cascade [57], we predicted just such a
recovery. What remains to be further explored is when
exactly between the injury and the 6-month post injury
time point as measured in the current study does Glu:Cr
concentration achieve physiologically typical levels and
whether this metabolic resolution corresponds to symp-
tom recovery. The reasons for affected Glu:Cr levels in
M1 but not in DLPFC are not immediately apparent.
However, examination of the literature investigating the
biomechanics of mTBI show that the rotational forces
associated with concussion suggest that M1 is consistently
vulnerable to shear strain [19,76,83-85].
M-I:Cr in M1 also showed a complex pattern of results.

While there are no differences in the acute phase, there
appears to be a pathological increase in m-I:Cr in the
chronic phase. Other studies investigating either mixed
TBI groups [70] or severe TBI [69,74] though in different
brain regions, have noted increased concentrations of m-I
months and years after injury. The current data are consis-
tent in this respect, but why these differences are not seen
in the acute post injury phase is not immediately apparent.
One possible explanation may be that there are two differ-
ent mechanisms that help to regulate osmotic pressure in
neurons and glia. Within the acute post-trauma phase this
is primarily regulated by the rapid transport of Na+, K+, H
+, and Cl- across the plasma membrane [86,87]. Indeed,
such an account is supported by the neurometabolic cas-
cade as described by Giza and Hovda [57] where axonal
swelling is indicative of hypernatremia [88]. To offset the
ensuing water loss, the brain accumulates m-I to avoid a
rapid over correction which could have devastating conse-
quences to the brain [89]. Such a fast acting mechanism
would preclude any observable changes in m-I in the
acute phase which is in line with the current study’s
results. However, long term changes in cellular tonicity
are offset by the transport of non-perturbing osmolytes
that do not alter the electrophysiological state of the cell,
namely m-I [87]. The increase in m-I might also be indica-
tive of gliosis [see 90 for review]. Myo-Inositol increase in
association with decreased NAA:Cr ratios has been asso-
ciated with gliosis in other populations [90], while other
work suggestions that gliosis is not necessarily related to
altered neurometabolism [91]. Other studies investigating

TBI also report increased m-I:Cr levels in both severe
[69,74] and mild injuries [70]. In addition to TBI, other
pathologies that have been associated to increased levels
of m-I include drug addiction and stroke [see 67 for a
complete review]. Though many questions remain as to
the functional significance of such an increase in m-I, we
are the first to report such an effect in the sports concus-
sion population. Further confirmation is needed to con-
firm the robustness of this finding in a larger sample as
well as the temporal nature of the changes.
The breadth of the metabolic changes in M1 (increases

in m-I/Cr and Glu/Cr) within the concussed athletes in the
chronic post-injury phase as well as the significant
decrease of Glu:Cr in the acute phase may be due to the
biomechanics of how the brain moves within the skull
when a rotation force is applied [76,85,92]. The respective
impacts of rotational and linear forces in producing a con-
cussion [76,85,92-94] suggest that M1 is consistently vul-
nerable to the white matter injury of shear strain. The
differential effects on Glu:Cr and m-I:Cr in M1 versus
DLPFC are further corroborated by changes detected using
diffusion tensor imaging where patients who had suffered a
mTBI demonstrated reduced fractional anisotropy in the
corticospinal tract indicating diffuse axonal injury where
no such injury pattern was found in frontal regions [19].
NAA levels in M1 showed a statistical trend between

concussed and control athletes. Indeed, the overwhelming
evidence implicates diminished levels of NAA after a brain
injury, whether it be mild [53,54,62,70,77-79,95] or severe
[60,70,74,75,78,96,97]. Though the current results were
not statistically significant in M1, this is consistent with
what the current study demonstrates in the DLPFC.
Decreased levels of NAA may be reflective of diffuse axo-
nal injury in white matter and neuronal loss in gray matter
[98], but this is a less probable interpretation given the
heterogeneous nature of the neuropathological response
to trauma. Declines in NAA levels are linked to decreases
in ATP where the greater the initial decrease, the lesser
the observed recovery. Indeed, recovery is observed in all
injuries that do not include the substantial permanent
destruction of brain tissue. That is to say, neurological
recovery may be observed in conjunction with varying
degrees of metabolic recovery where the latter need not be
complete in order to observe clinical recovery in the for-
mer [56]. The persistent reduction in NAA:Cr levels
observed in the current study may therefore be the conse-
quence of a continued reduction of ATP due to the dis-
ruption of neuronal mitochondria due to the influx of Ca2
+ and lactate, which is consistent with the observed post-
injury cellular pathology [57]; furthermore, clinical signs
seem to bear little relation to the neurometabolic anoma-
lies observed in patients suggesting a highly variable rela-
tionship between injury severity and metabolic changes
past the immediate (minutes) post-injury phase [57]. It is
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thus conceivable, despite the findings of Vagnozzi et al
(2008) that concussed athletes do have continued meta-
bolic disruptions despite being clinically recovered in
terms of their PCSS scores. That is to say, even though
concussive injuries do not typically result in observable
brain trauma (i.e. MRI, CT scan), and concussed indivi-
duals typically recover from a symptom standpoint within
weeks after the injury, there is a sustained and persistent
effect on cellular metabolism. The continued neurometa-
bolic alterations observed in the current study may be
reflective of other pathological processes such as gliosis or
cell loss. Cell loss would seem to be less probable given
the time frame of 6 months post injury used in the current
study, though changes in volumetry have been shown as a
consequence to mTBI while other studies have measured
brain volume at one year post-injury [77,99]. Indeed, a
study investigating mTBI 6 months post injury showed
atrophy only in participants who had positive MR findings
[100] while another some three months post injury also
failed to find differences in participants who had suffered a
MTBI [101]. Gliosis, as mentioned above is another possi-
bility, but given that the current study observes an increase
of m-I only in M1, it does not explain the persistence of
metabolic disturbance observed in the DLPFC.

Conclusions
The current study shows a complex and varying pattern of
recovery and persistent metabolic depression in different
cortical areas and in different metabolites. The return of
Glu:Cr levels in the concussed athletes to those of controls
from the acute to the chronic phase clearly demonstrates
recovery, at least insofar as glutamate is concerned. The
lack of group-time interactions of NAA:Cr concentration,
both in M1 and DLPFC was somewhat surprising. It may
be reflective of the fact that recovery from concussion is
best achieved through cognitive and physical rest as
described above [52,80]. It may also be reflective of a per-
sistent pathological state. Indeed, there are several neuro-
pathologies that demonstrate continued depression of
NAA levels including, though not limited to, stroke, TBI
of all severities, multiple sclerosis, brain tumours, Alzhei-
mer disease, and neuro-AIDS and other infections [56].
Clearly these represent different pathologies operating on
different mechanisms. However, it is also indicative of the
global role of NAA as a marker of neurometabolic health,
irrespective of the underlying pathology.
Though our results demonstrate recovery in one

instance (Glu:Cr in M1), they also show continued meta-
bolic disturbance in another (NAA:Cr in DLPFC and
M1), and altogether new neurometabolic alteration in yet
another (m-I:Cr in M1). While at first this may seem self-
contradictory, that need not necessarily be the case. Cur-
rently, all we know about concussive neurometabolic
changes is that several different neuronal processes are

affected [57]. What is far less understood is how these
processes are related and which of these processes are
necessarily concurrent to one another. Subsequently, the
recovery of these respective processes may indeed follow
differential recovery curves as is already noted on a
micro-level [57]. Future studies should include larger
samples and more time intervals to chart the metabolic
recovery and stability of not just Glu, NAA, and m-I, but
also of GABA and choline containing compounds with
the understanding that not all metabolites will follow the
same recovery curve, nor will all brain areas.
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