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Abstract

Background: The aim of this study was to assess the diagnostic accuracy (sensitivity and specificity) of clinical,
imaging and motor evoked potentials (MEP) for predicting the short-term prognosis of multiple sclerosis (MS).

Methods: We obtained clinical data, MRI and MEP from a prospective cohort of 51 patients and 20 matched
controls followed for two years. Clinical end-points recorded were: 1) expanded disability status scale (EDSS), 2)
disability progression, and 3) new relapses. We constructed computational classifiers (Bayesian, random decision-
trees, simple logistic-linear regression-and neural networks) and calculated their accuracy by means of a 10-fold
cross-validation method. We also validated our findings with a second cohort of 96 MS patients from a second
center.

Results: We found that disability at baseline, grey matter volume and MEP were the variables that better
correlated with clinical end-points, although their diagnostic accuracy was low. However, classifiers combining the
most informative variables, namely baseline disability (EDSS), MRI lesion load and central motor conduction time
(CMCT), were much more accurate in predicting future disability. Using the most informative variables (especially
EDSS and CMCT) we developed a neural network (NNet) that attained a good performance for predicting the EDSS
change. The predictive ability of the neural network was validated in an independent cohort obtaining similar
accuracy (80%) for predicting the change in the EDSS two years later.

Conclusions: The usefulness of clinical variables for predicting the course of MS on an individual basis is limited,
despite being associated with the disease course. By training a NNet with the most informative variables we
achieved a good accuracy for predicting short-term disability.

Background
Multiple sclerosis (MS) is a clinically heterogeneous dis-
ease and its course in an individual patient is largely
unpredictable. The failure to reach an accurate prog-
nosis makes clinical management difficult; this repre-
sents one of the most disturbing aspects of the disease
perceived by the patients [1]. In order to provide an
accurate prognosis during the early or mid-phase of the
disease, as well as to monitor both disease course and
response to therapy, there is a need to define adequate
clinical or biological markers that may serve as surro-
gate end-points [2]. To date, several clinical variables
have been associated with differences in disease

outcome [3-5]. In addition, neuroimaging studies [6-8],
quantification of axonal loss in the retinal nerve fiber
layer [9] or serum and cerebrospinal fluid markers [10]
seem to be associated with disease prognosis. However,
these clinical and biological markers, even though they
show statistical correlation with clinical end-points, are
limited in predicting the disease course on an individual
patient basis due to their low diagnostic accuracy (sensitiv-
ity, specificity, positive predictive value, negative predictive
value, area under the ROC curve-AUC-and accuracy) or
to the lack of information about their performance and
robustness in multicenter studies. From a clinical perspec-
tive, markers of disease activity (relapses or disability)
should be straightforward, cost-effective and capable of
being standardized in clinical settings.
Computational classifiers, such as neural networks

(NNets), Bayesian networks, linear regression models or
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decision-trees, are mathematical algorithms that maxi-
mize the matching between the input data and the out-
put (prediction), becoming very useful in the field of
Biomedical Informatics. They can extract more informa-
tion from complex dataset without the need to adjust to
a linear model (except for the regression model). Also,
they can accommodate prior information and achieve
higher accuracy for predicting outcomes. Therefore,
these classifiers are promising tools for providing valu-
able insights about complex diseases, such as disease
prognosis or response to therapy. Here, we took advan-
tage of several computer-assisted support systems that
can filter and integrate complex medical data as well as
provide helpful clinical answers at the level of the indivi-
dual patient [11].
Validation of clinical biomarkers requires conducting

prospective studies, adhering to the STARD criteria, and
evaluating their diagnostic accuracy for predicting the
end-points [2]. In order to become clinically useful in
the decision-making process at the individual patient
level for both the patient and the physician, a biomarker
should have a high accuracy, above 90% at least. Due to
the heterogeneity and dynamic nature of complex dis-
eases, achieving a high accuracy for a given biomarker is
challenging. However, promising results are currently
being obtained in cancer and other multifactorial disor-
ders through the use of combined biomarkers and clini-
cal information in a computational classifier such as a
NNet [11].
The aim of this work was to evaluate the usefulness of

clinical, imaging and neurophysiological variables for
predicting short-term disease outcomes in MS patients.
Based on published studies, we expected that single bio-
markers would not achieve enough accuracy (AUC ≥
90%) for predicting clinical end-points, therefore we
aimed to develop predictive models by incorporating
combined clinical information in different computational
classifiers that could offer a high AUC for predicting
future disability of individual MS patients in multicenter
settings (Figure 1).

Methods
Test cohort
We prospectively recruited 51 consecutive patients with
MS [12] at the University of Navarra, Spain. Patients
with clinically isolated syndrome (CIS) fulfilled the cri-
teria of spatio-temporal dissemination [12]. In order to
select a cohort of patients in the early-mid phase of the
disease for whom predicting disease activity would be
more valuable, the proposed inclusion criteria were as
follows: short-medium disease duration (< 10 years), any
disease subtype and no relapses in the month prior to
inclusion. The use of immunomodulatory therapy was
permitted. The exclusion criteria were those conditions

that prevent patients from undergoing motor evoked
potentials (MEP) or MRI studies and subjects with
EDSS > 7.0. Once study approval from the Institutional
Review Board (IRB) was obtained, patients were
included after giving their informed consent.
Neurological examination and disability assessment

were performed quarterly over a 2-year period. Trained
personnel scored physical disability using the expanded
disability status scale (EDSS) [13], the MS severity scale
(MSSS) [14] and the MS functional composite (MSFC)
[15]. The EDSS by the end of the study was confirmed
in a second visit 6 months later and was categorized in

Figure 1 Flow-chart of the study. We obtained clinical data, MRI
and MEP metrics from the test cohort. The test cohort was followed
for two years, collecting clinical information (disability and relapses).
Single variables were tested for predicting disease activity (new
relapses or increase in the disability scales EDSS or MSFC) outcomes
and predictive models were developed using computational
classifiers, after performing an attribute selection of the most
informative variables. The different classifiers were tested in the test
cohort using a 10-fold cross-validation. From the different variables
and classifiers, the NNet using EDSS at baseline and CMCT for
predicting the EDSS range two years later was selected for further
development because of its high performance. Validation was
carried out in a second prospective cohort for whom EDSS at
baseline and two years later and CMCT were available. Finally, we
calculated the diagnostic accuracy of the NNet using the 10-fold
cross-validation method in the overall population (test and
validation cohorts).
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three intervals: mild (0-2.0), moderate (2.5-4.5), severe
(≥ 5.0). The MSFC included the timed walked test
(TWT), the nine-hole peg test (NHPT) and the paced
auditory serial addition test (PASAT). We adopted the
definition of disability progression as a change of ≥ 1
point in the EDSS (≥ 0.5 for those with baseline EDSS
of 6.0 or 6.5), being confirmed in a second visit 6
months later [16]. None of the patients refused to
undergo neurological examination, MEP or MRI studies
at the time of entry into the study. Data collection was
planned prior to performing the tests. The baseline
characteristics of the patients are shown in Table 1.

Second cohort
A second independent cohort was recruited for valida-
tion purposes at the Hospital San Raffaele (Milan, Italy).
This group included 96 MS patients (age: 37 ± 10 years;

sex: 32 male and 64 female; disease duration: 9 ± 6
years; median EDSS at baseline: 1.5, range: 0-6.5). In
this cohort, 85 patients had RRMS and 11 SPMS. The
patients were followed prospectively for two years by
trained neurologists who obtained the EDSS at the end
of the second year of follow-up. After 2-year follow-up,
the median EDSS score and the mean EDSS change
were 2.0 (range: 1.0-6.5) and 0.3 ± 0.8, respectively.
Additionally, a MEP study was performed at the baseline
(Table S4) [17]. The local IRB approved this study and
the patients were recruited by their neurologists after
obtaining written informed consent.

Motor Evoked Potentials
We measured the following MEP parameters: motor
threshold, area, amplitude, latency, central motor con-
duction time (CMCT), and silent period (SP) with and

Table 1 Demographics at baseline and clinical variables at baseline and follow-up of the MS patients and the control
group of the test cohort

MS HC p value

N 51 20 –

Age 35.1 (8.9) 33.2 (9.1) n.s.

Sex (male/female) 18/33 5/15 n.s.

Duration (years) 5.9 (7.4) – –

Disease subtype CIS (16), RRMS (26), SPMS (3), PPMS (4), PRMS (2) – –

Number of relapses in the previous 2 years 1.29 (1.51) – –

EDSS at baseline 2.0 (0-6) – –

MSSS at baseline 4.6 – –

MSFC at baseline 0.08 (0.70) – –

EDSS at follow-up 2.0 (0-7) – –

Change EDSS at follow-up 0.35 (0.37) – –

Disability progression at follow-up
(yes/no)

15/36 – –

MSFC at follow-up 0.19 (0.67) – –

Relapse rate follow-up 0.57 (0.50) – –

Relapse-free patients follow-up 21 – –

DMD (yes/no) 28/23 – –

DMD type
(Avonex/Betaferon/Rebif/Copaxone/Azatioprine/Mitoxantrone)

3/8/9/0/1/1 – –

Right ADM CMCT (ms) 10.63 (3.88) 8.09 (1.22) 0.009

Left ADM CMCT (ms) 10.71 (3.73) 7.91 (1.25) < 0.0001

Right FHB CMCT (ms) 22.64 (10.57) 14.74 (2.36) < 0.0001

Left FHB CMCT (ms) 20.52 (6.82) 15.81 (3.14) < 0.0001

T1 lesion volume (cm3) 16.72 (20.23) – –

T2 lesion volume (cm3) 47.56 (42.77) – –

Gad+ volume (cm3) 0.29 (0.94) – –

GM volume (cm3) 522.50 (52.29) – –

WM volume (cm3)* 506.38 (59.40) – –

The results are described as the mean (SD), except for the EDSS, which is expressed as the median (range). Disability progression: increase of 1 point in the EDSS
confirmed at 6 months (≥ 0.5 for those with baseline EDSS of 6.0 or 6.5). MEP and MRI variables were obtained at the time of study inclusion (baseline
assessment).

HC: Healthy control; MS: Multiple sclerosis; CIS: Clinically isolated syndrome; RRMS: Relapsing-remitting MS; SPMS: Secondary-progressive MS; PPMS: Primary-
progressive MS; PRMS: Progressive-relapsing MS; EDSS: Expanded disability status scale; MSSS: MS severity score; MSFC: MS functional composite; DMD: Disease
modifying drugs; CMCT: Central motor conduction time; ADM: Adductor digiti minimi; FHB: Flexor hallucis brevis; ms: Milliseconds; Gad+: Gadolinium-enhancing
lesions; GM: Grey matter; WM: White matter (* excluding lesions).
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without facilitation. MEP amplitudes and latencies were
considered abnormal if they differed in ≥ 2.5 SD from
the normative database of our center; amplitude was
also regarded as abnormal if there was a side-to-side dif-
ference of ≥ 50%. CMCT was calculated by subtracting
the peripheral conduction time, measured using the
F-wave method, from the central latency [18]. Evoked
potential abnormalities were quantified for each limb
according to a scale modified from Leocani et al. [17]
(0 = normal, 1 = increased latency, 2 = increased latency
plus decreased amplitude, 3 = absence of MEP
response); a MEP score involving the 4 limbs was estab-
lished ranging from 0 to 12. To analyze the effect of
asymmetric disability, a Z score was created for each
limb using the CMCT (Z = (CMCT-mean)/SD); the
worst Z score of the 4 limbs was selected and compared
with disability and disease subtype. MEP studies were
performed by a trained neurologist (OS, JA, LL, MB,
UDC), blinded to clinical and MRI data.

MRI studies
At the time of the first visit, MRI studies were per-
formed on a 1.5 T Magnetom Symphony Maestro Class
(Siemens, Erlangen, Germany) as described elsewhere
[9]. We used MRIcro software (http://www.cabiatl.com/
mricro/mricro/mricro.html) to manually delimit the
lesions in the T1-and T2-weighted scans of all patients
(intraclass correlation coefficient, rI = 0.892; p < 0.001)
[19]. In order to quantify the grey (GM) or white matter
(WM) volume, a voxel-based morphometry (VBM) ana-
lysis of the 3D T1-weighted studies was performed
using the SPM2 software. To obtain the normalized and
segmented images of each subject but avoiding the bias
introduced by WM lesions, we employed a modified
protocol of the improved VBM method optimized for
MS as described elsewhere [20]. A trained neurologist
(JS), blinded to the MEP results, carried out the MRI
analysis.

Statistical analysis
The statistical package for the social sciences (SPSS Inc.,
Chicago, IL, USA) version 13.0 was used for the analysis,
setting the significance level at 0.05. From among the
four MEP measurements of every subject we only con-
sidered the most pathological result for each patient to
calculate the predictive value of the MEP test. The diag-
nostic accuracy of the different tests was assessed by
using sensitivity, specificity, positive and negative predic-
tive values, AUC, as well as the 95% confidence intervals
(CI). According to some web-based interactive statistics
software (http://statpages.org/), the accuracy (A) is cal-
culated by dividing the number of true positives (TP)
and true negatives (TN) by the number of positives (P)
and negatives (N), that is, A = (TP + TN)/(P + N). To

determine the strength of agreement, we computed
Cohen’s kappa statistic as a chance-adjusted measure of
agreement between observers: poor (< 0.00), slight
(0.00-0.20), fair (0.21-0.40), moderate (0.41-0.60), sub-
stantial (0.61-0.80), and almost perfect (0.81-1.00)
[21,22].

Computational classifiers
We made use of several deterministic classifiers: 1)
Naïve Bayes; 2) Simple logistic (an up-to-date represen-
tative of logistic regression models that uses boosting to
calculate the regressions); 3) Ramdom decision-tree
meta-classifier. We also investigated non-deterministic
classifiers, such as the multilayer perceptron (MLP),
which is one of the most widely used NNets. All these
algorithms were implemented in WEKA (Waikato
Environment of Knowledge Analysis) v 3.5.8, (http://
www.cs.waikato.ac.nz/ml/weka). Classifier performance
was quantified according to the AUC as follows: excel-
lent (90-100%), good (80-90%), intermediate (70-80%),
and fair (< 70%) [21,22].
Because of the negative effect of unhelpful attributes

on most machine learning schemes, we followed a learn-
ing procedure that incorporated an initial feature selec-
tion stage (data mining), which strives to eliminate all
but the most relevant attributes [23]. For attribute selec-
tion, we chose the Wrapper approach, which evaluates
the suitability of each attribute subset by estimating the
accuracy of the specific classifier used, since it is more
consistent and shows better predictive accuracy than fil-
ter approach, in which the features are filtered indepen-
dently of the induction algorithm or classifier [24,25].
The different classifiers were tested using a 10-fold

cross-validation which partitions the original sample
into 10 sub-samples. Of these 10 subsamples, a single
sub-sample was retained as the validation data to test
the model while the remaining 9 sub-samples were
used as training data [26]. The cross-validation pro-
cess was then repeated 10 times with each of the 10
sub-samples being used once as the validation data,
and the 10 results obtained could then be averaged to
produce a single estimate. To seek an accurate error
estimate, the above 10-fold cross-validation process
was repeated 10 times (the learning algorithm is
invoked 100 times on datasets that are all nine-tenths
the size of the original) and the results were averaged
obtaining a mean square error (MSE). During the
training process of the neural network cross-validation
was used for detecting when overfitting starts; then
training was stopped before convergence (automatic
early stopping) to avoid overfitting. Though there are
a number of plausible stopping criteria, we stopped
the training when the validation set reached the mini-
mum MSE [27].
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Attribute selection and validation procedure
As inputs, we considered the following attributes: a)
clinical variables: disease subtype, sex, age, EDSS at
study entry, motor function score of EDSS (MF), MSFC,
motor scores of MSFC (TWT and NHPT), use of dis-
ease modifying therapies; b) MRI variables: total lesion
volume on T1, T2 or gadolinium-enhancing T1, GM
and WM volumes; c) neurophysiological variables:
CMCT, MEP score, aggregated MEP score, worst Z
score from the 4 limbs, abnormal MEP. First the selec-
tion process for each classifier ranked the attributes
using the Wrapper algorithm, and then we chose the
ones with the highest ranks as selected inputs to the
corresponding classifier. As the primary end-point (out-
put or dependent attribute) for each classifier, we con-
sidered the EDSS change at the end of the study
(confirmed after six months), since this is the most
common end-point in MS clinical trials assessing the
efficacy of disease modifying drugs. Secondary outcomes
were disability progression (yes or no), and the occur-
rence of relapses by the end of the study (relapse-free
status).
The different classifiers were tested in the test cohort

using a 10-fold cross-validation, because this provides
the best method for testing classifiers [26]. Subsequently,
we also validated our findings applying the same classi-
fiers to the second cohort from Italy for whom EDSS at
baseline and two years later and CMCT were available.
Finally, we calculated the diagnostic accuracy of the
NNet (MLP) using the 10-fold cross-validation method
in the overall population (test and validation cohorts).
See additional file 1 for more detailed information of

the procedures.

Results
Diagnostic accuracy of clinical, neuroimaging and
neurophysiological variables in predicting short-term
disease activity
We found that disease subtype (progressive forms), sex
(male) and EDSS at baseline had fair-to-intermediate
diagnostic accuracy to predict EDSS change or disability
progression two years later (Table 2). No clinical vari-
able was considered as very accurate to predict the
other disease outcomes during the follow-up period.
Regarding neuroimaging and MEP variables, first we

assessed their correlation with EDSS both at baseline
and follow-up in order to gain some insight about their
association with permanent disability. Then, we tested
their diagnostic accuracy for predicting disease outcome.
Several MRI abnormalities correlated moderately with
EDSS at baseline, such as the lesion volume on T1 and

Table 2 Diagnostic accuracy of single clinical, imaging
and MEP variables for predicting short-term disease
activity in the test cohort

Clinical end-
points

Change
EDSS

Disability
Progression

Relapse
free

MS subtype 64 (8)
< 0.01

70 (9)
< 0.01

54 (17)
0.03

Sex 62 (11)
-0.02

70 (9)
< 0.01

67 (21)
0.30

Age 68 (15)
0.22

69 (10)
-0.01

57 (16)
0.03

Baseline EDSS 65 (16)
0.18

72 (13)
0.16

59 (11)
0.07

Baseline MF 70 (17)
0.28

71 (14)
0.16

59 (15)
0.09

Baseline MSFC 63 (10)
< 0.01

67 (12)
-0.02

58 (6)
-0.02

Baseline TWT 63 (12)
0.03

71 (11)
0.05

57 (5)
-0.03

Baseline NHPT 66 (14)
0.16

64 (13)
-0.06

58 (10)
0.03

Treatment (DMD) 63 (11)
-0.02

70 (10)
0.00

57 (8)
-0.02

CMCT ADM 64 (8)
< 0.01

70 (10)
< 0.01

55 (14)
-0.02

CMCT FHB 69 (15)
0.21

75 (15)
0.28

58 (4)
-0.01

MEP score 59 (10)
-0.05

67 (13)
-0.01

56 (8.07)
-0.04

Grouped MEP
score

64 (15)
0.10

71 (12)
0.10

55 (9)
-0.05

CMCT Z score 65 (14)
0.15

70 (15)
0.17

58 (5)
-0.01

Abn TMS 59 (12)
0.01

66 (11)
< 0.01

57 (7)
-0.02

T1 vol 63 (10)
-0.03

70 (9)
< 0.01

56 (12)
0.01

Gad+ vol 64 (8)
< 0.01

70 (9)
< 0.01

58 (5)
-0.01

GM vol 63 (11)
-0.02

69 (10)
-0.01

61 (17)
0.14

WM vol* 64 (13)
0.06

69 (11)
-0.02

61 (18)
0.16

Results are expressed as the Accuracy (%), standard deviation (SD) and Kappa
value (in decimals) of the test cohort using the Simple Logistic algorithm.
CMCT ADM and CMCT FHB refer to the average CMCT of left and right arm or
leg, respectively.

EDSS: Expanded disability status scale; MF: Motor score of the EDSS; MSFC: MS
functional composite; TWT: Fastest time in seconds to walk 25 feet; NHPT:
Nine hole peg test; DMD: Disease modifying drugs; CMCT: Central motor
conduction time; CMCT ADM: Worst CMCT of both arms (ADM: Adductor digiti
minimi) at baseline; CMCT FHB: Worst CMCT of both legs (FHB: Flexor hallucis
brevis) at baseline; MEP score: Combined MEP score for the four limbs;
Grouped MEP score: MEP score grouped in 3 classes (1 for 1-3, 2 for 4-6, and
3 for 7-9); CMCT Z score: Worst CMCT Z score of the four limbs at baseline;
Abn TMS: Abnormal MEP (presence or absence of at least one abnormal MEP
in each patient); T1 vol: Lesion volume in T1 at baseline; Gad+ vol:
Gadolinium-enhancing lesion volume at baseline; GM vol: Grey matter volume
at baseline; WM vol: White matter volume at baseline (* excluding lesions).
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T2 and GM volume (Table 3). However, GM volume
was the only MRI measure that correlated significantly
with EDSS two years later (r = -0.377, p = 0.007). Addi-
tionally, MRI variables were considered to have inter-
mediate diagnostic accuracy to predict disease end-
points, being T1 lesion load, and GM or WM atrophy
the best neuroimaging predictors of disability progres-
sion (Table 2).
With respect to neurophysiological variables (see addi-

tional file 1, Fig. S1), we found that the MEP score was
significantly correlated with EDSS by the end of the fol-
low-up (Table 3, Table S1 and Fig. S2), yet it was not
correlated with the MSFC. By contrast, the CMCT Z
score was closely correlated with both EDDS and MSFC
at follow up. Furthermore, when comparing the different
disease subtypes, the CMCT Z score in CIS and RRMS
was correlated with EDSS (baseline EDSS, r = 0.428, p =
0.004; EDSS at month 24, r = 0.338, p = 0.029). Indeed,
abnormal motor evoked potentials (CMCT Z score ≥
2.5, or MEP score ≥ 1) were associated with disease pro-
gression (p < 0.001, and p = 0.009, respectively). Finally,
several MEP variables displayed intermediate diagnostic
accuracy to predict disability progression (Table 2).
Overall, neither the clinical variables obtained at study

entry nor the MRI variables nor the MEP studies could
be considered as good or excellent in terms of their
diagnostic accuracy to predict disease activity (Table 2).
Although some of these variables showed an accuracy
higher than 70%, the quality of the predictor as defined
by the kappa value was low. For this reason, we decided
to combine all variables and to profit from the advan-
tages offered by computational classifiers (naïve Bayes,

simple logistics, random decision-tree classifiers, NNets)
in order to obtain a tool with good accuracy for predict-
ing disease end-points.

Building computational classifiers to predict disease
outcome and valiation in an independent cohort
The diagnostic accuracy to predict the clinical end-points
using different classifiers when all the attributes were used
is summarized in Table S2. Although the NNet classifier
was relatively accurate for some end-points, the majority
fell below 70%, which makes them less useful from a clini-
cal point of view. Hence, in order to increase the accuracy
rate to predict the different outcomes we performed an
attribute selection of the most informative variables for
each classifier (Table S3). After selecting the attributes,
most classifiers achieved a higher diagnostic accuracy,
obtaining the best results with NNets for predicting EDSS
change (accuracy = 80%; Table 4). However, all classifiers,
including the NNets, were associated with a more modest
accuracy and a lower kappa value when predicting the
occurrence of relapses (relapse-free) (Table 4).
Our results indicated that the most accurate classifier

was the NNet for predicting the EDSS change two years
later. Moreover, we found that EDSS and MEP variables
were the most informative attributes (Table 2) and were
always selected by the attribute selection process for all
algorithms (Table S3). Accordingly, we decided to validate
the NNet in an independent prospective cohort from a
second center. As inputs to the classifier, we included only
the most informative ones as explained above: a) EDSS at
study entry; b) MEP variables: CMCT and abnormal MEP
(yes or no). We set the EDSS change at the end of the
study (month 24) as the output (dependent attribute). The
performance of the NNet classifier in the second cohort
was similar to that of the test cohort (accuracy = 81%).

Discussion
In this study we set out to assess the diagnostic accuracy
of clinical, imaging and MEP variables to predict short-

Table 3 Correlation between baseline MRI variables,
CMCT maximum Z score and MEP score and the EDSS
both at baseline (month 0) and by the end of the follow-
up (month 24) in the test cohort

Baseline
(month 0)

End of follow-up
(month 24)

r p r p

Number of lesions in T2 0.327 0.017 0.128 0.05

Lesion volume in T2 0.357 0.029 0.070 0.05

Number of lesions in T1 0.402 0.003 0.174 0.05

Lesion volume in T1 0.413 0.002 0.169 0.05

Number of Gad+ lesions 0.006 0.05 0.143 0.05

Gad+ lesions volume -0.007 0.05 0.138 0.05

GM vol -0.368 0.007 -0.377 0.007

WM vol -0.120 0.05 -0.014 0.05

Whole WM vol -0.000 0.05 -0.082 0.05

CMCT max-Zscore 0.497 0.001 0.441 0.001

MEP score 0.515 0.001 0.472 0.001

Gad+: Gadolinium-enhancing lesions; GM vol: Grey matter volume at baseline;
WM vol: White matter volume at baseline; Whole WM vol: WM vol + lesion
volume; CMCT max-Zscore: Central motor conduction time maximum Z score.

Table 4 Diagnostic accuracy of NNets for predicting
clinical end-points after attribute selection in the test
cohort

End-points A%
(SD)

S
%

Sp
%

NPV
%

AUC%
(SD)

PPV
%

Kappa

Change EDSS 80 (14) 92 61 80 76 (25) 80 0.54

NNets Disability
progression

75 (17) 87 52 61 74 (31) 80 0.37

Relapse-free 67 (21) 53 77 70 65 (22) 61 0.33

The results are expressed as the percentage (SD). The attributes selected for
the different classifiers (see Table S4) were: 1) Clinical variables: disease
subtype, age, sex, EDSS, motor score of the EDSS, MSFC, NHPT, TWT; 2) MRI
variables: T1 lesion volume, Gad+ lesion volume, GM volume, WM volume; 3)
MEP variables: presence of pathological MEP, MEP score, CMCT.

SD: Standard Deviation; AUC: Area under ROC curve; A: Accuracy; S: sensitivity;
Sp: specificity; PPV: positive predictive value; NPV: negative predictive value.
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term disease activity (increase in the EDSS or new
relapses) in MS. As expected, we found that no indivi-
dual variable was capable of accurately predicting the
development of sustained disability or the onset of a
relapse during the 2-year follow-up. Consequently, we
developed computational classifiers that were able to
capture the most valuable information to predict the
required outcome (e.g., EDSS or presence of relapses).
The critical issue in developing a NNet is generaliza-

tion, that is, ability to make predictions for cases that
are not in the training set. A NNet that is too complex
or excessively trained may fit the noise leading to over-
fitting, which can result in predictions that are far
beyond the range of the training data (poor predictive
performance) [28]. One way to avoid overfitting is to
use more training cases than weights in the network.
Since our cohort does not have a great number of
patients, we needed to minimize the complexity of the
network (less number of neurons and weights), which is
achieved through a reduction of the dimensionality of
the network by considering only the most relevant attri-
butes through a feature subset selection. This process is
complex and remains an important issue in statistics
and many other domains [29]. As feature selection
approach we chose the wrapper method because the
learning algorithm is wrapped into the selection proce-
dure. Furthermore, since NNets are non-linear systems,
which do not make use of explicit parametric hypoth-
esis, selection methods must remain computationally
feasible for being useful; so, we did not consider boot-
strap, based on the statistical procedure of sampling
with replacement, at each step of the selection because
it would be very computer intensive [29].
A well-known strategy to prevent overtraining during

cross-validation is automatic early stopping through
monitoring the mean square errors (MSE) of both the
training and validation set [27]. The MSE of the training
set decreases as long as the training proceeds. However,
the MSE of validation set decreases during the first
phase of training, then reaches a minimum value and
subsequently starts to increase. In order to avoid overfit-
ting we stopped the training process when the validation
set reached the minimum MSE.
It is striking that the only outcome for which NNets

were able to obtain a good accuracy was the change in
the EDSS. These results highlight the difficulties in pre-
dicting the short-term prognosis in complex diseases
such as MS. It is noteworthy that none of the classifiers
tested was particularly accurate when clinical variables
(mainly the EDSS) were not included. This may be
because the primary end-point was to predict the
change in the EDSS two years later, and by including
the EDSS at baseline we provided the classifiers with an
approximation to the requested outcome. The inclusion

of the EDSS was not an a priori decision, but a result of
the attribute selection process. It could be argued that
by including the variable to be predicted (outcome) in
the list of predictors we might have introduced a bias.
Although this could have some potential impact on the
validity of statistical tests, it is not affecting the different
classifiers, including the one with the best performance,
such as NNets. This is because they are not based on
rejecting a null hypothesis but on weighting different
levels of evidence (information) for matching input vari-
ables and output variables (end-points).
Both cohorts were composed of patients at the early

to mid-phase of the disease, at a time when having a
prognosis is most valuable in influencing therapeutic
decisions. Moreover, they do not have a very active dis-
ease, which is in agreement with recent clinical trials
and prospective studies, in part because they were trea-
ted with disease modifying drugs (DMD). Although this
represents a greater challenge for any classifier, this is a
common scenario in present clinical practice. Indeed,
the majority of our patients had a low EDSS score,
which implies little disability and imposes more difficul-
ties to predict future disability, as was the case for the
MSSS or the MSFC. Even then, the classifiers worked
better after including the EDSS at baseline, suggesting
that small differences in the EDSS early in the disease
might have important consequences in the long-run.
However, incorporating other measurements of disabil-
ity, such as the MSFC and the MSSS, into the classifiers
for predicting the same measurements 2 years later did
not provide good classification results; this indicates that
the use of the outcome variable as part of the predictor
does not guarantee an excellent performance.
The classifiers tested worked better after combining

the clinical information with several MRI and MEP vari-
ables. The MRI variable that most contributed to pre-
dicting future disability was GM atrophy, although its
weight in the attribute selection process was lower than
that of EDSS and MEP. This is in agreement with recent
findings suggesting that GM damage seems to be one of
the most critical factors leading to MS disability [30]. It
is striking that some other MRI variables that are also
considered surrogate end-points of disease activity in
clinical trials (T1 and T2 lesion load or WM atrophy)
did not provide useful information to forecast future
disability, even though they were correlated with disabil-
ity at baseline. Although in our study the validated clas-
sifier did not include MRI variables because of the
aforementioned reasons, enhanced classifiers could
incorporate GM atrophy or other new MRI metrics.
We paid special attention to the MEP variables because

they are highly sensitive to injury of motor pathways, and
as such they are closely correlated with the EDSS score
[31]. We found that the most informative MEP variable
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was the CMCT, although the MEP score also provided
valuable information. Central conduction latencies calcu-
lated with the CMCT are very sensitive to demyelination
of motor pathways, as well as to axonal loss. Surprisingly,
some other measures like MEP amplitude or silent peri-
ods were not as informative, even though they seems to
be closely related to axonal loss.
The NNet classifier using baseline EDSS and CMCT

was able to predict the change in the EDSS two years
later with good accuracy. However, its ability to predict
some other outcomes such as disability progression,
change in the EDSS or the MSFC was not as good. This
could be due to the nature of such scores, such as the
qualitative nature of the disability progression end-point
or the multidimensional character of the MSFC. In addi-
tion, the poor capacity of the classifiers to predict the
occurrence of relapses (relapse-free) or the number of
relapses during the follow-up represents a major chal-
lenge, even when the classifiers incorporate several vari-
ables associated with relapses, such as the number of
relapses in the previous two years or the presence of
gadolinium-enhancing lesions.

Conclusion
This study provides a realistic assessment of the chal-
lenges faced in developing prognostic models for MS
patients and evaluating risk stratification [32]. Also, we
observed that NNets yield better performance than clas-
sical regression models (simple logistics), indicating the
usefulness of more advanced computational tools for
handling complex datasets in multifactorial diseases.
The variables selected by the model for inclusion exhibit
good face validity and are at least partially independent.
However, the current lack of a clear understanding of
how much the short-term prognosis is informative
about the long-term prognosis (decades later after dis-
ease onset) poses some limitations to our study. Never-
theless, the development of short-term disability
classifiers can be of clinical value, such as helping in the
prescription of DMD or improving clinical trial design
and cohort recruitment [11,21,22,33]. Although signifi-
cant challenges remain to be overcome before MS vari-
ables-based classifiers can be used in the clinical setting,
these tools have the potential to improve patient care
and can be customized for eventual clinical use [32].

Additional material

Additional file 1: additional methods and results. it contains an
extended description of methods, including description of the cohort,
MEP, and development of computational classifiers. In addition, it also
includes additional results, such as detailed MEP findings and attribute
selection results of the computational classifiers.
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value; NPV: Negative predictive value; ROC: Receiver operating curve; AUC:
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