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Abstract 

Background Although cochlear implants can restore auditory inputs to deafferented auditory cortices, the quality 
of the sound signal transmitted to the brain is severely degraded, limiting functional outcomes in terms of speech 
perception and emotion perception. The latter deficit negatively impacts cochlear implant users’ social integration 
and quality of life; however, emotion perception is not currently part of rehabilitation. Developing rehabilitation 
programs incorporating emotional cognition requires a deeper understanding of cochlear implant users’ residual 
emotion perception abilities.

Methods To identify the neural underpinnings of these residual abilities, we investigated whether machine learn-
ing techniques could be used to identify emotion-specific patterns of neural activity in cochlear implant users. 
Using existing electroencephalography data from 22 cochlear implant users, we employed a random forest classifier 
to establish if we could model and subsequently predict from participants’ brain responses the auditory emotions 
(vocal and musical) presented to them.

Results Our findings suggest that consistent emotion-specific biomarkers exist in cochlear implant users, which 
could be used to develop effective rehabilitation programs incorporating emotion perception training.

Conclusions This study highlights the potential of machine learning techniques to improve outcomes for cochlear 
implant users, particularly in terms of emotion perception.
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Background
Cochlear implants (CIs) can restore auditory inputs to 
deafferented auditory cortices. However, the quality 
of the sound signal transmitted to the brain is severely 
degraded, which can result in limited functional out-
comes. While many CI recipients experience improved 
speech comprehension, even those with good speech out-
comes may struggle with perceiving emotions accurately 
[1, 2]. This deficit negatively impacts socio-professional 
integration, quality of life [3], and overall emotional 
development. Therefore, there is a crucial need for reha-
bilitation programs that incorporate emotion perception 
training to improve outcomes for CI recipients.
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Many CI users exhibit some level of emotional dis-
crimination ability [1, 2, 4]. Hence, the first step in devel-
oping emotion rehabilitation training programs is to 
understand better CI users’ residual emotion perception 
abilities. Identifying these residual abilities’ neural under-
pinnings would substantially help support such training 
programs. Recently [4, 5], electroencephalography (EEG) 
was used to quantify the neural biomarkers of emotion 
perception deficits in CI users. While normal-hearing 
individuals exhibited some emotion-specific neural activ-
ity, conventional analyses failed to detect emotional dif-
ferentiation in CI users, especially in the later portion of 
the response (600-850  ms). This absence of differences 
may represent the participant deficit, but it could also be 
due to a lack of sensitivity from the selected analysis tech-
nique. By using machine learning techniques that can 
provide more sensitivity for EEG analyses (detect smaller 
variations or patterns in the data), we aim to identify the 
emotion-specific patterns of neural activity associated 
with CI users’ residual emotion perception abilities.

Methods
Here, we used a supervised machine learning method 
to model (identify emotion-specific patterns of neural 
activity) and subsequently establish if we can use these 
patterns to predict the auditory emotion presented to 
CI participants. In this case, an above-chance prediction 
(classification) accuracy would support the notion that 
emotion-specific acoustic cues can be transmitted via the 
implant and differentiated by CI users’ auditory percep-
tual system. This project was approved by the Psychology 
Institutional Review Board at the University of Montréal, 
and all participants provided informed consent.

Participants
The study utilized existing data [4] from 22 CI users, 
whose sociodemographic and clinical characteristics are 

detailed in Table 1. Throughout the investigation, partici-
pants use their implant’s typical daily settings.

Stimuli
Forty-eight stimuli, equally divided between two modali-
ties (voice and music) and three emotion types (happy, 
sad, and neutral), were used for this study. Half of the 
stimuli were female and male vocal interjections taken 
from the Montreal Affective Voices (MAV [6]) set with a 
mean duration of 1.5 (SD: 0.7) sec. The other half were 
musical excerpts on the clarinet and violin taken from 
the Musical Emotional Bursts (MEB [7]) set with a mean 
duration of 1.7 (SD: 0.6) sec. The selected stimuli from 
each database were the best recognized by pilot CI users.

Protocol
Participants were set up for EEG recording and instructed 
to fix their gaze on a cross in front of them to limit ocular 
motion. The 48 stimuli were repeated 15 times (720 tri-
als in total) and were presented in random order within 
each block of 48 trials. To ensure participants were pay-
ing attention to the task, in 7% of trials, “clicks” (square 
waves) were added to the stimulus (embedded 200  ms 
after the onset), and participants were asked to press the 
spacebar as soon as they detected them. Sounds were 
sampled at 44.1 kHz with a 16-bit resolution, presented 
at 70  dB(A) (integrated) via two loudspeakers (Genelec 
8040A) located about 1 m away, at a 45° angle on either 
side of the participant’s head.

EEG Equipment
Continuous EEG was recorded using 64 electrodes 
(referred to henceforth as channels) placed on the scalp, 
according to the International 10/20 system. Signals 
were sampled at 1024 Hz (ActiveTwo amplifier; BioSemi) 
and stored for offline analysis using BioSemi ActiView 
software.

Table 1 Sociodemographic and clinical characteristics of CI users

a Different manufacturers were represented, but all stimulation strategies were envelope-based
b Users with a contralateral hearing aid were asked to remove it during testing

CI users’ Sociodemographic and Clinical Characteristics (N = 22)

Chronological Age, mean (SD) 44.0 (15.0)

Female Sex, no. (%) 17 (77.3)

Duration of Profound Deafness, mean years (SD) 16.3 (15.3)

Age at Implantation, mean (Range) 34.7 (1.7–62.7)
aImplantation bUnilateral, no. (%) 14 (63.6)

Bilateral, no. (%) 8 (36.4)

Duration of CI Use, mean years (SD) 9.3 (6.7)

Speech Intelligibility score in Quiet, % score (SD) 68.3 (18.8)
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EEG data pre‑processing
The recorded neural activity was pre-processed offline 
using EEGLAB version 13.6.5b and ERPLAB version 
6.1.3. The complete description of all pre-process-
ing steps (i.e., filtering and corrections) is available 
in the original study [4]. No further pre-processing 
was required for our re-analysis as the electrodes and 
epochs affected by signal loss and eye- or CI-related 
artifacts were already rejected in the previous study. 
On average, the signal from 4.8 electrodes was removed 
for CI participants (caused by occasional signal loss or 
artifact from the implant), and 40 trials (SD = 32) were 
rejected for CI users. In the final dataset, a minimum of 
5 trials (/15) of each stimulus per participant were still 
available for analysis.

Complementary information about the participants, 
stimuli, protocol, EEG equipment, and data pre-process-
ing can be found in the original study [4].

Data used for classification
Emotion classification was performed on neural activity 
(µV levels) recorded for each time point (588 features) 
between the auditory stimuli onset and 2300  ms at CZ 
(central electrode on the sagittal plane; 10/20 system). 
The frontocentral region was selected because that is 
where peak levels of evoked activity were observed in 
the original study; the Cz electrode was chosen because 
it necessitated the least data interpolation in our partici-
pants. Cz recordings were available in 20 CI users; for the 
other two participants, Cz data were interpolated from 
lateral recordings in the C1 and C2 electrodes.

Emotion prediction
We used a supervised machine learning method (Ran-
dom Forest classifier [8, 9]) to predict, from each partici-
pant’s neural activity, the auditory emotions (happy, sad, 
neutral) presented to them. This algorithm uses multiple 
decision trees (sets of rules) on subsets of data to gener-
ate the most accurate predictions.

Using repeated stratified 5-fold cross-validation to 
maintain the same percentage of samples per category 
(emotions), we partitioned the data into training sets 
(used for modelling) and test sets (used for predictions). 
The cross-validation was repeated three times, each with 
a train-test split of 4:1. The classifier performance (pre-
diction accuracy) was recorded for each repetition and 
averaged together.

Furthermore, because previous reports [2, 10] sug-
gested a response bias towards positive emotions by CI 
participants, binary classifications (happy vs. sad, happy 
vs. neutral, sad vs. neutral) were also conducted to assess 

whether the algorithm equally predicts all three emotions 
or neglects one.

Hyperparameter selection
Data from two randomly selected CI users were used to 
optimize the algorithm parameters. We tested a variety 
of hyperparameter combinations through a grid search. 
Our algorithm default values (specifically, the number of 
decision trees set to ‘100’ and max features set at ‘sqrt’—
the square root of the total number of features) produced 
the highest accuracies for all classification schemes. Data 
from these two CI users were excluded from our main 
analyses; only the prediction accuracies from the remain-
ing 20 participants are presented in the result section.

Statistical significance determination
We used random permutation tests [11] to provide sta-
tistical significance levels (p-values) for the decoding 
accuracies. We performed 200 random permutations of 
the labels (emotion classes) in the data (within subjects) 
and computed the classification accuracy for each per-
mutation; by doing so, we established an empirical null 
distribution of our algorithm classification accuracies on 
random observations. The tail of the group average distri-
bution was then used to determine a significance bound-
ary for a given rate of tolerated correct classifications that 
occur by chance (false positives).

If a classification accuracy (from non-permuted labels) 
is higher than the 95th percentile of this empirical null 
distribution, it can be reported as significantly different 
(p < 0.05) from chance.

Results
The classifier algorithm was able to identify emotion-spe-
cific neural activity in CI users. It achieved a significant 
(p < 0.05) above-chance emotion classification accuracy 
for the multi-class problem (identifying emotions from 
three categories: happy, sad, and neutral; 7.5% above-
chance) and for all binary classification (two categories/
emotions; Happy-Sad: 7.8%; Happy-Neutral: 6.6%; Sad-
Neutral: 8.1%), see Fig.  1 for individual classification 
accuracy and standard error.

Discussion
Our study used highly sensitive automated pattern clas-
sification to identify emotion-specific patterns of neural 
activity in CI users. These patterns had previously only 
been observed in normal-hearing individuals [4].

Prior investigations into the neural correlates of emo-
tion perception in CI users primarily reported that their 
early evoked responses, such as the N100 and P200, were 
often attenuated and prolonged compared to controls [4, 
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5], suggesting a general reduction in the neural encoding 
of acoustical characteristics transmitted by the implant.

However, in the previously published analysis of the 
EEG data presented here [4], it was also observed that sad 
stimuli elicited delayed latencies for both N100 and P200 
compared to happy or neutral stimuli in both normal-
hearing listeners and CI users. This main effect observed 
in both groups did not specifically contribute to explain-
ing CI users’ emotion perception deficit. Nonetheless, in 
the later portion of the evoked response (between 600 
and 850), both emotional stimuli (i.e., happy and sad) 
could be differentiated from the neutral ones in nor-
mal-hearing individuals but not in CI users. Since later 
components of the evoked responses seem to vary with 
affective content systematically [12–16], this difference 
between groups was identified as a representation of CI 
users’ emotion perception deficit.

To uncover the neural basis of residual emotional abili-
ties in CI users (rather than their deficit), we opted for 
a more comprehensive approach. We analyzed the entire 
duration of evoked responses and employed a method 
with heightened sensitivity (i.e., random forest classifier). 
Through this approach, we successfully identified emo-
tion-specific patterns of neural activity in CI users.

Unlike previous behavioural studies that reported 
biases towards positive emotion [2, 10] (or difficulties 

in discerning sadness [2, 4]), the algorithm seems to be 
able to distinguish all emotions, indicating the presence 
of consistent emotion-specific biomarkers.

That said, classification schemes involving sad stim-
uli yielded slightly higher (1.2/1.5%) average classifica-
tion, potentially reflecting delayed latencies observed 
for sad stimuli in the original study [4]. Nevertheless, 
above-chance emotion classification accuracies for all 
classification schemes support the notion that emotion-
specific acoustic cues are transmitted via the implant 
(e.g., timbre: [1, 17]) to the perceptual system and are 
available to CI users.

These findings hold significant implications for reha-
bilitation strategies for CI users. By leveraging these 
identified biomarkers, tailored training programs [18] 
could be developed to enhance emotional perception 
among CI users, potentially leading to an improved 
quality of life [3].
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