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Abstract
Background Posterior Circulation Syndrome (PCS) presents a diagnostic challenge characterized by its variable and 
nonspecific symptoms. Timely and accurate diagnosis is crucial for improving patient outcomes. This study aims to 
enhance the early diagnosis of PCS by employing clinical and demographic data and machine learning. This approach 
targets a significant research gap in the field of stroke diagnosis and management.

Methods We collected and analyzed data from a large national Stroke Registry spanning from January 2014 to July 
2022. The dataset included 15,859 adult patients admitted with a primary diagnosis of stroke. Five machine learning 
models were trained: XGBoost, Random Forest, Support Vector Machine, Classification and Regression Trees, and 
Logistic Regression. Multiple performance metrics, such as accuracy, precision, recall, F1-score, AUC, Matthew’s 
correlation coefficient, log loss, and Brier score, were utilized to evaluate model performance.

Results The XGBoost model emerged as the top performer with an AUC of 0.81, accuracy of 0.79, precision of 0.5, 
recall of 0.62, and F1-score of 0.55. SHAP (SHapley Additive exPlanations) analysis identified key variables associated 
with PCS, including Body Mass Index, Random Blood Sugar, ataxia, dysarthria, and diastolic blood pressure and body 
temperature. These variables played a significant role in facilitating the early diagnosis of PCS, emphasizing their 
diagnostic value.

Conclusion This study pioneers the use of clinical data and machine learning models to facilitate the early diagnosis 
of PCS, filling a crucial gap in stroke research. Using simple clinical metrics such as BMI, RBS, ataxia, dysarthria, DBP, 
and body temperature will help clinicians diagnose PCS early. Despite limitations, such as data biases and regional 
specificity, our research contributes to advancing PCS understanding, potentially enhancing clinical decision-making 
and patient outcomes early in the patient’s clinical journey. Further investigations are warranted to elucidate the 
underlying physiological mechanisms and validate these findings in broader populations and healthcare settings.

Keywords Posterior circulation syndrome (PCS), Posterior stroke diagnosis, Machine learning, Decision support, 
Stroke risk factors
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Introduction
Posterior circulation stroke (PCS) constitutes 20% of all 
ischemic stroke [1] with 70,000–100,000 patients pre-
senting with PCS in the USA annually [2]. PCS is difficult 
to diagnose owing to the often stuttering, progressive 
and/or non-lateralizing nature of the symptoms given the 
vast area of blood supply and non-specific symptomatol-
ogy [3]. Furthermore, computed tomography (CT), is less 
reliable in diagnosing PCS [10]. As described by Schnei-
der et al. [4]. , the Timely diagnosis relies upon a careful 
history and a high clinical index of suspicion (e.g. speed 
of onset, age, and vascular risk factors).

Research conducted by Mehndiratta and colleagues 
highlighted hypertension as the predominant risk factor 
associated with PCS. Interestingly, vertigo emerged as 
the most frequently observed clinical symptom, closely 
followed by ataxia [5]. Furthermore, in a comparison 
with anterior circulation strokes, it was observed that 
type 2 diabetes mellitus exhibited a stronger association 
with PCS, particularly in cases of pontine infarctions as 
opposed to non-pontine subtypes of PCS [6]. Addition-
ally, it’s worth noting that vertebral artery hypoplasia is 
present in 10% of the general population in China, and it 
stands as an independent risk factor for PCS, alongside 
male sex [7].

Qatar, a prosperous peninsula situated on the north-
eastern border of the Arabian Peninsula, has a native 
Qatari population comprising only 15% of the total popu-
lace [4]. Despite its affluence, the country faces significant 
public health challenges, including a high prevalence of 
obesity, diabetes mellitus (DM), and cardiovascular dis-
ease [5]. In 2020, Qatar ranked 15th globally for obesity, 
affecting over 35% of its citizens. Additionally, in 2013, 
approximately 16% of the population received a diagno-
sis of diabetes mellitus [6]. Notwithstanding these con-
cerning statistics, Qatar maintains a relatively low stroke 
incidence rate of 58 cases per 100,000 individuals, signif-
icantly lower than the MENA region’s rate of 250 cases 
per 100,000 people [7, 8]. Moreover, Qatar exhibits a 
comparatively low rate of stroke-related fatalities [7]. This 
phenomenon can be ascribed to the distinctive demo-
graphic makeup, where the expatriate working-age popu-
lation constitutes the majority [4, 9]. This heterogeneous 
demographic and ethnic composition have a significant 
implication on the stroke characteristics compared to the 
Caucasian dominant population where most of the pub-
lished stroke database publications come from [4].

The use of Machine Learning (ML) in medicine, partic-
ularly through Explainable Artificial Intelligence (XAI), is 
crucial for enhancing model performance, building user 
trust, and supporting decision-making processes, thereby 
potentially increasing AI’s clinical impact and adop-
tion in healthcare [8]. By developing robust ML models 
for early and accurate prediction of clinical outcomes 

across diverse demographics. This advancement enables 
the customization of treatment plans to meet the unique 
needs of each patient, thereby potentially saving lives. 
Giuste et al. developed a robust ML model to predict 
patient-specific risk of death using features available at 
the time of diagnosis. Consequently, this fosters a greater 
acceptance and integration of AI technologies within 
healthcare frameworks [9].

Various scoring systems and scales have been employed 
to assess and predict the outcome, prognosis, and sever-
ity of PCS. A substantial body of research consistently 
indicates that PCS tends to carry a less favorable progno-
sis in comparison to anterior circulation strokes [10]. The 
National Institutes of Health Stroke Scale (NIHSS) serves 
as the most widely utilized tool for gauging stroke sever-
ity. However, it falls short when assessing PCS due to its 
inability to capture clinical elements specific to the poste-
rior circulation, such as nystagmus or gait disturbances. 
This limitation can result in an underestimation of the 
severity of PCS [11, 12]. To address this gap, several 
alternative scoring systems have been developed to more 
accurately evaluate the severity of PCS, such as Adam’s 
Scale of Posterior Stroke (ASPOS) [12] and the posterior 
NIHSS [13] Additionally, research has shown that utiliz-
ing NIHSS scores 24  h post-stroke proves to be a more 
precise predictor of functional outcomes within 90 days 
following thrombectomy, as opposed to relying solely on 
NIHSS scores upon admission [14].

ML has been heavily utilized in the field of stroke to 
predict certain stroke outcomes and to help improve per-
sonalized medicine [15, 16]. ML-based assessment tools, 
such as the Posterior Circulation Acute Stroke Prognosis 
Early CT-Score (pc-ASPECTS), have been developed to 
enhance outcome prediction for PCS utilizing imaging-
based ML. Impressively, pc-ASPECTS demonstrates 
superior accuracy when evaluated through Receiver 
Operating Characteristic (ROC) curves, particularly in 
forecasting outcomes for minor strokes occurring within 
the initial 36 h after stroke onset. Utilizing a cutoff value 
of 7, individuals with a pc-ASPECTS score exceeding 7 
tend to exhibit more favorable outcomes [17, 18]. Simi-
larly, pcASCO (Posterior Circulation Acute Stroke Prog-
nosis Collateral Score) serves as another imaging-based 
scoring system designed to predict functional indepen-
dence at day 90 and the occurrence of malignant cerebel-
lar edema (MCE) in patients with basilar artery occlusion 
(BAO) stroke upon admission [19]. Furthermore, Tan 
and colleagues, have identified the Hyperdense Basilar 
Artery Sign (HDBA) on unenhanced computed tomogra-
phy scans as a valuable indicator for the early diagnosis 
of acute PCS and the prediction of a less favorable short-
term outcome [20].

While significant strides have been made in predicting 
stroke outcomes, it is evident that progress in the domain 
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of PCS outcome prediction lags significantly behind that 
of anterior circulation stroke models. What is more con-
cerning is the limited research dedicated to facilitating 
the early diagnosis of PCS, primarily due to its challeng-
ing presentation. Therefore, this study aims to address 
this gap by utilizing a diverse range of machine-learning 
models to boost the physicians’ capacity to diagnose PCS 
early using patients’ demographic and clinical data with-
out relying on complex imaging data.

Methods
Our proposed methodology involves a systematic 
approach to utilize ML techniques for analysing data 
from a stroke registry. Initially, we gather comprehensive 
data from the registry, ensuring inclusion of all relevant 
variables. Following this, we conduct thorough data 
analysis to uncover correlations among the variables. 
The dataset is then split for training multiple ML mod-
els. These models undergo evaluation, with the best-per-
forming model selected for further analysis and potential 
deployment. Figure 1 outlines the sequential steps of our 
ML prediction system.

Ethical approval
The study obtained authorization from the Institutional 
Research Board (IRB) at Hamad Medical Corporation in 
Qatar, identified by reference number MRC-01-22-594.

Study population
We gathered data from the national Qatar Stroke Reg-
istry housed at Hamad General Hospital (HGH), the 
sole tertiary and referral stroke center in Qatar, cover-
ing the period from January 2014 to July 2022. The data-
set comprises individuals aged 18 years and above who 
were admitted to HGH with a primary diagnosis of 

stroke. Over the course of establishing the stroke reg-
istry in Qatar until July 2022, a total of 15,859 patients 
sought specialized stroke treatment at the hospital. This 
encompassed patients with diagnoses of ischemic and 
hemorrhagic strokes, transient ischemic attacks (TIAs), 
and stroke mimics. However, our study specifically con-
centrates on patients diagnosed with non-hemorrhagic 
strokes who have valid Bamford class, while excluding all 
other conditions.

Baseline variables
The data collected encompassed a comprehensive array 
of patient information, spanning demographics, hemo-
dynamic measurements upon admission (including 
heart rate (HR), blood pressure (BP), and temperature), 
factors contributing to stroke risk (such as smoking his-
tory, pre-existing medical conditions, Body Mass Index 
(BMI)), neurological symptoms at presentation, and the 
assessment of stroke severity at admission utilizing the 
National Institute of Health Stroke Score (NIHSS) [21, 
22]. We utilized the CDC’s 5-class definition for adult 
overweight and obesity [23] to categorize Body Mass 
Index (BMI) groups.

Regarding ethnicity, patients were categorized into 
five distinct groups based on their reported nationality: 
Qatari, Middle East and North Africa (MENA) region, 
South Asia region, South East Asia region (defined in 
accordance with the United Nations geo-scheme), and all 
other nationalities were grouped into an “other” category 
[24, 25]. Notably, the specific categorization for Qatari 
patients was employed to enable meaningful compari-
sons, recognizing the unique demographic composition 
of the country where a significant portion of the popu-
lation consists of expatriates [26, 27]. This classification 

Fig. 1 Flow diagram for the proposed prediction system
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methodology has been consistently applied in previous 
stroke research in Qatar [15, 24, 28].

All relevant risk factors, such as pre-existing medi-
cal conditions and smoking history, were meticulously 
recorded during the patient’s hospitalization and cross-
validated by stroke registry personnel through electronic 
medical records. A total of 29 variables, as outlined in 
Table  1, were utilized in predicting PCS.

Outcome measure
Our primary focus for outcome is diagnosing POCI 
(PCS) based on the Bamford classification of cerebral 
stroke. Bamford classification, also known as, Oxford 
Community Stroke Project Classification, classifies the 
cerebral infarction stroke into four categories prognosti-
cally and etiologically as follows; (a) Total Anterior Cir-
culatory Infarct (TACI), (b) Lacunar Anterior Circulatory 
Infarct (LACI), (c) Partial Anterior Circulatory Infarct 
(PACI), and (d) Posterior Circulatory Infarct (POCI) 
[29–31]. In this study’s outcome variable, PCS cases were 
coded as ‘1’, while all other classes were assigned a ‘0’ 
code.

Inclusion/exclusion criteria
This study encompassed all adult patients aged 18 years 
or older who received a diagnosis of stroke. Out of the 
initial cohort of 15,859 patients, 1,657 who were diag-
nosed with haemorrhagic stroke were excluded. Records 
with missing or unstandardized outcome variables were 
also eliminated. Additionally, any records that lacked 
more than 50% of the included variables were excluded, 
resulting in a final dataset of 12,703 records eligible for 
the study, as depicted in Fig. 2.

Handling missing data and class imbalance
In instances where data value was missing, we adopted 
the Multiple Imputation using Chained Equations 
(MICE) technique to generate data imputations [32]. 
Within the dataset, it was observed that the Random 
Blood Sugar (RBS) had the highest rate of missing val-
ues at 3% and followed by Heart Rate (HR) at 0.3%. The 
cohort presented a PCS rate of 20.7%, leading to a con-
cern regarding class imbalance. To address this issue, To 
address this issue, we integrated class weighting to coun-
teract the imbalance [33, 34]. Specifically, we assigned 
class weights inversely proportional to class frequencies, 
granting greater weight to the minority class (patients 
who have PCS) to enhance their impact during the train-
ing process.

Model training and evaluation
The dataset was divided into two subsets: a training set 
comprising 80% of the data and a validation set con-
taining 20%, employing a stratified random sampling 

method. Our models were built using the training data-
set, and their performance was assessed using the vali-
dation dataset. In order to optimize model performance 
and efficiency, feature scaling with data normalization 
was conducted prior to the training of ML models. We 
trained a total of five machine learning models, including 
XGB, weight-adjusted RF, SVM, CART, and LR coupled 
with random under-sampling of the majority class.

We employed a range of classification metrics to 
evaluate the effectiveness of the models. These metrics 
included accuracy, precision, specificity, recall, F1-score, 
area under the receiver operating characteristic curve 
(AUC), Matthew’s correlation coefficient (MCC), log 
loss, and Brier score [35–39]. These metrics offer insights 
into the model’s ability to accurately classify both posi-
tive instances (patients with PCS) and negative instances 
(patients with non-PCS), considering the class imbalance. 
The model with the highest F1-score will be selected as 
the primary model for subsequent external and temporal 
validation.

Model explainability
To gain better insight into the decision-making of ML 
models, we utilized SHAP (SHapley Additive exPlana-
tions). SHAP is a robust toolkit employed to elucidate 
the classification made by ML models [40]. It works by 
producing “variable importance” scores at the individual 
level for features, known as SHAP values. These values 
quantify how much each feature contributes to a specific 
classification result.

Results
The cohort includes 12,703 patients. As in Tables 1 and 
73% of the patients are males. The mean age of the cohort 
is 53.7 ± 14 years. Approximately, 21% of the patients 
were diagnosed with PCS consistent with the global 
trend. Around 44% of the cohort is from MENA region 
and 43% is from South Asian ethnicity.

Model evaluation
As indicated in Table 2; Fig. 3, the models exhibit varying 
levels of performance, with the XGBoost (XGB) model 
emerging as the top performer. Despite the moderate 
F1 score and precision, XGB achieved notable results, 
boasting an AUC of 0.81, an accuracy of 0.79, a preci-
sion score of 0.5, a recall rate of 0.62, and an F1-score of 
0.55. The Random Forest (RF) model also demonstrated 
competitive performance, with an AUC of 0.83, though it 
recorded the lowest F1 score of 0.39, indicating relatively 
weaker overall classification capabilities. Conversely, 
Logistic Regression (LR) excelled in terms of AUC, recall, 
Brier score, and F1 score but exhibited lower preci-
sion, specificity, and Matthew’s Correlation Coefficient 
(MCC). Therefore, we have chosen XGB as the primary 
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Variable Feature Bamford (no PCS) Bamford (PCS) Total
Age < mean (53.7) 5313 1261 6574

≥mean (53.7) 4750 1379 6129
Mean ± SD (53.7 ± 14.35)-IQR 20

Sex 1: Male 7231 2072 9303
2: Female 2832 568 3400

Ethnicity 1: Qatari 2089 486 2575
2: MENA 2411 573 2984
3: South Asian 4208 1242 5450
4: South-East Asian 819 222 1041
5: Other 536 117 653

NIHSS at admission < mean (3.42) 7191 1873 9064
≥mean (3.42) 2872 767 3639
Mean ± SD (3.42 ± 5.3)-IQR 4

Body Mass Index (BMI) 1: Underweight 57 1 58
2: Normal weight 1365 100 1465
3: Overweight 2035 164 2199
4: Obese 1206 95 1301
5: Extremely Obese 783 52 835

Diabetes Mellitus (DM) 0: No 5253 1123 6376
1: Yes 4810 1517 6327

Hypertension (HTN) 0: No 3930 721 4651
1:Yes 6133 1919 8052

Dyslipidemia 0: No 5868 1451 7319
1: Yes 4195 1189 5384

Prior stroke 0: No 8765 2352 11,117
1: Yes 1298 288 1586

Atrial Fibrillation (AF) 0: No 9581 2525 12,106
1: Yes 482 115 597

Coronary Artery Disease (CAD) 0: No 8904 2314 11,218
1: Yes 1159 326 1485

Congestive Heart Failure (CHF) 0: No 10,012 2625 12,637
1: Yes 51 15 66

Renal Failure 0: No 9863 2575 12,438
1: Yes 200 65 265

Tobacco use 0: No 8055 2059 10,114
1: Yes 2008 581 2589

Random Blood Sugar (RBS) at admission < mean (8.7) 6748 1404 8152
≥ mean (8.7) 3046 1130 4176
Mean ± SD (8.7 ± 4.5)-IQR 4.5

Systolic Blood Pressure (SBP) at admission < mean (150.5) 5762 1259 7021
≥ mean (150.5) 4296 1377 5673
Mean ± SD (150.5 ± 29)-IQR 38

Diastolic Blood Pressure (DBP) at admission < mean (88) 5437 1308 6745
≥ mean (99) 4619 1326 5945
Mean ± SD (88 ± 18)-IQR 22

Heart Rate (HR) at admission < mean (82) 5486 1480 6966
≥ mean (82) 4557 1137 5694
Mean ± SD (82 ± 14.9)-IQR 18

Body Temperature (°C) < mean (36.7) 5156 1441 6597
≥ mean (36.7) 4892 1177 6069
Mean ± SD (36.7 ± 0.33)-IQR 0.4

Aphasia 0: No 9459 2589 12,048
1: Yes 604 51 655

Table 1 Statistical characteristics of the collected stroke dataset
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model for subsequent SHAP analysis, external validation, 
and temporal validation in diagnosing PCS.

SHAP analysis
The SHAP analysis yielded invaluable and pivotal insights 
for identifying PCS. In this context, the crucial factors, 
ranked by importance, are BMI, stroke severity upon pre-
sentation (measured by NIHSS), Random Blood Sugar 
(RBS), ataxia, dysarthria, Diastolic Blood Pressure (DBP), 
and body temperature at admission. Figures 4 and 5 illus-
trate SHAP analysis results.

Discussion
We evaluated the effectiveness of five ML models and 
harnessed SHAP analysis to determine the pivotal fac-
tors linked to PCS. The aim is to facilitate early identifi-
cation of PCS which is challenging to diagnose through 
ML models utilizing simple clinical data without neuro-
imaging. The paucity of existing literature addressing uti-
lization of simple clinical data to classify PCS diagnosis 
underlines the distinctiveness and originality of our study

SHAP analysis reaffirmed the significant influence of 
BMI on the model’s classification performance. Typi-
cally, obesity is well-recognized as a leading risk factor 

Table 2 Models performance evaluation metrics
Model Accuracy Precision Specificity Recall F1-Score AUC MCC Log Loss Brier Score
XGB Classifier 0.79 0.5 0.83 0.62 0.55 0.81 0.41 0.45 0.15
Random Forest Classifier (RF) 0.83 0.72 0.97 0.27 0.39 0.85 0.36 0.37 0.12
Support Vector Machine (SVM) 0.72 0.41 0.71 0.77 0.54 0.82 0.40 0.40 0.13
Decision Tree Classifier (CART) 0.77 0.45 0.85 0.47 0.46 0.66 0.31 8.24 0.23
Logistic Regression (LR) 0.72 0.41 0.71 0.77 0.53 0.82 0.39 0.53 0.18

Fig. 2 Inclusion and exclusion process

 

Variable Feature Bamford (no PCS) Bamford (PCS) Total
Neglect 0: No 9964 2622 12,586

1: Yes 99 18 117
Gaze Deviation 0: No 9932 2616 12,548

1: Yes 131 24 155
Hemianopia 0: No 9893 2568 12,461

1: Yes 170 72 242
Ataxia 0: No 9681 2086 11,767

1: Yes 382 554 936
Diplopia 0: No 9725 2353 12,078

1: Yes 338 287 625
Dysphagia 0: No 10,004 2595 12,599

1: Yes 59 45 104
Dysarthria 0: No 7516 2136 9652

1: Yes 2547 504 3051
Loss of Consciousness 0: No 9593 2518 12,111

1: Yes 470 122 592
Seizure 0: No 9876 2615 12,491

1: Yes 187 25 212
Bamford Classification 0: Non-PCS

1: PCS
10,063 2640 12,703

Table 1 (continued) 
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Fig. 4 SHAP mean values

 

Fig. 3 Area Under the Receiving Operating Curve (AUC-ROC) of the trained models
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for stroke and is linked with unfavorable prognoses [41, 
42]. A study conducted in Qatar in 2009 similarly iden-
tified obesity as one of the major risks associated with 
PCS, finding that patients with a BMI > 30 faced a height-
ened risk of PCS compared to those with lower BMIs 
[43]. Likewise, our study revealed that patients with a 
BMI ≥ 25 are four times more likely to be at a higher risk 
of PCS compared to those with a BMI < 25. Remarkably, 
22.7% of patients presenting with PCS had a BMI greater 
than 25%, in contrast to only 6.6% with a BMI below 25%. 
This difference was statistically significant with a p-value 
less than 0.05. However, it is important to acknowledge 
recent reviews that have questioned the robustness of 
BMI as an indicator of obesity. These critiques cite con-
cerns of potential inaccuracies in body weight estimation, 
insufficient adjustments for comorbidities, non-linear 
BMI-outcome relationships, limited follow-up durations, 
and potential selection bias arising from the retrospective 
nature of much of the earlier literature [44, 45]

The National Institute of Health Stroke Scale (NIHSS) 
is a well-established tool for assessing stroke severity 
and predicting stroke outcomes [15, 16]. In our study, we 
observed that PCS tends to be associated with a slightly 

lower NIHSS scores upon admission when compared to 
others, as depicted in Fig. 5, with PCS averaging 3.25 on 
the NIHSS score, while other stroke types averaged 3.43, 
however this was not statistically significance. Similarly, 
Wen-Dan et al. and Imam et al. found that PCS to be 
associated with lower NIHSS at admission [46, 47]. This 
is probably due to its inherent bias of design towards 
anterior circulation resulting in higher scores assigned to 
anterior circulation strokes rather than PCS [48]

The third variable that exhibited a significant associa-
tion with PCS and contributed to the model’s output is 
the Random Blood Sugar (RBS) level. The anterior and 
posterior circulations in the body differ anatomically and 
functionally from the posterior circulation. Anatomically, 
it is common to observe hypoplasia (underdevelopment) 
or aplasia (absence) in the vertebral artery. Frequently, 
one of these two arteries is either underdeveloped or 
terminates prematurely at the posterior inferior cerebral 
artery. These thinner, underdeveloped arteries are more 
susceptible to thrombotic occlusion, especially in the 
context of poor glycemic control. Functionally, the pos-
terior circulation exhibits a less effective self-regulating 
mechanism for maintaining stable blood flow [49], and 

Fig. 5 SHAP violin plot- variables impact on model’s output
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it also receives reduced influence from the sympathetic 
nervous system [50]. This makes the posterior circula-
tion more susceptible to damage in diabetics. Diabetes 
also causes different structural changes in the anterior 
and posterior circulations, influenced by glycated hemo-
globin [51], increasing the risk of stroke in the posterior 
circulation due to chronic high blood sugar [47]. This 
study identified a positive correlation between RBS lev-
els and PCS. In our secondary analysis, we observed that 
the average RBS measured at admission for patients with 
PCS was significantly higher than that for those with 
non-PCS, with values of 10 mmol/l compared to 8.5 
mmol/l, p-value < 0.05

Symptoms presented during initial patient assessment 
play a crucial role in aiding physicians in the diagnos-
tic process. Our study revealed that ataxia emerges as 
a key indicator for the early diagnosis of PCS. Remark-
ably, 59.2% of PCS patients manifested ataxia, in con-
trast to 41% of patients in other diagnostic categories. 
Importantly, the odds of experiencing ataxia in cases of 
PCS were six times higher than in non-PCS cases, with a 
p-value < 0.05. This finding aligns with previous research, 
where the presence of ataxia has consistently been asso-
ciated with PCS, regardless of the specific location of the 
lesion [5, 52]

Similarly, our analysis revealed that dysarthria was 
more strongly associated with non-PCS categories as 
opposed to PCS. Specifically, only 16.5% of patients diag-
nosed with PCS exhibited dysarthria, while a significant 
majority, accounting for 83.5%, was observed in non-
PCS cases, p-value < 0.05. Interestingly, Wen-Dan et al. 
did not identify a significant distinction between PCS 
and anterior circulation strokes in terms of the presenta-
tion of dysarthria [46]. Dysarthria is a nonspecific symp-
tom that occurs in stroke [53] and in many non-vascular 
brain disease such Parkinsons Disease [54], Traumatic 
brain injury [53] and Motor neuron disease [55] as well 
as stroke mimics [56]. It’s worth noting that our findings 
may be attributed to the focus of our study on PCS versus 
all other non-hemorrhagic stroke types rather than ante-
rior stroke alone as in Wen-Dan et al.’s study. And given 
lacunar syndromes that are commonly associated with 
dysarthria such as clumsy-hand dysarthria are typically 
classified as lacunar stroke rather than POCI this maybe 
an additional reason for its prevalence in non-PCS stroke

Diastolic Blood Pressure (DBP) was found to be 
strongly associated with PCS, with patients diagnosed 
with PCS typically presenting higher mean DBP levels 
than those in other diagnostic categories. For the entire 
cohort, we observed a mean DBP of 88 ± 18 mmHg. 
Notably, patients with PCS exhibited a mean DBP of 89 
mmHg, compared to 87.7 mmHg in patients from other 
diagnostic categories, p-value < 0.05. Age and lacunar 
etiology are both associated with systolic hypertension 

whereas in this selective relatively young population 
where presenting phenotypical lacunar strokes are 
grouped as non-PCS, we found an association with an 
elevated DBP [57]. Similarly, a study conducted in South 
London reported a noteworthy association between DBP 
readings, both before and after the occurrence of PCS, in 
comparison to anterior circulation stroke cases [58]

Past literature has examined the relationship between 
body temperature and acute stroke, with findings sug-
gesting that body temperature can serve as an inde-
pendent predictor of stroke outcomes, where higher 
temperatures are associated with poorer outcomes 
[59, 60]. However, there has been a very limited prior 
research reporting differences in body temperature read-
ings upon admission between PCS and other non-hem-
orrhagic stroke categories such as in Karaszewski et al. 
[61, 62] and Kim eta al [63]. , . This gap in research could 
stem from healthcare providers primarily concentrating 
on distinguishing between normal and abnormal hemo-
dynamic values, rather than identifying subtle variations 
within the normal range. These minor changes in hemo-
dynamic readings, although within normal limits, may 
have potential correlations with various clinical condi-
tions. In our study, the mean temperature for the entire 
cohort stood at 36.7 ± 0.33  °C. Our secondary analysis 
revealed a statistically significant difference in mean body 
temperature between patients with PCS and those with 
other stroke types. Specifically, the mean body tempera-
ture for the PCS cohort was 36.6, compared to 36.72 for 
the other cohort, with a p-value < 0.05. The remaining 
variables, although important, were found to have lesser 
influence on the model’s classification performance

Strength and limitations
The strength of this study lies in its creation of a forward-
thinking, comprehensive, and diverse dataset, which is 
distinguished by its formation as a nationwide database. 
This approach effectively surpasses the constraints typi-
cally associated with traditional hospital-centric reg-
istries. This study employed a national stroke registry, 
prospectively capturing data from all patients receiving 
specialized stroke care across the country. However, our 
research encounters limitations stemming from the ret-
rospective method of data extraction and the presence 
of incomplete data records. Furthermore, the use of reg-
istries can lead to potential challenges in interpretation, 
documentation, and coding accuracy

Firstly, our study relies on retrospective integration 
of clinical data, which may be subject to inherent biases 
and limitations associated with data collection methods. 
The accuracy and completeness of the electronic medi-
cal records could impact the quality of the data, poten-
tially introducing information bias or missing relevant 
variables
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Secondly, the study’s dataset is drawn from a specific 
healthcare setting in Qatar, and its generalizability to 
broader populations or healthcare systems may be lim-
ited. Regional variations in stroke demographics, risk 
factors, and healthcare practices could influence the 
external validity of our findings. Moreover, our study 
focuses on the utilization of clinical data and ML mod-
els to classify PCS. While this approach yields promising 
results, it does not necessarily take into consideration the 
underlying physiological mechanisms or causative factors 
driving the observed associations. Further research may 
be needed to elucidate the biological underpinnings of 
these relationships

Additionally, our study does not account for potential 
confounding factors that could influence the associations 
between the variables and PCS. Factors such as medica-
tion usage, or lifestyle factors were not included in our 
analysis but may play a role. Lack of imaging information 
may also present a significant limitation to the potential 
of the ML model capacity to achieve better performance

Finally, while ML models offer predictive capabilities, 
their interpretability may be limited, and the model’s 
decisions may not always align with clinical reasoning. 
Ensuring that the predictions generated by these mod-
els are clinically relevant and actionable is an ongoing 
challenge in the field of predictive analytics. Consider-
ing these limitations, our study serves as a foundational 
exploration of PCS classification using clinical data and 
ML but underscores the need for further research, pro-
spective studies, and consideration of broader contexts 
and variables in future investigations

Conclusions
In conclusion, this study represents an original effort to 
help classify and differentiate PCS upon admission to the 
hospital using clinical data and ML models. The signifi-
cance of this study lies in exploring a potential support-
ive role of ML in helping clinicians with the challenging 
diagnosis of PCS, based on simple clinical data without 
neuroimaging. Our analysis of five ML models, accom-
panied by SHAP analysis, has contributed to a deeper 
understanding of how these models can aid healthcare 
providers in the early detection of PCS, addressing a crit-
ical gap in stroke research

Several key findings have emerged from our investiga-
tion. BMI, stroke severity (NIHSS), RBS, ataxia, dysar-
thria, DBP and body temperature have been identified as 
important factors associated with PCS.
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