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Abstract
Background Restoring shoulder function is critical for upper-extremity rehabilitation following a stroke. The complex 
musculoskeletal anatomy of the shoulder presents a challenge for safely assisting elevation movements through 
robotic interventions. The level of shoulder elevation assistance in rehabilitation is often based on clinical judgment. 
There is no standardized method for deriving an optimal level of assistance, underscoring the importance of 
addressing abnormal movements during shoulder elevation, such as abnormal synergies and compensatory actions. 
This study aimed to investigate the effectiveness and safety of a newly developed shoulder elevation exoskeleton 
robot by applying a novel optimization technique derived from the muscle synergy index.

Methods Twelve chronic stroke participants underwent an intervention consisting of 100 robot-assisted shoulder 
elevation exercises (10 × 10 times, approximately 40 min) for 10 days (4–5 times/week). The optimal robot assist 
rate was derived by detecting the change points using the co-contraction index, calculated from electromyogram 
(EMG) data obtained from the anterior deltoid and biceps brachii muscles during shoulder elevation at the initial 
evaluation. The primary outcomes were the Fugl–Meyer assessment-upper extremity (FMA-UE) shoulder/elbow/
forearm score, kinematic outcomes (maximum angle of voluntary shoulder flexion and elbow flexion ratio during 
shoulder elevation), and shoulder pain outcomes (pain-free passive shoulder flexion range of motion [ROM] and 
visual analogue scale for pain severity during shoulder flexion). The effectiveness and safety of robotic therapy were 
examined using the Wilcoxon signed-rank sum test.

Results All 12 patients completed the procedure without any adverse events. Two participants were excluded from 
the analysis because the EMG of the biceps brachii was not obtained. Ten participants (five men and five women; 
mean age: 57.0 [5.5] years; mean FMA-UE total score: 18.7 [10.5] points) showed significant improvement in the 
FMA-UE shoulder/elbow/forearm score, kinematic outcomes, and pain-free passive shoulder flexion ROM (P < 0.05). 
The shoulder pain outcomes remained unchanged or improved in all patients.
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Background
Stroke is a leading cause of disability [1, 2], and approxi-
mately 70% of patients with stroke experience upper-
extremity dysfunction as their primary symptom [3, 
4]. This dysfunction significantly impacts their activi-
ties of daily living [5] and overall health-related quality 
of life [6]. Moreover, patients have reported that losing 
upper-extremity function is one of the most distress-
ing long-term consequences [7]. Therefore, improving 
upper-extremity function has become a critical concern 
for both stroke survivors and their caregivers.

Robotic rehabilitation has become an effective func-
tional training method for improving upper-extremity 
function. The American Heart Association Guideline 
2016 indicates that robotic therapy is reasonable for 
delivering more upper-extremity intensive practice in 
patients with stroke with moderate to severe paresis [8]. 
A previous study reported that higher-intensity robotic 
therapy exercises improved upper-extremity impairment 
after stroke [9]. However, the effectiveness of robotic 
therapy has focused on the distal hand and fingers, and 
no significant efficacy of robotic therapy for hemiplegic 
shoulders has been elucidated [10]. In particular, it is 
difficult to safely assist shoulder elevation against grav-
ity (vertical movement) through robotic intervention 
because of the complex musculoskeletal anatomy of the 
shoulder. Functional upper-extremity activity requires 
control of the proximal segments to position and orient 
the hand to the environment [11]. Moreover, distal hand 
function depends on proximal shoulder function [12]. 
Therefore, establishing a robotic rehabilitation strategy to 
improve shoulder elevation movements in patients with 
stroke is essential.

The difficulty of developing shoulder robots lies in 
determining the optimal assistance rate. The level of 
shoulder elevation assistance in rehabilitation is often 
based on clinical judgment, and there is no standard-
ized method for deriving the optimal level of assistance. 
Recently, robots equipped with the assist-as-needed 
algorithm have been developed [13, 14]. However, none 
of these have determined a quantitative robot assist 
rate. Hence, we focused on addressing abnormal move-
ments, such as abnormal synergies and compensatory 
actions during shoulder elevation. Abnormal synergies 
are attempts at individual movements of one body part 
accompanied by excessive, unintended motions of con-
tiguous body parts [15, 16]. In stroke survivors, abnormal 
synergies are commonly described between the shoulder 

and elbow muscles [17], which are the leading causes of 
reaching dysfunctions [18, 19].

Moreover, compensatory actions, such as elbow flex-
ion, are frequently observed during hemiplegic shoul-
der flexion [20], and the excessive use of compensatory 
actions leads to a reduced range of joint motion, pain, 
and limited functional improvement in the hemiplegic 
upper-extremity [21]. Therefore, abnormal movements 
during shoulder elevation should be minimized. It is fea-
sible to increase robotic assistance to reduce abnormal 
movements. Robotic rehabilitation for severe upper-
extremity paralysis has been improved with an error-
reduction strategy (adding more robotic assistance and 
minimizing errors) [22]. Conversely, it has been demon-
strated that excessive robot assistance during intentional 
movements may lead to “slacking,” a condition of reduced 
motor output, energy expenditure, and own participation 
[23, 24]. Therefore, optimal robotic assistance improves 
upper-extremity function after stroke [25], particularly 
in hemiplegic shoulder elevation movements. How-
ever, no established methods exist for determining the 
robot assist rate based on abnormal movements during 
shoulder elevation. This study aimed to investigate the 
effectiveness and safety of an intervention using a newly 
developed shoulder elevation-assisted exoskeletal robot 
by applying a novel optimization technique derived from 
the muscle synergy index.

Methods
Study design and participants
This study used a single-group pre-test and post-test fea-
sibility design. The inclusion criteria were as follows: (1) 
age 20–80 years; (2) patients with hemiplegia because of 
the unilateral hemispheric lesion; (3) some mobility in 
the upper-extremity (Stroke Impairment Assessment Set 
motor score of proximal upper-extremity ≥ 2), (4) pas-
sive range of motion (ROM) of shoulder flexion ≥ 120º, 
(5) understand the purpose of the study (no severe 
aphasia or cognitive impairment). The exclusion criteria 
were obvious shoulder pain or inflammation, a history 
of orthopedic diseases such as shoulder luxation, frac-
ture, or traumatic rotator cuff injury, contraindications 
to exercise therapy and disturbance of consciousness. 
This study was conducted according to the Declaration 
of Helsinki and was reviewed and approved by the Eth-
ics Committee of Keio University (Approval Number: 
20,180,360). All participants provided written informed 
consent before data collection and intervention.

Conclusions The study presents a method for deriving the optimal robotic assist rate. Rehabilitation using a shoulder 
robot based on this derived optimal assist rate showed the possibility of safely improving the upper-extremity 
function in patients with severe stroke in the chronic phase.

Keywords Stroke, Shoulder, Robotics, Rehabilitation, Feasibility studies
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Experimental protocol
The experiment consisted of pre-evaluation, ten days of 
shoulder elevation-assisted exoskeletal robotic interven-
tion, and post-evaluation for 12 days. The intervention 
frequency of the sessions was four to five times per week, 
and the experiment was completed within three weeks. 
Moreover, concomitant therapy, including traditional 
occupational therapy and functional electrical stimula-
tion of the extensor digitorum muscle, was performed 
five times a week for 60  min, in addition to robotic 
rehabilitation.

Intervention protocol
Shoulder elevation-assisted exoskeletal Robot
This study used a shoulder elevation-assisted exoskel-
eton robot developed by Noda et al. [26] at the Advanced 
Telecommunications Research Institute International to 
perform the intervention (Fig. 1). This robot can assist in 
smooth shoulder elevation movements by supporting the 
elbow and forearm with belts and driving artificial mus-
cles with pneumatic pressure. In this study, the robotic 
assist rate was adjusted from 0 (no assistance) to 100 (full 
assistance) based on the weight of the participant’s upper 
limb. Additionally, we integrate a surface electromyogra-
phy (EMG) recording device and an electrical stimulator 
into the robot’s real-time control system. Although Fig. 1 
shows only the right exoskeleton, the robot was equipped 
with both exoskeleton arms to provide intervention for 
right and left paralysis.

Optimal assist rate calculation model
The optimal robot assist rate was derived by identifying 
the change points using the co-contraction index (CCI) 
across the assist level, which is the arm’s gravity com-
pensation level. It was calculated from the EMG data 

obtained from the anterior deltoid and biceps brachii 
muscles during shoulder elevation at baseline. The CCI 
is an indicator of abnormal movement. Generally, the 
CCI is calculated with pairs of opposing muscles (such 
as the biceps and triceps brachii). In contrast, it can also 
be calculated for pairs of abnormal coactivation muscles, 
such as the anterior deltoid and biceps brachii [27]. Fur-
thermore, it has been reported that the CCI of the ante-
rior deltoid and biceps brachii during shoulder flexion 
is highly correlated with spasticity in elbow flexion [28]. 
Therefore, we developed a method to derive the optimal 
robotic assist rate from the CCI of the anterior deltoid 
and biceps brachii muscles during shoulder flexion in 
patients with stroke.

As a preliminary preparation, skin treatment was per-
formed (SkinPure, Nihon Kohden), which was applied to 
the anterior deltoid, middle deltoid, biceps brachii, and 
upper trapezius muscles. The hemiplegic upper limb was 
attached to the robot, and the weight of the hemiplegic 
upper limb was measured. We then performed the mea-
surement task (five trials of shoulder elevation up to 90° 
of shoulder flexion) with a 100% assist rate (full assist) 
based on the weight of the hemiplegic upper limb. EMG 
was obtained during the measurement task. When the 
measurement task was performed, the assistance rate was 
reduced by 10%, and the EMG during the measurement 
task was repeated for up to 11 sets. The acquired EMG 
data were used to derive the optimal assist rate using the 
following procedure:

Preprocessing
Acquisition of muscle activity time-series data E (t)
Rectification was performed after subtracting the average 
from the EMG data.

  – Filtering (10 Hz low-pass with an 8th-order 
Butterworth filter).

  – Subtract the minimum value for baseline removal.

Interpolation of angle data A (t)  to match sampling rate 
with EMG
Time-series flexion angle data were smoothed using 
11-point moving averages.

  – The flexion angle data were linearly interpolated in 
0.001-second increments, which matched the EMG 
data.

Elimination of noise caused by initial robot motion
- Eliminate E (t) between 0.2 and 0.4  s after the initial 
robot motion.

Fig. 1 Shoulder elevation-assisted exoskeleton robot
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Visualization of EMG corresponding to angle data

  – After removing duplicates, we defined tmax  as the 
moment when the arm angle reached its maximum.

An A-E curve was obtained by extracting E (t) con-
cerning A (t| t < tmax) . In the case where duplicate 
data existed in A (t| t < tmax)  (e.g., when arm elevation 
stopped for a moment), the latter was removed.

- Linear interpolation of A-E data in 0.1-degree 
increments.

Derivation of the optimal assist rate
Calculation of CCI
- We defined t50  as the moment when shoulder flexion 
reached 50 degrees, and tmax  as the moment when A (t)  
reached its degree maximum.

Calculate CCI from muscle activity E (t) in the ante-
rior deltoid and biceps brachii muscles as follows:

 
N(t) =

E(t)
Emax

 
C(t) = N(t|t50 < t ≤ tmax) −

1
Tr

∫

Tr

N(t)dt

 CCI(t) = min (CA.D.(t), CB.B.(t))

Where Emax  represents the maximum muscle activity, 
defined as median value of max (E( t )) at each trial, Tr  
is the length of the rest duration, C (t) is contraction rate 
in the specific muscle, and CA.D.and CB.B  represent the 

contraction rates obtained in the anterior deltoid and 
biceps brachii, respectively.

The time-averaged CCI was used as the representa-
tive value for each trial rate. Five representative CCIs are 
obtained for each assistive rate.

Derivation of the optimal assist rate (Fig. 2)
The calculated CCI values were fitted using an adjusted 
sigmoid function as follows:

 
f (r) =

a

1 + e−b(r−c) + d

where r is the assistance rate, a the plateau of the curve 
(convergence value), b the gain of the sigmoid function, 
c the inflection point, d the CCI offset. The function is 
based on a sigmoid function and is adjusted such that the 
inflection point is outside the origin and the maximum 
value is scalable. Fitting was performed using nonlinear 
least-squares regression (Fig. 2-A).

The optimal assist rate was calculated as r, where 
the second derivative of the fitted curve was zero 
(Fig. 2-B).

Intervention
The intervention consisted of 100 robot-assisted shoul-
der elevation exercises (10 sets of 10 repetitions, 
approximately 40  min each) with a derived assist rate. 
Preparation for the intervention was similar to the pre-
evaluation, with EMG electrodes attached to the ante-
rior deltoid, middle deltoid, biceps brachii, and upper 

Fig. 2 Derivation of the optimal assist rate
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trapezius muscles, and the hemiplegic upper limb 
attached to the robot (Fig.  3-A). In addition to robotic 
assistance, muscle stimulation of the anterior deltoid 
was performed using an electrical stimulator at the start 
of shoulder elevation to achieve the synergy required for 
isolated shoulder elevation movement (Fig.  3-A). The 
pulse width, stimulation duration, and intensity of the 
electrical stimulation were set at 1 ms and 10 ms. The 
peak voltage of the stimulation pulse was adjusted to 
the minimum amplitude required to elicit muscle con-
traction. The participants performed repetitive shoulder 
flexion movements while viewing the EMG waveforms 
(Fig. 3-B).

Assessment Protocol
All participants underwent clinical and kinematic assess-
ments on the first and last days to investigate the effec-
tiveness and safety of robotic therapy.

Effectiveness
Upper-extremity function The upper-extremity func-
tion was assessed using the Fugl–Meyer assessment-
upper extremity (FMA-UE) motor score. The FMA-UE 
consists of 30 motor function items and 3 reflex function 
items. The FMA-UE is scored on a 3-point ordinal scale 
(0 = cannot perform, 1 = partially performs, and 2 = com-
pletely performs), with higher scores indicating better 
motor function (total score: 0–66 points). The FMA-UE 
can be divided into four categories: A, shoulder/elbow/
forearm (0–36); B, wrist (0–10); C, hand (0–14); and D, 

coordination/speed (0–6). The validity and reliability of 
the FMA-UE have been demonstrated previously [29].

Kinematic analysis Azure Kinect DK (Microsoft) and 
dedicated software (ICpro-K2; Hu-tech C0, Ltd., Tokyo, 
Japan) were used to analyze the hemiplegic shoulder ele-
vation. The participants performed maximum shoulder 
flexion tasks while keeping the elbow extended as much 
as possible while sitting and were recorded using Kinect. 
The data were preprocessed by spline interpolating lost 
data points and smoothed using a second-order Butter-
worth filter with a cut-off frequency of 5 Hz. The analysis 
sections were extracted as three-dimensional coordinate 
data using dedicated software. The maximum angle of 
voluntary shoulder flexion and elbow flexion ratio dur-
ing shoulder elevation were analyzed from the extracted 
three-dimensional coordinate data. The maximum angle 
of voluntary shoulder flexion was calculated as the angle 
between a line perpendicular to the floor through the 
shoulder coordinates and a straight line from the shoulder 
to the elbow coordinates. The elbow flexion ratio during 
shoulder elevation was derived from the path length ratios 
of the three-dimensional coordinates of the shoulder (S), 
elbow (E), and hand (H), as follows:

 

→
SH

(→
SE

+ →
EH

)
× 100

This index decreases with increasing elbow flexion during 
shoulder elevation because of the proximity of the shoul-
der and hand (the maximum value is 100). The validity 

Fig. 3 Experimental set-up: (a) EMG electrode of the anterior deltoid, (b) EMG electrode of the middle deltoid, (c) EMG electrode of the biceps brachii, 
(d) EMG electrode of the upper trapezius, (i) and (ii) electrical stimulation electrodes of the anterior deltoid, (iii) left, EMG waveforms; right, motions 
instructions
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of calculating the shoulder flexion angle and path length 
ratio using Kinect has been established [30].

Safety
Adverse events Medical interviews were conducted 
before and after the intervention to assess shoulder pain, 
additional physical impairment, and serious adverse 
events.

Shoulder pain Shoulder pain was assessed using the 
pain-free passive shoulder flexion ROM and the visual 
analogue scale (VAS) for pain severity during voluntary 
or passive shoulder flexion. The pain-free passive shoul-
der flexion ROM was assessed by measuring the pain-free 
passive ROM of the hemiplegic shoulder flexion using 
a clinical goniometer, where a loss of range indicated 
increased pain [31].

Statistical analysis
Before-and-after comparisons were conducted using the 
Wilcoxon signed-rank sum test for several parameters to 
examine the effectiveness and safety of robotic therapy. 
These parameters included FMA-UE, maximum angle 
of voluntary shoulder flexion, elbow flexion ratio dur-
ing shoulder elevation, pain-free passive shoulder flex-
ion ROM, and VAS score of voluntary/passive shoulder 
flexion. The FMA-UE A score was used to assess shoul-
der function. Regarding the elbow flexion ratio during 
shoulder elevation, the path length ratio was calculated 
by matching the maximum shoulder flexion angle to the 
lower pre- or post-intervention area, and the areas under 
the curve (AUC) were compared. All statistical analyses 
were performed using IBM SPSS Statistics (version 28.0; 
IBM, Tokyo, Japan). Statistical significance was set at 
P ≤ 0.05.

Results
A total of 12 participants were recruited between Octo-
ber 2021 and October 2022. All 12 patients completed 
the procedure, including assessments before and after 
the intervention. Two participants were excluded from 
the analysis because the EMG of the biceps brachii was 
not obtained, and the robotic assist rate was determined 
from the CCI of the anterior deltoid and upper trapezius 
muscles.

General characteristics of the participants
The general characteristics of the ten stroke survivors 
(five men and five women) who fulfilled the inclusion 
criteria are summarized in Table 1. The mean (standard 
deviation [SD]) age and the duration from stroke onset 
were 57.0 (5.5) years and 4.5 (3.1) years, respectively. The 
type of stroke was hemorrhage in nine patients, infarc-
tion in one, right paralysis in six, and left paralysis in 
four. The mean (SD) FMA-UE total and A scores pre-
intervention were 18.7 (10.5) points and 14.8 (5.2) points, 
respectively.

Effectiveness
Table 2 presents the changes in each outcome. The mean 
(SD) FMA-UE A score showed a significant improvement 
from 14.8 (5.2) to 15.8 (5.4) points (P = 0.047). Regard-
ing kinematic outcomes, there were significant improve-
ments in the maximum angle of voluntary shoulder 
flexion (73.7 [34.2] to 84.9 [39.0]; P = 0.047) and AUC of 
the elbow flexion ratio during shoulder elevation (83.3 
[6.6] to 88.5 [5.0]; P = 0.005).

Safety
No adverse events were observed across all participants 
during the study period. For shoulder pain, the pain-free 
passive shoulder flexion ROM improved significantly 
from 124.5 (13.9) to 132.0 (12.9) (P = 0.027). The VAS 
scores showed an improving trend in voluntary shoulder 
flexion (0.2 [0.4] to 0.0 [0.0]; P = 0.157) and passive shoul-
der flexion (0.8 [1.7] to 0.1 [0.3]; P = 0.180). Moreover, all 
patients showed either unchanged or improved shoulder 
pain outcomes (Table 2).

Additional file 1: Pre- and post-intervention values, 
gains, and statistical group differences of each outcome 
measures by the severity of upper-extremity paralysis.

Discussion
Summary of results
This study revealed the feasibility of using a shoulder 
elevation-assisted exoskeletal robot with a derived assist 
rate by identifying the change points using the CCI dur-
ing shoulder elevation in stroke survivors with hemiple-
gic upper extremities. All 10 participants completed 
the 10-day intervention without adverse events such as 

Table 1 General characteristics and baseline upper-extremity 
function of the participants
Characteristics Values
Number 10
Sex (men/women) 5/5
Age (years) 57.0 (5.5)
Duration from stroke onset (years) 4.5 (3.1)
Stroke type (hemorrhage/infarction) 9/1
Paralysis side (right/left) 6/4
FMA-UE Total score (0–66) 18.7 (10.5)
 A score (0–36) 14.8 (5.2)
 B score (0–10) 1.1 (2.3)
 C score (0–14) 2.8 (3.8)
 D score (0–6) 0.0 (0.0)
Values are presented as numbers or mean (standard deviation)

FMA-UE, Fugl–Meyer assessment-upper extremity
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shoulder pain and showed improved upper-extremity 
function.

Effectiveness: improvement of Upper-Extremity function
This study showed a significant improvement in the 
FMA-UE A score and maximum angle of voluntary 
shoulder flexion in patients with severe upper limb motor 
paralysis. The average pre-intervention FMA-UE total 
score was 18.7 points in this study. In the upper-extrem-
ity impairment severity classification by FMA-UE total 
score, scores ≤ 19 points are severe, and 20–47 are mod-
erate [32]. Thus, our participants are in the severe upper 
limb paralysis cluster. Generally, patients with severe 
motor impairments show poor functional improvement 
[33]. Robotic therapy for severe upper limb paralysis 
has also demonstrated that no significant benefit has 
been demonstrated [34]. Most robotic therapies benefit 
patients with moderate-to-mild upper limb paralysis [35].

Nevertheless, this study showed that robotic therapy 
for patients with severe upper-extremity paralysis sig-
nificantly improved FMA-UE A scores by an average of 
1.0 points and the maximum angle of voluntary shoulder 
flexion by an average of 11.2°. Criteria such as the mini-
mally clinically important difference in these outcomes 
in severe upper-extremity paralysis have not been estab-
lished and are generally difficult to consider. Neverthe-
less, our results, which show a significant improvement 
in upper limb motor function in patients with severe 
upper-extremity paralysis, are novel and meaningful. 
Comparison between the severe and moderate upper 
extremity paralysis groups showed some improvement 
in the severe group (Additional file 1). This improvement 
may be attributed to the robotic assistant’s repetitive ver-
tical shoulder movements (shoulder flexion). In previous 
studies, gravity- or upper-limb weight-supported robotic 
exercises for patients with stroke provided functional 
recovery of the upper extremities [36–39]. However, 
none of these are vertical movement supports. Therefore, 
the robotic therapy in this study is one of the few inter-
ventions that can provide repetitive movements to signif-
icantly improve motor function, even in cases of severe 
upper-extremity motor impairment.

Effectiveness: improvement of abnormal Movement
Moreover, this study significantly improved the elbow 
flexion ratio during shoulder elevation. The AUC of the 
elbow flexion ratio during shoulder elevation improved 
by an average of 5.2% in all participants. In other words, 
all patients could perform shoulder flexion with elbow 
extension compared to the pre-intervention period. This 
result may be attributed to the robotic assist rate derived 
from the CCI between the anterior deltoid and the biceps 
brachii. Previous studies have reported that robotic 
therapy reduces the co-contraction between the anterior 

deltoid and biceps brachii. Previous studies have also 
reported that the CCI between the biceps and triceps 
brachii (agonist and antagonist muscles) is reduced by 
robotic therapy [40–42]. However, this is the first report 
demonstrating a reduction in abnormal movements, 
rather than a relationship between agonist and antagonist 
muscles, through kinematic assessment. Thus, robotic 
therapy with an optimal assist rate has shown effective-
ness in improving upper-extremity function and reduc-
ing abnormal movements.

Safety
No adverse events were associated with this interven-
tion, and the pain-free passive shoulder flexion ROM 
significantly improved by a mean of 7.5°. The incidence 
of shoulder pain in hemiplegic shoulders has been 
reported to be 10–22% [43]. Moreover, shoulder pain 
has been reported to affect physical function adversely 
[43–46], activities of daily living [45, 47, 48], and quality 
of life [49]. Hence, it is essential to provide appropriate 
difficulty that does not cause pain when intervening in 
hemiplegic shoulders. The results showed that shoulder 
pain outcomes were maintained or improved in all par-
ticipants; thus, the robot’s safety was demonstrated.

Strength
The strength of this study is the apparent improvement 
in upper-extremity function and abnormal movements 
(elbow flexion ratio during shoulder elevation) with-
out shoulder pain. This result indicated that the derived 
robotic assistance rate was appropriate. When the assis-
tance rate is too high (excessive assistance), participants 
tend to exhibit “slacking,” characterized by a lack of vol-
untary movement and a lack of improvement in upper-
extremity function [23, 24]. Conversely, a robotic assist 
rate that is too low may increase elbow flexion during 
shoulder elevation, worsen shoulder pain outcomes, and 
cause adverse events. However, neither of these events 
occurred, and both outcomes improved. The calculation 
method developed in this study can be used to derive an 
appropriate robot assist rate.

Limitations
The limitations of this study include the small sample 
size and the absence of a control group, which makes 
it difficult to generalize the findings. Although this 
study showed improvements in upper-extremity func-
tion, it is unclear whether these results were because of 
robotic rehabilitation, as the patients also received con-
ventional training. However, robotic therapy consists 
of interventions focusing on shoulder flexion, whereas 
conventional training is a traditional proximal and distal 
upper-extremity intervention. Therefore, the significant 
improvement shown by the FMA-UE A score indicates 
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the usefulness of robotic therapy. Future studies are 
required to identify the effectiveness of robotic therapy 
in larger RCTs.

Conclusion
A model was established to derive an appropriate assist 
rate calculation model by identifying the change points 
and using the CCI to derive the robotic assist rate. Fur-
thermore, robotic rehabilitation using a shoulder ele-
vation-assisted exoskeletal robot based on a derived 
optimal assist rate demonstrated the possibility of safely 
improving the motor function of hemiplegic upper limbs 
in patients with stroke.
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