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Enhanced sensitivity to punctate painful stimuli in
female patients with chronic low back pain
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Abstract

Background: Chronic low back pain (CLBP) has been shown to be associated with various pathophysiological
changes at several level of the sensorimotor system, pointing to a general hypersensitivity in CLBP patients. The aim
of the present study was to investigate signs of generalized mechanical pain hypersensitivity in CLBP patients on
the hand and on the painful site of the back.

Methods: Pinprick stimulation according to a validated standardized quantitative sensory testing protocol was used
in 14 female CLBP patients and 14 healthy controls (HC) matched for sex and age. Stimulus response functions to
pinprick stimulation on the skin were examined at the affected back and reference sites (hand palmar and hand
dorsum). Data from CLBP patients were compared with HC and with reference data from the German Research
Network on Neuropathic Pain.

Results: We found significant differences in the stimulus response functions between CLBP patients and HC. Pain
ratings to the pinpricks were increased for low and moderate pinprick stimuli in CLBP patients. Importantly, this
kind of specific pinprick hyperalgesia was found not only for the affected body site (back), but also for the remote
reference sites (hand dorsum and hand palmar).

Conclusions: We interpret our results as pointing to changes in the nociceptive processing in CLBP at higher levels
of the neuraxis, possibly thalamus and/or attentional control, rather than changes of spinal processing. Alternatively,
there might be a higher vulnerability to noxious stimulation in CLBP patients.
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Background
Chronic low back pain (CLBP) is one of the major health
problems in industrialized countries with costs of US$
100–200 billions a year [1]. Beyond this economic bur-
den, CLBP patients suffer from reduced quality of life,
and loss or limitations of employment. Many also com-
plain of psychopathologies such as depression, anxiety,
loss of social activities etc. [2,3]. However, pathophysio-
logical changes in CLBP are still enigmatic and call for
additional efforts to demystify the underlying patho-
physiology, potentially allowing progress to be made to-
wards successful mechanism-based treatment strategies.
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CLBP is associated with several pathophysiological
changes at various level of the sensorimotor system. At
the cortical level, CLBP is associated with functional
reorganization in somatosensory and motor regions [4-9].
Changes have also been observed on a behavioural level,
namely in attentional control [10,11], during stimulus an-
ticipation [12,13], and in motor behaviour [14-16]. Fur-
thermore, mechanoreceptive [17] and proprioceptive
perception is reduced in CLBP [18-20]. However, there
are only a few studies using quantitative sensory testing
(QST) in CLBP patients. Blumenstiel et al. [21] compared
QST profiles of fibromyalgia patients with those of CLBP
patients with a focus on fibromyalgia. Investigating QST
of the hand and the back, they found significant changes
on the backs of CLBP patients with an increased threshold
for vibration and a reduced threshold, i.e. hypersensitivity
for pressure pain. Their data demonstrate changes to pain
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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thresholds in CLBP patients that might be interpreted as
generalized pain hypersensitivity. These authors did not
specifically investigate thresholds at the painful site of
CLBP patients but used sites similar to the examination in
patients with fibromyalgia. Therefore, they are unable to
assess the amount of hypersensitivity with respect to their
primary syndrome. In line with the above-mentioned gen-
eralized pain hypersensitivity, CLBP patients exhibit lower
perception thresholds, lower pain thresholds, lower pain
tolerance values, and reduced habituation compared to
healthy controls [22-24]. Furthermore, the results of an
EEG mapping study indicate enhanced perceptual
sensitization and enhanced processing of the sensory dis-
criminative aspect of pain in CLBP patients [25].
The aim of the present study was to investigate signs of

generalized mechanical pain hypersensitivity in CLBP
patients on the hand and on the painful site at the back.
We hypothesized that CLBP patients would exhibit
increased sensitivity to noxious punctate mechanical
stimuli on both the paraspinal lumbar area and the dorsal
and palmar aspects of the hand compared to matched
healthy controls.

Methods
Participants
Fourteen female chronic low back pain (CLBP) patients
and fourteen pain-free healthy controls (HC) participated
Table 1 Characteristics of the female chronic low back pain (C

No. Age
(years)

Duration of pain
(month)

VASQST NRS4av

1 52 360 5.8 4

2 54 168 5.1 5

3 49 120 1.0 2

4 52 88 3.0 3

5 49 240 2.2 5

6 54 108 4.6 3

7 50 > 60 3.5 5

8 56 > 60 3.5 4

9 56 > 60 1.1 4

10 44 > 60 1.0 1

11 55 147 3.6 3

12 54 > 60 3.1 5

13 48 > 60 3.8 2

14 56 > 60 1.0 2

CLBP (mean ± SD) 52.1 ± 3.7 > 60** 3.0 ± 1.7** 3.4 ± 1

HC (mean ± SD) 51.9 ± 4.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0

VASQST, 100 mm visual analog scale (VAS): current pain intensity before Quantitativ
rating in response: “How would you rate your average pain over the last four weeks
“How would you rate your highest pain intensity experienced within the last four w
“pain as bad as you can imagine”; BDI – Beck Depression Inventory [28]; RDQ – Ro
use of medication; however, all CLBP patients were without any analgesic medicati
employed. Significant difference between CLBP and HC: ** - P < 0.001.
in this study. CLBP patients (for detailed characteristics -
see Table 1) met the following criteria: 1. A minimum six
month history of low back pain; 2. pain had been classi-
fied as ‘non-specific low back pain’ (no indicators of
nerve root problems, e.g. unilateral leg pain, radiating to
foot or toes, numbness and/or paraesthesia; straight leg
raising test induces leg pain); 3. magnetic resonance im-
aging (MRI) of the spine showed only age-related
changes, but no spinal disorders or disc pathology; 4. no
psychiatric disorders and no disease associated with
small fibre pathology (e.g.; diabetes mellitus) according
to clinical anamnesis. All participants were screened for
eligibility by a female clinician (B.S.). B.S. instructed the
subjects a week before investigation not to take any anal-
gesic medication for at least 48 hours before the examin-
ation. Before examination, subjects confirmed they had
not taken any medication during the last 48 hours. All
participants were right handed and all were employed.
The local ethics committee of the University of Jena
approved the whole procedure. Participants gave written
informed consent, in compliance with the Declaration of
Helsinki.
To evaluate our hypothesis, pain sensitivity to punctate

stimuli was tested unilaterally on the most painful body
site (paraspinal lumbar; location of measurement: verte-
bra Th12 to L5) and on two non-painful body sites (hand
palmar, hand dorsum; unilaterally on the dominant right
LBP) patients and female healthy controls (HC)
erage NRS4max BDI RDQ Reported medications

(as needed)

8 11 15 No medication at all

7 12 6 Diclofenac (5-10/month)

2 2 2 Ibuprofen (2-3/month)

3 9 5 Diclofenac (0-8/month)

8 4 5 Ibuprofen (0-1/month)

6 6 3 Diclofenac (2-3/month)

7 11 5 Flupirtin (1-10/month)

7 9 6 No medication at all

7 11 2 Diclofenac (0-10/month)

1 7 2 Ibuprofen (0-3/month)

5 4 5 No medication at all

6 7 3 Ibuprofen (0-10/month)

4 2 6 No medication at all

3 11 1 No medication at all

.4** 5.3 ± 2.3** 7.6 ± 3.5** 4.7 ± 3.4**

.0 0.0 ± 0.0 1.8 ± 1.5 0.1 ± 0.5

e sensory testing (QST); NRS 4average, numerical rating scale (NRS) pain intensity
?”; NRS 4max, numerical rating scale (NRS) pain intensity rating in response:
eeks?” VAS/NRS left anchor with 0 = “no pain” and right anchor with 100/10 =
land and Morris Disability Questionnaire [63–65]. Reported medications: Mean
on for at least 48 hours before the examination. All participants were
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hand) in CLBP patients. Healthy control subjects were
matched on age and gender to the patients (see Table 1).
Testing in healthy control subjects was performed at the
same regions on the lower back and the dominant hand.

Stimulus response function (SRF) to punctate mechanical
stimuli
In accordance with our hypothesis, we used a test for
mechanical pain thresholds from the Quantitative sen-
sory testing (QST) according to the standardized
protocol of the German Research Network on Neuro-
pathic Pain (DFNS) [26,27], i.e., the stimulus response
function for pinprick stimuli that also allows mechan-
ical pain sensitivity (MPS), another parameter of QST,
to be determined. Testing was performed by a DFNS-
trained investigator.
Stimulus response functions (SRF) to punctate mech-

anical stimuli were analysed using standard pinprick
stimulators (cylindrical tip, 250 μm tip diameter) with
fixed stimulus intensities that exerted forces of 8, 16,
32, 64, 128, 256, and 512 mN (MRC Systems GmbH,
Heidelberg, Germany). All seven pinprick stimuli were
applied in a balanced order, five times each at every
test site (back paraspinal lumbar, hand palmar, hand
dorsum). SRF was assessed as the relationship be-
tween the applied forces of the standard pinprick sti-
mulators and the pain rating evoked by each of the
pinprick stimulators [28,29], i.e., participants were
asked to rate the experienced pain intensity after each
stimulation on a verbal rating scale (with 0 indicating
“no pain”, and 100 indicating “maximal imaginable
pain”). To avoid effects of sensitization or fatigue, suc-
cessive stimuli were not applied at the same spot of
skin, but some millimetres away from the preceding
stimulation site.
Mechanical pain sensitivity (MPS) was also deter-

mined. MPS was assessed as the geometric mean of the
pain ratings evoked by each of the seven pinprick stimuli
(similar to the standard protocol of DFNS).
In order to exclude a potential influence of skin

temperature on the results of testing, skin temperature
was assessed for all body sites (back paraspinal lumbar,
hand palmar, hand dorsum) before and after the testing.
There were no significant skin temperature changes for
any of the body sites before vs. after the testing or
between patients and controls.

Questionnaires
Depression was assessed using a German version [30] of
the Beck Depression inventory (BDI) [31]. None of the
participants suffered from clinically manifest depression
(cut-off BDI > 17; Table 1).
Disability was measured using the German version of

the 24-item Roland Morris disability questionnaire
(RDQ) [32-34]. RDQ scores range from 0 (no disability)
to 24 (maximum disability). Five of the CLBP patients
showed clinically-relevant disability (3 < RDQ score < 8);
1 patient reported a high level of disability (RDQ > 7);
none of the control subjects reported clinically-relevant
disability (Table 1).

Data evaluation
The experienced pain intensities of each of the seven
pinpricks (SRF) as well as MPS were normally distribu-
ted in log space, and thus were log10-transformed before
statistical analysis in accordance with the recommenda-
tions of DFNS [27]. For SRF and MPS, a small constant
(0.1) was added prior to log-transformation to avoid a
loss of values due to zero rating [35]. Data transformed
to secondary normal distribution were analysed with
analysis of variance (ANOVA) for repeated measure-
ments using the within-subject factors Pinprick (7 inten-
sities from 8 to 512 mN) and Region (hand dorsum vs.
hand palmar vs. lower back) as well as the between-
subject factor Group (CLBP vs. HC). Post-hoc tests were
performed using separate ANOVAs. Results were cor-
rected for violations of sphericity using the Greenhouse-
Geisser approach for epsilon correction of degrees of
freedom (when appropriate). All statistical calculations
were performed using SPSS 19 Software.
Data were z-transformed to compare the MPS with

healthy control data and the data of the DFNS for the
hand dorsum using the following expression:

Z � score ¼ valueindividual CLBP patient �meancontrols
� �

SDcontrols

MPS for each CLBP patient was compared with the
group means of healthy controls using z-scores. Z-scores
above ‘0’ indicate a gain of function referring to the
higher sensitivity of the CLBP patient to the tested stim-
uli compared to the healthy controls. Z-scores below ‘0’
indicate a loss of function when the CLBP patient is less
sensitive to the tested stimuli compared with the healthy
controls. Z-values below −1.96 or above +1.96 were
considered as abnormal for diagnostic purposes (95%
confidence interval [33,34]). A t-test (two-sided for inde-
pendent samples) was performed for MPS using the
internet-based statistical freeware Simple Interactive
Statistical Analysis (SISA; URL: http://www.quantitativeskills.
com/sisa/) separately for healthy controls and CLBP patients
to compare data with the DFNS reference data as proposed
recently [33].

Results
Detailed analysis of SRF to pinprick stimuli
ANOVA on pain ratings to pinprick stimulation with fac-
tors Pinprick, Region, and Group showed significant

http://www.quantitativeskills.com/sisa/
http://www.quantitativeskills.com/sisa/
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main effects of factors Pinprick (F(6, 156) = 187.02; P <
0.001), Region (F(2, 52) = 11.57; P < 0.001), and Group
(F(1, 26) = 7.912; P < 0.01). As expected, the main effect
of factor Pinprick resulted from higher ratings to pin-
pricks with higher force (see Figure 1A-C). The main
effect of factor Region resulted from overall higher
pain ratings at the dorsum of the back compared with
the hand (hand palmar vs. back: F(1, 26) = 16.62, P <
0.001; hand dorsum vs. back: F(1, 26) = 8.38, P < 0.01;
hand palmar vs. hand dorsum: F(1, 26) = 5.99, P <
0.05). The main effect of Group is explained by overall
higher pain ratings in the CLBP group as compared to
HC (F(1, 26) = 7.91, P < 0.01, Cohen’s d = 1.44; see
Figure 1A-C). Additionally, there were significant inter-
actions between the factors Pinprick x Region (F(12,
312) = 16.53, ε = 1.63; P < 0.001) and Pinprick x Group
(F(6, 156) = 9.07, ε = 3.28; P < 0.001). One-way ANO-
VAs for the interaction Pinprick x Group revealed sig-
nificant differences in pain ratings between groups for
the pinpricks 8 mN, 16 mN, 32 mN and 64 mN (all
P < 0.05, corrected for multiple testing; all d > 1; range:
1.06 – 1.40). The perceived pain in CLBP patients was
3–5 times higher for low to moderate pinprick forces
compared with healthy controls. The difference in pain
rating between groups for the 128 mN pinprick was
significant at an uncorrected level (P < 0.037, d = 0.83),
whereas no difference in pain ratings between groups
was observed for the 256 mN (P = 0.117, d = 0.61) and
512 mN pinpricks (P = 0.849; d = 0.08) (see Figure 1A-C).
No significant interactions other than Pinprick x Group
and Pinprick x Region were observed. In particular, there
was no 3-way Pinprick x Region x Group interaction
(F(12, 312) = 1.46, ε = 6.28; P = 0.19) indicating that the
observed differences between groups and the interaction
A

8 16 32 64 128 256 512

0.1

0.3

1

3

10

30

**
**

**
*

*

P
ai

n
 r

at
in

g
 N

R
S

 (
0-

10
0)

Pin Prick (mN)

Back paraspinal lumbar

HC
CLBP

8 16 32

0.1

0.3

1

3

10

30

* ** **

P
ai

n
 r

at
in

g
 N

R
S

 (
0-

10
0)

Pi

Hand palmar

HC
CLBP

B

Figure 1 Stimulus response functions to pinprick stimuli on the back
response functions (SRF) for pain to punctate probes of different forces are
the remote control sites, B. hand palmar (circles), and C. dorsum of the han
symbols: patients with chronic low back pain (CLBP), open symbols: health
0.05; ** - P < 0.01.
between Pinprick and Group were not different for hand
and back.

Detailed analysis of MPS
ANOVA of MPS revealed main effects of factors Region
(F(2, 52) = 11.63, P < 0.001) and Group (F(1, 26) = 7.90,
P < 0.01), but no interaction between Region and Group
(F(2, 52) = 1.93, P = 1.55. As Figure 2 shows, the main
effect of factor Region resulted from significantly
higher MPS for the back compared with the hand
(back vs. hand palmar: F(1, 26) = 16.78, P < 0.001; back
vs. hand dorsum: F(1, 26) = 8.41, P < 0.01; hand dorsum
vs. hand palmar: F(1, 26) = 6.01, P < 0.05). The main effect
of factor Group is explained by overall higher MPS in the
CLBP group as compared to HC (F(1, 26) = 7.90, P < 0.01,
d = 1.06; see Figure 2). MPS of the palmar site of the hand
as well as the dorsum of the hand were highly correlated
with the MPS at the back (z-score based correlations,
hand palmar: R2 = 0.78, P < 0.001; hand dorsum: R2 = 0.83,
P < 0.001). Furthermore, MPS of the palmar site and of
the dorsum of the hand were also highly correlated
(R2 = 0.81, P < 0.001).

Incidence of reported pain to punctate stimuli
Figure 3 shows that the incidence of reported pain
increased as a function of stimulus force on the back,
hand palmar, and hand dorsum (Figure 3A-C, respect-
ively). The population threshold, i.e., force at which 50%
of pinprick stimuli were reported to be painful, was
interpolated as 8 mN for the CLBP patients and 96 mN
in healthy controls at the back. Additionally, there were
significant differences between groups in the incidence
of reported pain on the back for 32 mN (χ2 = 12.07; p <
0.05) and 64 mN (χ2 = 10.91; p < 0.05) (see Figure 3A).
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Figure 2 Mechanical pain sensitivity (MPS) of the back and
dorsal and palmar aspects of the hand. MPS (mean ± SEM) of
patients with chronic low back pain (filled circles) and healthy
controls (open circles) is depicted for the paraspinal lumbar back
region (b), hand palmar (hp), and dorsum of the hand (hd). Note
that MPS differed between groups for all regions under
investigation.
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On the hand palmar, the population threshold was also
interpolated as 8 mN for the CLBP patients and 96
mN in healthy controls. There were significant differ-
ences between groups in the incidence of reported
pain at 32 mN (χ2 = 11.03; p < 0.05) and 64 mN (χ2 =
11.4; p < 0.05) on the hand palmar (see Figure 3B). For
the dorsum of the hand the population threshold was
interpolated as 8 mN for the CLBP patients and 48
mN in healthy controls. There were significant
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Figure 3 Incidence of the reported pain to pinprick stimuli on the ba
reported pain is shown as a function of the pinprick stimulus force A. at th
hand (circles). Filled symbols: patients with chronic low back pain (CLBP), o
which 50% of pinprick stimuli were reported to be painful): dotted line in A
between groups in the incidence of reported pain.
differences between groups in the incidence of
reported pain at 8 mN (χ2 = 12.92; p < 0.05), 16 mN
(χ2 = 12.48; p < 0.05) and 32 mN (χ2 = 10.60; p < 0.05) on
the hand dorsum (see Figure 3C).

Comparison to reference data
We also compared our MPS data (detailed data on SRF
are not publicly available in the DFNS reference data) with
respect to the reference data from the German Research
Network on Neuropathic Pain (DFNS). First, we com-
pared the results of our HC group with the normative
data. Results obtained at the hand of our HC group were
in the range of the DFNS reference data as judged by the
recommended quality self-control procedure (average z-
score of 0.09 for HC subjects was < 95% confidence inter-
val of DFNS reference data, recommended to be < 0.25;
[36]) indicating a good agreement with the DFNS stand-
ard. The data of our HC group was almost perfectly
matched to the reference data (t = 0.05, P = 0.62). Second,
T-tests confirmed a significant group difference for MPS
on the hand dorsum for the CLBP patients with respect to
our HC group on the basis of z-transformed values (t =
2,96 P < 0.05) as well as with respect to the reference data
(t = −2.65, P < 0.05). Furthermore, the MPS z-scores for
the hand dorsum of CLBP patients normalized to our
designated matched control group, and the z-scores nor-
malized to the DFNS reference data [36], were signifi-
cantly correlated (R2 = 0.979, P < 0.001) underlining the
robustness of results with respect to reference data.

Discussion
The aim of the present study was to investigate the
stimulus response function to punctate mechanical pin-
prick stimuli in female CLBP patients on the affected
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painful region (lumbar) and at an extraterritorial region
(dominant hand). CLBP patients exhibited an enhanced
sensitivity and higher pain ratings to punctate mechan-
ical pinprick stimuli, especially pronounced at low to
moderate stimulus intensities. Importantly, significantly
enhanced pain sensitivity to pinpricks, a hallmark of
central sensitization in experimental models and in
neuropathic pain, was identified in both the paraspinal
lumbar area and the dorsal and palmar surfaces of the
hand in CLBP patients compared with matched healthy
controls.

Stimulus response function to punctate pinprick stimuli
at the back
Our data revealed significant changes on the back for
punctuate mechanical pinprick stimuli, especially pro-
nounced at low to moderate stimulus intensities. SRFs
(Figure 1A) showed manifold increases of pain ratings
for low to moderate intensities compared to healthy
controls. SRFs converged for higher intensities. Com-
pared to healthy controls pain ratings to pinpricks were
increased by a factor of 2 to 6. Beyond the frequent find-
ing of muscle pain thresholds, this is the first report
demonstrating hyperalgesia to pinprick stimuli, specific-
ally the pronounced allodynia to low-intensity pinprick
stimuli in CLPB patients. These changes are a hallmark
of centrally mediated hyperalgesia, and are found in ex-
perimental models of central sensitization (neurogenic
hyperalgesia [29,36-40] reviewed in [41,42]) as well as in
neuropathic pain patients [43-46]. Specificity for facilita-
tion of this stimulus modality has also been shown in
animal models of central sensitization at the level of the
spinal dorsal horn, thalamus, and amygdala [47-50].

Stimulus response function to punctate pinprick stimuli
on the hand
Interestingly, we also found significant changes to punc-
tate pinprick stimuli on the hand (MPS, stimulus re-
sponse function), especially pronounced at low to
moderate stimulus intensities (see SRF and pain inci-
dence in Figures 1B-C, 3B-C) in CLBP patients. This
finding may be of principal importance because it
demonstrates changes in pain sensitivity extending far
beyond the painful lumbar back. More specifically, there
was no significant effect of factor Region suggesting that
the increase in sensitivity in CLBP patients to mechan-
ical punctate stimuli is similar for the back and the hand.
The mechanisms for this widespread pain sensitivity are
largely unknown. Potential explanations include e.g.
altered attentional processes, loss of inhibitory pain con-
trol, or higher vulnerability in CLBP patients.
A further potential explanation may be related to

plasticity at supraspinal levels, for which the thalamus
is a prime candidate, since it forms the next relay of
the ascending pathway. Receptive field sizes in the thal-
amus are much larger than in the spinal cord, both in
the specific pathways of lateral thalamus projecting to
the somatosensory cortices, and in the non-specific
pathways of medial thalamus projecting to the anterior
cingulate cortex and amygdalae, where receptive field
sizes can encompass whole quadrants, or body sides
[51]. Several findings in animals support the involve-
ment of the thalamus. In one such study, facial mech-
anical allodynia spreading from the affected to the
contralateral side was accompanied by enhanced thal-
amic transmission [52]. Contralateral spread of mechan-
ical hyperalgesia and allodynia also appears in more
severe cases of migraine in human patients [47,52].
Similar mechanisms have been found in nociceptive
plasticity of the spinal or medullary dorsal horn and
thalamic plasticity [53,54]. The modality specificity of
experimentally-induced mechanical hyperalgesia was
also reported as preserved in the amygdala receiving
ascending projections from the medial thalamus, as well
as descending input from the anterior cingulate cortex
and insula [48]. Data on extrasegmental spread however
are not yet published. Nevertheless, reverse modulation
has been demonstrated in patients with fibromyalgia
after two terms of successful local treatment of tender
points with widespread relief of signs of hyperalgesia
[55].
Alternatively, a relative insufficiency of descending

control may passively, or descending facilitation may ac-
tively, produce an expansion of receptive field sizes both
segmentally and extrasegmentally. Human and animal
data have demonstrated that experimentally-induced
secondary hyperalgesia involves descending facilitation
and spreads rapidly into neighbouring segments [49,56].
However, there is no animal data so far demonstrating
that sustained spinal nociceptive input may spread
sensitization for more than a few segments, e.g. from
lumbar to cervical level. Another alternative explanation
for the hypersensitivity might be an a priori increased
sensitivity to mechanical stimuli in CLBP patients com-
pared to HC. Longitudinal approaches might test this
assumption.

Limitations and further directions
Our sample size of 14 subjects in each group is relatively
small, so the study should be extended to larger sample
sizes and different centres. Furthermore, we only tested
female subjects, whereas previous studies have demon-
strated gender differences in pain thresholds (Magerl
et al. 2010). Our study should therefore be extended to
the investigation of SR functions in male subjects. Add-
itionally, we did not follow the menstrual cycle of our
participants although there are known variations in pain
perception during the cycle. Nevertheless, in our small
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sample, the sensory changes we report are robust and the
effect sizes large (CLBP vs. HC, MPS back: d = 1.08; MPS
hand dorsum: d = 0.90; MPS hand palmar: d = 1.07).
The data do not allow us to distinguish between the

two major hypotheses for this higher-order effect, i.e.,
sensitization after an aversive event vs. susceptibility.
Longitudinal studies might help to solve this question.
Alternatively, identifying subjects with a specific pinprick
hyperalgesia without CLBP (or other chronic pain symp-
toms) might be informative about the independence of
the observed phenomena.

Conclusions
In summary, we have found a widespread hypersensitiv-
ity to punctate mechanical pinprick stimuli in CLBP
patients compared to HC. To our knowledge, this is the
first study reporting such a widespread hypersensitivity
with a 2 to 6-fold increase in pain ratings for low to
moderate pinprick stimuli in CLBP patients. This kind
of specific pinprick hyperalgesia was found not only in
the affected painful site (back), but also in the remote
reference site on the hand. This result points to higher-
order plasticity in CLBP or higher vulnerability rather
than to restricted spinal cord mechanisms.
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