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Abstract

Background: A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of
chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-
expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models
results in substantially enhanced axonal regeneration and a significant functional recovery. The potential
therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems
clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following
human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of
CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord.

Methods: An immunohistochemical investigation in post mortem samples of control and lesioned human spinal
cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries
and presented lesions of the maceration type.

Results: In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells
corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and
versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in
white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood
vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and
dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial
scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating
Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots.

Conclusion: NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play
an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located
at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution
that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of
such correlative investigations for demonstrating the clinical relevance of experimental data.
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Background

The loss of function following human traumatic spinal
cord injury (SCI) is often permanent and results in a seri-
ous limitation to the patients' quality of life. Despite con-
siderable progress in recent years, the underlying
mechanisms responsible for the failure of axonal regener-
ation after SCI remain only partially understood.

At the spinal cord lesion site, the initial damage to the
parenchyma is followed by a complex cascade of second-
ary events including breakdown of the blood brain barrier
(BBB), infiltration of blood-derived inflammatory cells,
oedema, excitotoxicity and ischemia. This early phase of
secondary parenchymal damage is followed by the
removal of tissue debris, resulting in fluid filled cystic cav-
itation and the deposition of extracellular matrix (ECM)
proteins at the lesion epicentre [1]. The surrounding scar
is largely composed of astrocytes and a dense, irregular
network of their processes. Traumatic injuries which
include damage to spinal nerve roots and the meninges
also induce fibroblast, meningeal cell and Schwann cell
invasion into the lesion site [2-4]. All these cell popula-
tions contribute to the production of a dense ECM that
presents itself as a molecular barrier to axonal regenera-
tion [1,3,5].

A major class of growth-inhibitory molecules associated
with CNS scar tissue is the family of chondroitin sulphate
proteoglycans (CSPGs). CSPGs are highly sulphated mol-
ecules that consist primarily of one of six possible core
proteins, each of which is coated, to varying extents with
glycosaminoglycan (GAG) side chains. The CSPGs are
expressed throughout the developing CNS, where their
axon growth-repulsive properties are believed to play an
important role in determining nerve fibre pattern forma-
tion. In adulthood, expression levels are generally much
lower. The use of broad specificity antibodies in a number
of experimental lesion paradigms in adult animals,
including cortical injury, nigro-striatal axotomy and SCI,
has demonstrated the elevated expression of CSPGs [6,7].
Pharmacological interventions involving the enzymatic
degradation of CSPG-GAG side chains have demonstrated
a substantially enhanced axonal regeneration and func-
tional recovery following spinal cord injury [8].

Experimental investigations into the role of individual
CSPG family members have revealed distinct expression
patterns and functions in the traumatically injured CNS.
NG2 as an integral membrane proteoglycan shares no
homology to other proteins and is present on the surface
of oligodendrocyte precursors in vitro [9] and in the devel-
oping and adult rodent CNS [10,11]. Correlative investi-
gations in human post mortem tissue have demonstrated a
similar oligodendrocyte precursor distribution in the
adult human CNS [12]. NG2 has been reported to
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undergo a strong up-regulation at the lesion site after
experimental traumatic SCI, being detected on oli-
godendrocyte precursors and invading macrophages
[13,14]. Furthermore, treatment with antibodies specifi-
cally neutralizing the NG2 proteoglycan has revealed sig-
nificantly increased axon regeneration following
experimental SCI [15].

Neurocan belongs to the lecticans, a sub-division of the
CSPG family that is characterized by a hyaluron-binding
domain and a C-type lectin domain, both of which enable
these molecules to interact with ECM proteins such as
tenascin-R [16]. Neurocan is a nervous system-specific
CSPG [17] and both in vitro and in vivo studies point to an
axon growth-repulsive role [18,19]. Its presence in regions
of active fibre growth during development suggests that
neurocan delineates boundaries of neuronal outgrowth
and that it may be important for neuronal pattern forma-
tion [20,21]. In various CNS lesion paradigms, including
SCI, both transient [22], and long term [23] re-expres-
sions of neurocan by astrocytes have been reported.

A second member of the lectican sub-family is versican.
This CSPG is also developmentally regulated, being
expressed in white matter tracts around the time of myeli-
nation [24]. This distribution of versican in the white mat-
ter has also been described by others, and an axon growth-
inhibitory role suggested [25]. Furthermore, in vivo inves-
tigations have demonstrated an early up-regulation of this
CSPG following experimental lesions, the distribution of
which was compatible with a regeneration-blocking effect
[22,26]. Cells of the oligodendrocytic lineage were
reported to be responsible for the post-traumatic up-regu-
lation of versican following spinal lesions.

Phosphacan is an alternatively spliced variant of the
receptor-type protein tyrosine phosphatase. It does not
belong to the lectican sub-family of CSPGs but is, never-
theless, able to bind to ECM proteins such as N-CAM and
tenascin [27]. In the CNS, its expression peaks during
development and in the adult the distribution is more
restricted. In vitro studies have demonstrated a growth-
inhibitory effect of phosphacan on several neuronal pop-
ulations [28,29]. In vivo experiments, following brain and
spinal cord injury, have demonstrated an initial decrease
in phosphacan concentration at the lesion site [22,23].
However, a marked increase in the expression of phospha-
can has been observed in long-term astroglial scars [23].

In contrast to the detailed functional and spatio-temporal
information that has been obtained using small labora-
tory animals, there is relatively little correlative data on
the expression of CSGPs following traumatic human spi-
nal cord injury. An immunohistochemical investigation
in traumatically injured post mortem human spinal cord
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has demonstrated an up-regulation of CSPGs at the lesion
site in human traumatic SCI, but this was spatially corre-
lated with the presence of migrating Schwann cells rather
than reactive astrocytes [30]. We have therefore performed
a more detailed immunohistochemical investigation on
the expression pattern of distinct members of the CSPG
family in samples of post mortem human spinal cord, taken
from patients who died at a range of survival times follow-
ing severe macerating SCI.

Methods

Post mortem, the spinal cords were removed from 4 control
patients who had not suffered from any neurological dis-
ease (Table 1) and from 15 patients who died at a range of
time points after traumatic spinal cord injury (Table 2).
Patients with traumatic injury had been diagnosed as hav-
ing functionally "complete" injuries and presented clini-
cally with paraplegia or tetraplegia (ASIA A). The study
was approved by the Aachen University Ethics Commit-
tee. The spinal columns were removed at autopsy, approx-
imately 15-48 hours after death. Following incision of the
dura mater, the spinal cord was fixed in 4% paraformalde-
hyde for at least 2 weeks. Thereafter, blocks of the lesion
site and tissue from regions rostral and caudal to the
lesion (approximately 1 cm thickness) were embedded in
paraffin wax.

Peroxidase Immunohistochemistry

Transverse sections (5 pm thick) were collected onto poly-
L-lysine-coated slides and allowed to dry. Sections were
de-waxed in xylene, rehydrated and unless otherwise
stated, were microwaved in 10 mM citrate buffer (pH 6)
for 3 x 3 minutes. Sections for neurocan, versican and
phosphacan immunohistochemistry were not micro-
waved; instead they were incubated in 1 U/ml chondroiti-
nase ABC for 2 hours at 37°C. Sections for NG2 were
neither microwaved nor treated with chondroitinase ABC.
Non-specific binding was blocked by incubation in 0.1 M
PBS containing 3% normal goat serum and 0.5% Triton X-
100 for 30 minutes. Next, sections were incubated in the
primary antibody, overnight at room temperature. The
primary antibodies used were: monoclonal mouse anti-
human NG2 (clone B5, undiluted cell culture supernatant

Table I: Patients who served as the control group
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from ATCC cultures and antibody 9.2.27, diluted 1:50;
gift from Prof. R. Reisfeld, Scripps Research Institute),
monoclonal mouse anti-neurocan (Chemicon, diluted
1:100), polyclonal rabbit anti-versican (Acris antibodies,
diluted 1:1.000), monoclonal mouse anti-phosphacan
(Chemicon, diluted 1:500), polyclonal rabbit anti-GFAP
(DAKO, diluted 1:2.500), polyclonal rabbit anti-myelin
basic protein (MBP) (Chemicon, diluted 1:1.000) and
polyclonal rabbit anti-neurofilament (NF, Sigma-Aldrich,
diluted 1:2.000).

Following extensive rinsing steps in 0.1 M PBS, sections
were incubated in biotinylated horse anti-mouse or anti-
rabbit antibody (Vector Laboratories, diluted 1:500) for 1
hour at room temperature. As described earlier, incuba-
tion with the biotinylated secondary antibody was fol-
lowed by the Vector ABC system and a subsequent
incubation in diaminobenzidine for visualization of the
reaction product. For negative controls the primary anti-
body was omitted.

Immunofluorescence

For double immunofluorescence, sections were de-waxed
in xylene and rehydrated. Treatment with chondroitinase
ABC (1 U/ml) for 2 hours at 37°C (for neurocan, versican
and phosphacan immunohistochemistry) was followed
by blockade of non-specific binding by incubation in 3%
normal goat serum and 0.5% triton X-100 in 0.1 M PBS
for 30 minutes and subsequent incubation overnight at
room temperature in a combination of the following pri-
mary antibodies: monoclonal mouse anti-NG2 (clone B5,
cell culture supernatant undiluted and 9.2.27, diluted
1:10), monoclonal mouse anti-neurocan (Chemicon,
diluted 1:20), polyclonal rabbit anti-versican (diluted
1:20), monoclonal mouse anti-phosphacan (diluted
1:50), monoclonal mouse anti-neurofilament (NF,
Sigma, Clone52, diluted 1:100), polyclonal rabbit anti-
NF (diluted 1:1,000), polyclonal rabbit anti-GFAP
(diluted 1:1.000), polyclonal rabbit anti-MBP (Chemi-
con, diluted 1:500) and polyclonal rabbit anti-laminin
(Sigma, diluted 1:50). After the subsequent incubation
with Alexa 594 (red-fluorescence)-conjugated goat anti-
mouse and Alexa 488 (green fluorescence)-conjugated

Case number Age Cause of death PM fixation time
| 29 years Breast cancer 20 hours
2 47 years Pneumonia 32 hours
3 62 years Breast cancer 16 hours
4 83 years Myocardial infarction 45 hours
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Table 2: Patients who died after traumatic injury to the spinal cord
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Case number Age Injury level Inj.-death interval PM fixation time
| 21| years TI2 2 days 23 hours
2 51 years Cl 4 days 32 hours
3 84 years C3+4 5 days 15 hours
4 65 years C5 8 days 28 hours
5 63 years Cé 10 days 41 hours
6 18 years Té I'l days 19 hours
7 72 years TIHI-12 24 days 25 hours
8 85 years C3 4 months 22 hours
9 76 years T8-9 10 months 18 hours
10 80 years C5-6 | year 16 hours
I 72 years TI2 2 years 21 hours
12 44 years LI 8 years 17 hours
13 71 years C3+4 20 years 18 hours
14 47 years T5 26 years 20 hours
15 57 years T34 30 years 17 hours

goat anti-rabbit secondary antibodies (Molecular Probes,
diluted 1:500) for 3 hours at room temperature, slides
were cover-slipped in Moviol. For negative controls, the
primary antibodies were omitted.

For a semi-quantitative description of the amount of
NG2-immunoreactive cells detected at the various sur-
vival times, an arbitrary rating scale for the number of
labelled cells was chosen (see Fig. 1), ranging from 0 (no
immunopositive cells) to ++++ (very high incidence of
labelled cells).

Results

The spinal cords of 19 individuals were examined using
NG2, neurocan, versican, phosphacan, GFAP, MBP, NF
and laminin immunohistochemistry. Both NG2 antibod-
ies revealed an identical staining pattern in control and
pathological cases. The brains of all individuals were care-
fully examined and were declared to be without patholog-
ical findings. The spinal cords of the control cases were
also without pathological findings. The pathological cases
have been sub-divided into two groups according to the

post-insult survival times (i.e. early and late survival
times), because distinct morphological stages in the for-
mation of the scar were found. For an overview of the
results, in particular of the semi-quantitative representa-
tion of the number of NG2-immunoreactive cells at the
various survival times, see table 3 and Fig. 1.

Distribution of NG2, neurocan, versican and phosphacan
in the normal adult human spinal cord

In cervical, thoracic and lumbar segments of the normal,
unlesioned spinal cord, NG2 immunoreactivity was
restricted to small stellate-shaped cells (Fig. 2A). These
cells were evenly distributed in both white and gray matter
regions. Neurocan immunoreactivity in the spinal cord
parenchyma was observed as a homogeneous, fine reticu-
lar pattern in the white matter. Furthermore, many small
diameter blood vessels were stained for neurocan (Fig.
2B). In ventral and dorsal nerve roots the myelin sheaths
were immunopositive (Fig. 2C). Similar to neurocan, ver-
sican immunoreactivity could also be found in a fine retic-
ular pattern in the spinal cord white matter (not shown).
In nerve roots, a scattered distribution pattern was detect-
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Examples of CD68-positive macrophage stains obtained from human SCI samples. The densities of the stained
profiles are used to reflect the arbitrary rating scale used for semi-quantification used in this study. Transverse sections of
human spinal cords stained for CD68 representing, A: a low incidence (arbitrary scale = +) of stained profiles to, D: very high

incidence (arbitrary scale = ++++) of stained profiles.

able in myelin rings surrounding sub-populations of
mostly small diameter axons (Fig. 2D). Immunohisto-
chemistry for phosphacan showed a diffuse reticular pat-
tern in both gray and white matter of control spinal cord
(Fig. 2E). The staining pattern in ventral and dorsal nerve
roots was identical to neurocan with immunoreactivity in
myelin sheaths (Fig. 2F). The presence of CSPGs in
peripheral myelin was supported by co-localisation with
MBP (Fig. 3A). Furthermore, double immunofluorescence
with laminin revealed a clear distinction between the
CSPG-positive myelin rings and the laminin-positive
endoneurium (Fig. 3B).

Morphological appearance of the lesion site

The lesion sites of these severe human traumatic SCI cases
could be sub-divided into the lesion epicentre and an
intermediate zone. For a more detailed description, see
Buss et al., 2007. Briefly, the lesion epicentre was initially
characterised by the complete destruction of cytoarchitec-
ture and massive haemorrhagic infiltration in between
amorphous regions of tissue debris (Fig. 4A). At 24 days

after injury, Schwann cell migration into the lesion core
was seen, and in cases with longer survival times the
lesion epicentre was characterised by a dense ECM with
embedded nerve root-like structures and individual mye-
linated nerve fibres (Fig. 4B). However, no astrocytes were
detectable in this region.

The intermediate zone included the extremities of the
lesion site and their interface with the adjacent damaged,
but non-degenerating, CNS parenchyma. At 24 days after
injury, the remaining astrocytes appeared activated and
produced a dense, irregular scar. At longer survival times,
the intermediate zone showed a clear demarcation
between the Schwann cell area and the astroglial scar (Fig.
4C). In most cases, cystic cavitation could also be seen in
between the 2 areas (Fig. 4D).

Early survival times (2 to || days post insult)

Lesion epicentre

In the present post mortem cases, the lesion epicentre was
characterised by the complete destruction of cytoarchitec-

Page 5 of 15

(page number not for citation purposes)



BMC Neurology 2009, 9:32

http://www.biomedcentral.com/1471-2377/9/32

Table 3: Amount of immunopositive cells at different survival times after human SCI

Control 2-8 days 10-11 days 24 days 4 months
Epicentre Int. Zone Epicentre Int. Zone Epicentre Int. Zone Epicentre Int. Zone
OPC (NG2) +++ 0 +/++ 0 +++ 0 +++ 0 o/+
CDé68 0/+ +H+++ +H++ +++ ++ +H++ + 0/+ 0/+
CD68/NG2 0 +/++ + ++ + +++ + 0 0

The figures reflect the number of immunopositive cells using an arbitrary rating scale from 0 (no cells) to ++++ (very high incidence of cells) in
sections from control spinal cords and the lesion site at various survival times after SCI stained for the different antigens.

ture. From 2-8 days after trauma, no specific staining for
NG2, neurocan, versican or phosphacan could be
detected in this area (not shown). At 10 and 11 days after
SCI, immunohistochemistry for NG2 revealed cells with a
round to oval morphology at the lesion core (Fig. 5A).
Subsequent double immunofluorescence demonstrated
that these cells were macrophages (Fig. 3C). It was not
possible to determine if these cells actually expressed NG2
or were immunoreactive due to phagocytosis of NG2-con-
taining debris from the lesioned parenchyma.

Intermediate zone

In the less severely affected areas at the border of the
lesion epicentre, the density of astrocytic cells and their
network of processes was dramatically decreased com-
pared to control cases (not shown). In accordance with
the observations at the lesion core, immunohistochemis-
try for neurocan, versican and phosphacan revealed no
immunoreactive structures in the CNS parenchyma. At the
PNS-CNS interface, the immunopositive PNS myelin
staining for all 3 CSPGs, stopped abruptly (Fig 5B). NG2
staining was found in some round to oval-shaped cells in
the intermediate zone. Furthermore, some stellate-shaped
cells were NG2 immunopositive, however their numbers
were initially reduced by 2-8 days post injury in compar-
ison to control cases but had returned to near normal lev-
els by 10-11 days after SCI (Table 3 and Fig. 5C-D).

Moderate to late survival times (24 days to 30 years post
insult)

Lesion epicentre

At 24 days after trauma, Schwann cell migration was
detected within the damaged spinal parenchyma in the
vicinity of spinal nerve roots. These cells infiltrated up to
900 pm into the spinal cord tissue with a decreasing den-
sity towards the more central regions. Furthermore, out-
side the CNS parenchyma, root-like structures of various
sizes could be found around the original nerve roots [31].
These structures, with an often more complex and convo-
luted appearance in comparison to nerve roots in control
tissue demonstrated scattered immunoreactivity for neu-
rocan, versican and phosphacan. At the 24 days survival

time, only occasional axons in the neuromas were sur-
rounded by neurocan, versican or phosphacan immunop-
ositive myelin rings (Fig. 5E). NG2 was similar to that
seen at 10 and 11 day survival times, with round to oval
cells scattered around the lesion core (not shown). No
immunoreactivity could be found in the root-like struc-
tures.

In sections from cases with survival times of 4 months and
longer, the lesion site could be clearly divided into two
regions: (i) a Schwann cell-containing area (which could
be further sub-divided into areas rich in ECM or in neuro-
mas) and (ii) an astrocyte-dominated scar. The lesion epi-
centre, at this survival time, revealed massive infiltration
by Schwann cells (not shown). This area had, by now,
become partially filled with sheet-like lamellae of extracel-
lular matrix which were immunopositive for NG2 but did
not stain for neurocan, versican and phosphacan (Fig.
6A). In between this matrix however, irregular fibre-like
structures were stained for neurocan, versican and phos-
phacan (Fig. 6B-C). Double immunofluorescence
revealed these to be myelin sheaths around nerve fibres
which had regenerated throughout the ECM of the lesion
epicentre, either singly or in small bundles (Fig. 3D). At
the longer survival times, the round and oval root-like
structures resembling re-growing processes of nerve root
fibres could also be seen in the former spinal cord paren-
chyma, now infiltrated by non-CNS cells such as Schwann
cells. These neuromas contained larger numbers of
Schwann cells and myelinated nerve fibres. The myelin
sheaths also contained CSPGs. Immunohistochemistry
for neurocan and phosphacan revealed a dense staining
pattern in myelin rings of both proteins in the root-like
structures (Fig. 6D-E and Fig. 3E, G). Inmunohistochem-
istry for versican also revealed immunopositive myelin
sheaths. Its distribution, however, was more heterogene-
ous, being associated with small diameter axons (Fig. 6F
and Fig. 3F).

Intermediate zone
At 24 days after SCI, the intermediate zone was devoid of
infiltrating Schwann cells. Instead, the first signs of astro-
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Figure 2

Normal distribution of NG2, neurocan, versican and phosphacan in the human spinal cord. Transverse sections of
control human spinal cords. A: NG2 immunohistochemistry reveals small stellate-shaped cells distributed homogeneously in
white matter regions of human spinal cord (arrows). B: In the white matter, neurocan immunoreactivity is observed in the wall
of a small blood vessel (arrow). Furthermore, a reticular staining pattern can be seen. C: In a dorsal nerve root, neurocan
staining is present in myelin sheaths. D: Versican immunoreactivity is scattered in a dorsal nerve root and can be found in mye-
lin sheaths of small diameter axons. E: Phosphacan immunohistochemistry reveals a fine reticular staining pattern in the gray
matter. F: In a dorsal nerve root, phosphacan-immunopositive myelin rings can be observed. (A-F magnification x 320).
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Figure 3 (see legend on next page)
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Figure 3 (see previous page)

The cellular and molecular composition of the scar in human SCI after early and long survival times. Transverse
sections of the human spinal cord of control cases and at early and late survival times after SCI. The schematic diagrams in the
upper right corner indicate the region from where the actual picture was taken (black rectangle). A: Co-localisation of phos-
phacan (green) and MBP (red) confirms the presence of the CSPG in the myelin sheaths of control dorsal root axons. B: Dou-
ble immunofluorescence with phosphacan (green) and laminin (red) reveals CSPG-immunopositive myelin rings surrounded by
laminin-positive endoneurium in a dorsal nerve root of control spinal cord. C: Double immunofluorescence with NG2 (red)
and CDé8 (green) in macrophages at the lesion epicentre, 10 days after injury. D: One year after SCI, staining for versican
(red) and NF (green) in sections from the lesion epicentre demonstrated individual and bundled regenerated nerve fibres that
were surrounded by a versican-positive endoneurium in the ECM. E-G: In sections from the lesion epicentre of the same case,
double immunofluorescence for NF (green) and neurocan (E, red), versican (F, red) or phosphacan (G, red) revealed nerve
fibres surrounded by a CSPG-positive endoneurium. H-I: In the intermediate zone of the same case, GFAP (green) and NG2
(H, red) and phosphacan (I, red) immunofluorescence demonstrated the close overlap of all three proteins in the astroglial
scar after human SCI. J: In an adjacent section, NF (green) and phosphacan immunohistochemistry revealed occasional, small,
nerve fibres still present within the CSPG-rich ECM of the astroglial scar. (A-J magnification x 400).

cytic scar formation were visible [31]. In these regions of
gray and white matter, a densely packed mass or network
of diffusely stained GFAP-positive processes could be seen
(Fig. 5F). NG2 and phosphacan immunohistochemistry
revealed a staining pattern very similar to GFAP with a
dense, irregular pattern of processes without identifiable
cell bodies (Fig. 5G-H). At survival times of 4 months and
longer after SCI, the territory of the densely packed GFAP-
positive astroglial scar was clearly distinguishable and dis-
tinct from that of the Schwann cell dominated lesion core.
At these survival times, NG2 staining revealed a dense,
mostly diffuse staining pattern in the astrocytic scar. No
clearly identifiable immunopositive cell bodies could be
found in this area. Phosphacan immunohistochemistry
also revealed a similar distribution to that of GFAP-posi-
tive astrocytes, also without clearly identifiable cell bodies
(Fig. 6G-I). Double immunofluorescence confirmed the
nearly identical distribution patterns of both NG2 and
phosphacan with that of the reactive GFAP-positive astro-
glia in this area (Fig. 3H-I). In the astroglial scar, occa-
sional, single thin nerve fibres could be found within the
CSPG-rich ECM (Fig. 3]). At no survival time could neuro-
can- or versican-immunopositive structures be found in
the intermediate zone of human SCI (not shown).

Discussion

Investigations using experimental animals have demon-
strated a central role for CSPGs in the lack of regeneration
after SCI. Most members of this proteoglycan family have
demonstrated up-regulation after spinal injury, being
prominent in the astroglial component of the scar
[13,14,22]. Furthermore, the application of chondroiti-
nase ABC (an enzyme capable of degrading GAG side
chains) after a spinal cord contusion injury has resulted in
increased nerve fibre outgrowth associated with enhanced
functional recovery [8]. The application of NG2-specific
antibodies following transection injuries to the rat spinal
cord has led to a significant improvement in the regener-

ation of lesioned dorsal column axons [15]. Despite the
clear identification of the re-expression of numerous
CSPGs in experimental animal models of traumatic injury
and the demonstration, both in vitro and in vivo, of the
axon-growth repulsive effect of these molecules, there
have been relative few correlative investigations demon-
strating the expression of such functionally important
molecules in post mortem human nervous tissue following
injury. In one such publication, a broad specificity CSPG
antibody (CS-56, Sigma) was used to demonstrate that
the lesion induced distribution of this proteoglycan fam-
ily was not associated with the evolving astroglial scar. It
was, however, associated with migrating Schwann cells
and regenerating peripheral nerve fibres within the lesion
epicentre. Such a distribution did not point to a central
role for CSPGs in the growth-inhibitory milieu of the glial
scar after human SCI [30].

In the present investigation, the expression pattern of 4
individual members of the CSPG family was studied in
patients who died at various survival times after SCI. In
contrast to the previous studies, which used a general
immunohistochemical marker for CSPG, the present
investigation demonstrated that NG2 and phosphacan
were indeed present in the lesion-induced astroglial scar,
supporting the notion that these molecules may contrib-
ute to the lack of axonal regeneration following human
SCI. This data strongly suggests that monoclonal CS-56
antibody may not be capable of detecting, with sufficient
sensitivity, all members of this protein family in wax
embedded sections.

In sections from control spinal cord, NG2 immunoreac-
tivity was restricted to stellate-shaped cells corresponding
to oligodendrocyte precursor cells. This pattern was iden-
tical to a previous study in unlesioned human CNS using
several antibodies including the 9.2.27 antibody [12]. The
distribution patterns of phosphacan, neurocan and versi-
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The typical morphological appearance of the lesion site in severe human macerating SCI. Schematic diagrams
showing the typical transverse appearance of the lesion site in the present cases of severe human traumatic SCI. A: At survival
times ranging from 2 to 24 days after SCI, the lesion epicentre was characterised by the complete destruction of the cytoarchi-
tecture and a massive hemorrhagic infiltration into the parenchyma (extent of hemorrhage indicated by stars). B: At survival
times of 4 months and longer after SCI, the lesion epicentre was characterised by numerous regenerated root-like structures
(small arrows) of variable sizes embedded in a dense ECM. Furthermore, individual spinal nerve roots (large arrows) and the
entry zone of a nerve root into the spinal cord (asterisk) could be seen. C: When no cysts were present in the intermediate
zone, the lesion was largely divided into an astrocytic scar and the region with nerve root-like structures, including Schwann
cells (small arrows). D: In the intermediate zone, the lesion could often be sub-divided into a centrally located cystic region
surrounded by an astrocytic scar (in this case in the ventral region) and an area with numerous small-medium root-like struc-
tures embedded in the ECM of the connective tissue scar (small arrows, in this case in the dorsal region). These schematic dia-
grams were prepared from representative sections and have been presented to provide a broad indication of where, within

sections, particular images have been taken.

can in control human spinal cord parenchyma were simi-
lar, with a fine reticular pattern being observed in white
matter (but also located in gray matter for phosphacan).
Neurocan staining was also associated with blood vessel
walls. This distribution pattern is identical to a previous
study in human brain tissue [32]. Although experimental
studies have demonstrated an interaction of CSPGs with
proteins involved in nerve fibre organisation [33] and

phosphacan has been shown to interact with neuronal
cell adhesion molecules [34], the exact function of these
proteins in the normal CNS remains unknown. In con-
trast to the present investigation, showing the presence of
phosphacan, neurocan and versican in the myelin sheaths
of control and regenerating ventral and dorsal nerve roots
axons, others have reported a distribution pattern associ-
ated with nerve root endoneurium [32]. However, the co-

Page 10 of 15

(page number not for citation purposes)



BMC Neurology 2009, 9:32 http://www.biomedcentral.com/1471-2377/9/32

Page 11 of 15

(page number not for citation purposes)



BMC Neurology 2009, 9:32 http://www.biomedcentral.com/1471-2377/9/32

Figure 5 (see previous page)

The cellular and molecular composition of the scar following human SCI at both early and long survival times.
Transverse sections of the human spinal cord of patients with survival times of 10 to 24 days after SCI. The schematic diagrams
in the upper right corner indicate the region of the section from which images were prepared (black rectangle). A: Ten days
after SCI, NG2 staining demonstrated round to oval-shaped cells at the lesion epicentre (arrows). B: In sections from the
lesion site of the same case, neurocan immunoreactivity revealed myelin staining in a dorsal nerve root that stopped abruptly at
the dorsal root entry zone. C: Eleven days after SCI, NG2 staining in the intermediate zone demonstrated cells with a round
to oval morphology (arrows) and small stellate-shaped cells (arrowheads). D: In the same section, higher magnification better
illustrated the stellate-shaped morphology of oligodendrocyte precursor cells (arrows). E: Twenty-four days after SCI, phos-
phacan staining was present on myelin rings of some axonal structures close to the lesion epicentre. F: In sections from the
intermediate zone of the same case, GFAP immunohistochemistry revealed a dense network of irregular fibres without identi-
fiable cell bodies in between. G-H: In near adjacent sections from the intermediate zone, NG2 (G) and phosphacan (H) stain-

ing revealed similar distributions, with a dense, irregular network of fibres and no clearly identifiable immunoreactive cell
bodies. (A-C and E-H magnification x 320, D magnification x 640).

localisation of certain CSPGs with myelin is not without
precedent. Others have clearly demonstrated the associa-
tion of brevican and V2 versican with a myelin fraction
extracted from porcine spinal cord. Furthermore, much of
the axon growth inhibitory capacity was attributed to
these CSPGs [4,25].

After SCI, the distribution pattern of all four CSPGs
changed significantly. At survival times of 2 to 8 days after
injury, no NG2 immunopositive structures were detecta-
ble at the lesion epicentre. However, by 10-24 days, NG2-
positive cells could, once again, be identified at the lesion
core as well as in the intermediate zone. At the lesion epi-
centre, double immunofluorescence of such NG2-positive
cells revealed that they were macrophages. In the interme-
diate zone, both round to oval shaped macrophages and
stellate-shaped oligodendrocyte precursor cells were NG2
immunopositive. Although others have reported NG2-
expression by Schwann cells, it is unlikely that such cells
contributed to the NG2 signal observed in the present
investigation, since an earlier report from our group using
the same human SCI cases was unable to find any evi-
dence of Schwann cell migration in this particular region
with an anti-NGFr antibody [31]. An experimental spinal
cord contusion injury model has demonstrated NG2-pos-
itive non-myelinating Schwann cells, oligodendrocyte
precursor cells and macrophages at the lesion site [35].
NG2 was reported to be largely present in the ECM at the
lesion core, which contained numerous migrating fibrob-
lasts and Schwann cells. The NG2-positive lamellae were
closely associated with PO-myelinated axons. In accord-
ance with these results, the present human SCI cases also
demonstrated NG2-positive lamellae in the lesion epicen-
tre. Regenerating nerve fibres, originating from injured
spinal nerve roots [31] were embedded within the NG2-
positive ECM. It is possible that these lamellae might have
played a supporting role in the growth of PNS axons from
lesioned nerve roots.

The post lesion survival times of the cases used in the
present investigation indicate that the deposition of an
NG2-positive matrix took place between 24 days and 4
months after human SCI. The spatial distribution corre-
lates with the animal data [15], however the timing of
NG2-expression in traumatically injured human spinal
cord is substantially delayed [13,35]. In the present inves-
tigation, only macrophages located at the lesion epicentre
were found to be immunoreactive and, thus, may have
been responsible for NG2 deposition. As described by
others, migrating Schwann cells or oligodendrocyte pre-
cursor cells (OPCs) may also have contributed to the
CSPG-rich ECM [34]. However, the present investigation
was not able to give any direct evidence to support this
notion. It is possible that sub-optimal antigen preserva-
tion or antigen retrieval may have been responsible for an
incomplete representation of NG2 distribution. The inev-
itable delays that occur before human post mortem tissues
can undergo fixation certainly contribute to this problem.
NG2 was, nonetheless, clearly detectable in macrophages
and in the ECM of both the Schwann cell-dominated area
as well as in the astroglial scar being devoid of Schwann
cells.

In the present material, no phosphacan-positive structures
could be seen at the lesion epicentre or in the intermediate
zone at early survival times of up to 11 days after SCI.
Twenty-four days after injury, the evolving astroglial scar
in the intermediate zone contained phosphacan with a
dense network of irregularly distributed fibres. This distri-
bution, which corresponded to that of astroglial GFAP
was seen in all cases with survival times longer than 24
days after SCI. This temporal and spatial expression pat-
tern suggests that reactive astrocytes may have been
responsible for the increased phosphacan expression fol-
lowing human SCI. Such a distribution following experi-
mental spinal cord injury has already been suggested by
others [22,23]. However, since no clearly identifiable
phosphacan-positive cell population could be found, the
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Figure 6

The cellular and molecular composition of the scar in human SCI after long survival times. Transverse sections of
the lesioned human spinal cord at | year (A-C) and 20 years (D-I) after injury. The schematic diagrams in the upper right cor-
ner indicate the region from where the actual picture was taken (black rectangle). A: NG2 staining revealed a network of
irregular lamellae in the ECM at the lesion epicentre. B-C: In near adjacent sections, versican (B) and phosphacan (C) immu-
nohistochemistry demonstrated fibre-like structures either singly or in small bundles. D: Twenty years after SCI, nerve root-
like structures at the lesion epicentre demonstrated neurocan-positive myelin rings. E: In a near adjacent section, phosphacan
immunoreactivity was also present in myelin sheaths surrounding axons in neuromas. F: Versican immunopositive myelin rings
surrounding regenerated nerve fibres were more scattered and of a small diameter in the nerve root-like structures at the
lesion epicentre. G: Twenty years after SCI, diffuse but elevated levels of NG2 immunoreactivity were still associated with the
ECM of the connective tissue scar (lower part of image) as well as with the astroglial scar of the intermediate zone (upper part
of image). At the lesion epicentre, NG2 staining was located on more loosely arranged sheets of basal lamina-like ECM. In the
astrocytic scar, NG2 was associated with a dense irregular network of processes. Arrows demarcate the border between the
connective tissue component of the lesion and the adjacent astrocytic scar. H: In a near adjacent section, diffuse phosphacan
immunoreactivity was also associated with the dense network of processes of the astroglial scar. No immunoreactivity was
associated with the ECM of the connective tissue scar. I: GFAP staining strictly delineated the interface between the astroglial
scar and the connective tissue scar. (A-l magnification x 320).
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astroglial origin of this proteoglycan following human
SCI must remain speculative. Together with NG2, phos-
phacan may represent an important growth-inhibitory
molecule that is associated with the developing astroglial
scar and thus, may be of functional importance for the
inhibitory glial environment following human traumatic
SCI.

Apart from being associated with the astrocytic scar, phos-
phacan was also present in the lesion epicentre with a dis-
tribution pattern that corresponded to neurocan and
versican. This lesion area contained migrating fibroblasts,
meningeal cells and migrating Schwann cells and was
strictly separated from the surrounding astrocytic scar
[31]. All three CSPGs were associated with the myelin
sheaths of nerve fibres that were mostly arranged in root-
like structures and were derived from regenerating spinal
nerve roots [31]. Furthermore, no nerve fibres were
detected traversing the interface between the lesion epi-
centre and the astroglial scar. Therefore, the distribution
pattern of neurocan and versican at the lesion epicentre in
the present post mortem human material is not able to sup-
port the notion that either molecule contributes to the
failure of CNS axon regeneration after human SCI. How-
ever, in the absence of definitive proof of the peripheral
source of all nerve fibres within the lesion core, it cannot
be excluded that some Schwann cells and their myelin
sheaths including the CSPGs were associated with re-
growing CNS axons. The function of CSPGs in the myelin
sheaths surrounding PNS nerve fibres at the lesion core is
currently not known.

Conclusion

The involvement of four members of the CSPG family has
been demonstrated in the post-traumatic events after
human SCI. This investigation comprised of 15 patients
who died at a range of different survival times after
trauma. Due to the difficulties in obtaining post mortem
human tissue specimens, only one case could be studied
at each survival time. Although cases with similar survival
times demonstrated similar immunohistochemical stain-
ing patterns, the present results need to be interpreted
with caution, and further studies with more human cases
per survival time would be of significant value.

The present data extends our investigations into the cellu-
lar and molecular composition of the lesion site of severe
macerating human SCI [31,36,37]. The distribution pat-
tern of individual members of the CSPG family varies sig-
nificantly after human SCI. NG2 and phosphacan were
both present in the evolving astroglial scar and, therefore,
might have played an important role in the blockade of
successful CNS regeneration. Neurocan and versican,
however, were located at the lesion epicentre, associated
with Schwann cell myelin on regenerating peripheral

http://www.biomedcentral.com/1471-2377/9/32

nerve fibres, a distribution that was unlikely to contribute
to failed CNS axon regeneration. This interpretation cer-
tainly needs to take into account the limited number of
time points studied after human SCI. It is possible that
transient up-regulation of various CSPGs may have been
missed due to a lack of appropriate specimens at these
time points. The present data emphasises the importance
and potential usefulness of comparing data obtained with
experimental animals with that obtained from human post
mortem tissues. This is of particular relevance for the iden-
tification of possible key functional molecules that are
believed to play a major role in the failure of axonal regen-
eration following traumatic human spinal cord injury.
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