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Abstract

Background: Down syndrome (DS) has unique physical, motor and cognitive characteristics. Despite cognitive and
motor difficulties, there is a possibility of intervention based on the knowledge of motor learning. However, it is
important to study the motor learning process in individuals with DS during a virtual reality task to justify the use
of virtual reality to organize intervention programs. The aim of this study was to analyze the motor learning process
in individuals with DS during a virtual reality task.

Methods: A total of 40 individuals participated in this study, 20 of whom had DS (24 males and 8 females, mean
age of 19 years, ranging between 14 and 30 yrs.) and 20 typically developing individuals (TD) who were matched
by age and gender to the individuals with DS. To examine this issue, we used software that uses 3D images and
reproduced a coincidence-timing task.

Results: The results showed that all individuals improved performance in the virtual task, but the individuals with
DS that started the task with worse performance showed higher difference from the beginning. Besides that, they
were able to retain and transfer the performance with increase of speed of the task.

Conclusion: Individuals with DS are able to learn movements from virtual tasks, even though the movement time
was higher compared to the TD individuals. The results showed that individuals with DS who started with low
performance improved coincidence- timing task with virtual objects, but were less accurate than typically
developing individuals.

Trial registration: ClinicalTrials.gov Identifier: NCT02719600.
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Background
Down syndrome (DS) is typically characterized by an
additional chromosome, or trisomy 21 (Hsa21), with
incidence of 1 in 750 live births and is considered one of
the most frequent cause of learning difficulties [1].
The alterations made by individuals with DS may pose

difficulties in functionality and independence to perform
activities of daily living even during adulthood. Mancini
et al. [2] reported that individuals with DS have less

functional performance than individuals without motor
and cognitive dysfunction with alterations in cognitive,
motor areas and social function.
Due to the importance of learning motor skills for

individuals with DS, it is important that practitioners use
the knowledge derived from motor learning, which will en-
able an intervention program based on scientific evidence
from this area of expertise. Examining how motor skill
learning can be enhanced in individuals with DS is not only
of theoretical interest, but may also have important prac-
tical implications for the lives of those affected by DS [3].
Some studies about motor learning in DS [3–6] were

found, as well as a study about how individuals perform
in a timing coincident task in a real environment using
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Bassin Anticipatory timing and the results showed that
it is a good tool to evaluate improvement on motor per-
formance in people with DS [7] but little was found on
motor learning in a virtual reality task in individuals
with DS [8]. Recently, with the growing accessibility of
computer-assisted technology, rehabilitation programs
increasingly use virtual reality environments to enhance
dedicated practice, thus, to study the use of virtual real-
ity becomes essential [9–12]. Also, the use of the real
task (Bassin Anticipatory timing) present some difficul-
ties to be used worldwide considering its size, weight
and price, in addition if someone needs to import the
equipment, they must anticipate going through bureau-
cratic red tape, a long waiting time and difficulty for
technical support. Thus, it is important to verify the
performance of DS individuals in a virtual task using a
computer that can offer visual and auditory feedback
and facilitate the use of a coincident timing assessment
for rehabilitation professionals to predict the anticipa-
tory timing. Virtual task with 3D images has been used
in different devices and represent the future in technol-
ogy promoting independence and functionality in the
daily life tasks for individuals with DS.
Given this background, the aim of the current study

was to assess the motor learning capacity of individuals
with DS in a non-immersive virtual reality task. Based
upon the above deliberations, we hypothesized that indi-
viduals with DS will improve their coincident time of
movement during acquisition in a 3D task, in addition
to maintaining performance for the retention phase and
transfer the performance with an increase of speed, how-
ever with lower performance and more variability when
compared to the control group.

Methods
Participants
A total of 40 individuals participated in this study, 20 of
whom had DS (11 males and 9 females, mean
age = 19 years, ranging between 14 and 30 yrs.) and 20
typically developing individuals (TD) who were matched
by age and gender to the individuals with DS. Criteria
for inclusion were a medical diagnosis of DS and the
ability to understand the task. The ability to understand
the task was: after two demonstrations from the experi-
menter (one showing right reach and other showing
wrong reach) the participant had two attempts to show
if he/she understood the task. All participants were from
school program and alphabetized. Exclusion criteria
were disorders in cognitive function that would prevent
comprehension of the experimental instruction.

Material and apparatus
This study used software that uses 3D images to repro-
duce a coincidence-timing task developed and tested by

the Department of Electronic System Engineering of
the Polytechnic School, University of São Paulo (EP/
USP) (see also Silva et al. [13] and de Mello Monteiro
et al. [14]) and upgraded by the Laboratory of
Information Systems from the University of São
Paulo.
This software enabled the coincidence-timing task

to be done by pressing the space key on a keyboard.
The coincident timing task was based on the Bassin
Anticipation Timer [7, 15–21] and consisted of a task
used worldwide by many authors (see Chiviacowsky
et al. [3]; de Mello Monteiro et al. [14]; Corrêa et al.
[18]) aiming to assess and verify motor learning
considering the performance obtained by decreasing
the errors, or the variability of errors.
To this end, 10 3D–cubes were displayed simultan-

eously in a vertical column on a monitor. The cubes
created turned on (i.e., changed from blue to green)
and off sequentially (from top to bottom) until the
target cube (i.e., the tenth cube) was reached. The
task for the participant was to press the space bar on
the keyboard in the exact time to hitting the target
object (Fig. 1).

Fig. 1 Coincident timing task using 3D image: initial position (a) and
final position b
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Procedure and design
Participants performed the task individually in a quiet
room with only the researcher who gave the instructions
to the individual present. The computer was placed on a
table. The participants were seated in chair, which was
adjusted in height according to the needs of the individual.
Also a footrest was available, if required. After being
seated, the experimenter explained the task verbally
equally for all participants and as mentioned before gave
two demonstrations of how to perform the coincidence-
timing tasks and two trials as tests for the participant, as a
way to access the comprehension of the task. These
attempts did not count for the experiment. The partici-
pants were instructed to place the preferred hand on a
mark in front of the target (the location was individually
adjusted but ranged from 2 to 4 cm from the target key-
board). Once the first top cube turned on, the individual
had to move his or her hand to either touch the target key
on the keyboard, exactly at the moment coinciding with
the bottom target cube turning on. During the tasks, the
experimenter did not provide any encouragement or re-
ward. Different sounds were provided as feedback for a hit
or miss during acquisition, retention and transfer, the
range of error being −200 to 200 ms. We chose auditory
feedback because it is viable and better differentiated by
the computer, and is described as a widely used form with
evidence of effectiveness as sensorial feedback [22].
The primary purpose of practice is considered not only

to facilitate the performance of temporary effects during
acquisition but also provide improved durable perform-
ance (assigned to the learning) of the retention and
transfer tests. To this end, “Retention test” was used as a
way to measure the capacity to maintain the same
performance acquired with the practice after a period
with no contact with the task and “Transfer test” was
used to assess the capacity to maintain the same
performance acquired with practice when changing
something in the task; it evaluates the ability to transfer
the performance in a similar task or environment.
During the three phases of the study, we used blocks

of 5 attempts each to ensure fairness in the evaluation
of performances of the participant, as used in several
studies [3, 14, 18]. All participants made 20 trial acqui-
sitions (divided into 4 blocks), 5 trial retentions after
10 min with no contact with the task (1 block) and 5
trial transfers immediately after retention trials (1
block). Thus, each participant had 32 trials (2 test trials
– that did not count for the study; 20 acquisition trials;
5 retention trials; 5 transfer trials). During acquisition
and retention trials, the cubes simulated a dropped
light movement with the turning on and off of the
lights in an interval of 400 ms between positions
change, while during transfer light movement was
increased with 300 ms between positions.

Data analysis
The dependent variable used was the timing error, i.e.,
constant error (CE), absolute error (AE) and variable
error (VE).

Constant error (CE)
The calculation of CE was done by the simple arithmetic
average of the error values, considering the algebraic
sign (negative or positive) in a series of attempts (block
of trials). It represents the direction of error if it is late
or early.

CE ¼ Σ Xi–Tð Þ=N½ �
In which: Σ = sum, i = number of attempts, Xi – score of

the trial i, T = distance from the target, N = number of trials.

Absolute error (AE)
The individual values of AE were used with no algebraic
sign (all values are positive) before proceeding to the calcu-
lation of average. The absolute error represents the individ-
ual as well as combinations effects of tasks characteristics
[23]. AE represents the accuracy measurement.

AE ¼ Σ j Xi–Tð Þ=N½ �
In which: Σ = sum, | = “absolute value of”, i = number

of attempts, Xi – score of the trial i, T = distance from
the target, N = number of trials.

Variable error (VE)
To calculate the variable error, we squared the difference
between each score and the individual CE mean, then
sum all and divided by the number of trials. Then we
compute the square root of this number. It represents
the variability of error.

VE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Xi−CEð Þ2=N
h i

r

In which: Σ = sum, i = number of attempts, Xi– score
of the trial i, CE = constant error, N = number of trials.
The timing error was defined as the time difference

between the moment the target cube switched on (ar-
rival time) and the moment at which the keyboard was
touched. The dependent variable for the CE was submit-
ted to a 2 (group: DS and TD) by 2 (blocks) ANOVA,
repeated measures were utilized for the last factor.
The cognitive and motor function in people with DS is

very different within them, so we divided the groups in
order to find out if the performance on the first block
would be related to the comprehension of the task,
affecting the performance. For AE and VE the groups
were divided by two subgroups according to the per-
formance in the first acquisition block (10 individuals
with best movement time: Performance Group A and 10
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individuals with worse movement time: Performance
Group B) the dependent variables were submitted to a 2
(group: DS and TD), by 2 (performance groups: A and
B) by 2 (blocks) ANOVA, repeated measures were uti-
lized for the last factor. For the factor block separate
comparisons were made for acquisition (first acquisition
block A1 versus final acquisition block A4), retention
(A4 versus retention block R) and transfer (A4 versus
transfer block T). Post hoc comparisons were carried
out using Tukey-HSD test (p < .05).

Results
The t-test found no statistical difference for age between
groups of best movement time and worst movement
time for both DS-group (18.4 ± 5; 20.5 ± 3, p = 0.154,
respectively) and TD-group (19.3 ± 4; 18.8 ± 4,
p = 0.400, respectively).

Acquisition
Constant error
Figure 2 present the CE’s during acquisition tasks among
the DS- and TD-groups. The ANOVA did not reveal any
effect or interaction for Block. However, a significant
main effect for Group was found, F(1, 38) = 6.62,
p = .014, ŋ2 = .15. It suggests that a difference in move-
ment time between groups occurred, in other words
DS-group had a much larger constant error
(M = 193 ms) than TD-group (M = 6 ms) and in both
groups the directional trend was late in movement.

Absolute error
The pattern of absolute errors is illustrated in Fig. 3. Sig-
nificant effects were found for Group F(1, 36) = 75.2,
p < .001, ŋ2 = .68, Performance Group F(1, 36) = 11.7,
p = .002, ŋ2 = .25 and Block, F(1, 36) = 12.4, p = .001,
ŋ2 = .26, and interactions for Group by Performance
Group F(1, 36) = 5.18, p = .029, ŋ2 = .13, Blocks by

Performance Group F(1, 36) = 13.1, p = .001, ŋ2 = .27,
Blocks by Group F(1, 36) = 4.66, p = .038, ŋ2 = .12 and
Blocks by Performance Group by Group F(1, 36) = 6.65,
p = .014, ŋ2 = .16. It indicates that DS- group had a much
larger absolute error (M = 434 ms) than TD- group
(M = 123 ms) and the Performance Group B has a much
larger absolute error (M = 340 ms) than the Performance
Group A (M = 217 ms). The post hoc test showed that
this difference can be attributed to the DS-group that had
a larger movement time in the Performance Group B
(M = 536 ms) than in the Performance Group A
(M = 332 ms), while for the TD-group this difference did
not occurr (M = 143 ms versus 103 ms, respectively).
For Blocks, in the final block the movement time was

smaller (M = 226 ms) when compared to the first block
of acquisition (M = 331 ms) in both groups. The post
hoc test showed that this difference can be attributed to
the DS-group that showed worse performance in the
first block of acquisition- Performance Group B
(M = 714 ms) when compared to the final block of
acquisition (M = 359 ms), for the other three groups this
difference did not occurred.

Variable error
Similar to the absolute error, significant effects were
found for Group F(1, 36) = 35.5, p < .001, ŋ2 = .50, Per-
formance Group F(1, 36) = 35.4, p < .001, ŋ2 = .50 and
Block, F(1, 36) = 33.0, p < .001, ŋ2 = .48, and interactions
for Group by Performance Group F(1, 36) = 14.5,
p = .001, ŋ2 = .29, Blocks by Group F(1, 36) = 20.6,
p < .001, ŋ2 = .36, Blocks by Performance Group F(1,
36) = 14.1, p = .001, ŋ2 = .28, and Blocks by Performance
Group by Group F(1, 36) = 8.64, p = .006, ŋ2 = .19. It in-
dicates that DS- group had a much larger variable error
(M = 107 ms) than TD- group (M = 39 ms) and the Per-
formance Group B has a much larger variable error
(M = 107 ms) than the Performance Group A
(M = 39 ms). The post hoc test showed that this differ-
ence can be attributed to the DS-group that had a larger
movement time -Performance Group B (M = 163 ms)
than in the Performance Group A (M = 51 ms), while
for the TD-group this difference did not occur (M = 51
versus 27 ms, respectively).
For Blocks, in the final block of acquisition the

movement time was smaller (M = 37 ms) when com-
pared to the first block of acquisition (M = 109 ms)
in both groups. The post hoc test showed that this
difference can be attributed to the DS-group that
showed worse performance in the first block of acqui-
sition -Performance Group B (M = 268 ms) when
compared to the final block of acquisition
(M = 57 ms), for the other three groups this differ-
ence did not occurred (Fig. 4).
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Fig. 2 Constant error between groups on acquisition, retention and
transfer blocks. A1-A4- refers to four acquisition blocks; R- refers to
retention block; T- refers to tranfer block; DS- Down syndrome;
TD- typical development; SEM- standard error of mean
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Retention
There was significant effect of Block only for constant
error, F(1, 38) = 5.05, p = .030, ŋ2 = .12. The result indi-
cates that in the final acquisition block the constant
error was much larger (M = 135 ms) than the retention
block (M = 53 ms), in addition, the directional trend was
late in movement. For the absolute and variable error
the ANOVA did not find any main effects and interac-
tions, suggesting that the patterns of movement were no
different during retention as compared to final acquisi-
tion block for absolute (DS- 407 to 349 ms and TD- 119
to 102 ms, respectively) and variable errors (DS- 55 to
43 ms and TD- 33 to 31 ms, respectively).

Transfer
Similarly to retention test, there was significant effect of
Block only for constant error, F(1, 38) = 6.44, p = .015,
ŋ2 = .15. This result indicates that in the transfer block
the constant error was much larger (M = 135 ms) than
the final acquisition block (M = 193 ms), in addition the
directional trend was late in movement. For the absolute
and variable error there were no significant effects of
Block, suggesting that the patterns of movement were
no different during transfer as compared to final

acquisition block for absolute (DS- 385 to 349 ms and
TD- 108 to 102 ms, respectively) and variable errors
(DS- 58 to 43 ms and TD- 32 to 31 ms, respectively).

Discussion
The main objective of this study was to determine
whether individuals with DS can learn a non-immersive
virtual task, and if there is the ability to adapt new envir-
onmental demands through improved performance in
the acquisition and transfer with increasing speed.
Therefore, the chosen task was coincident timing with
(3D) virtual object held on a computer screen.
According to the results, the initial hypothesis of

improved performance in a virtual task was partly
confirmed, it was found that only Down Syndrome in
Performance Group B showed significant improvement
in performance in the execution of the task between the
first block (M = 714 ms) and the final block of the
acquisition (M = 359 ms). Latash [24] says that perform-
ance of individuals with DS shows dramatic improve-
ment with practice even in tasks that are very simple,
and seem to offer little room for improvement, but our
results show that for the task used, this improvement in
performance occurred only with individuals with low
performance in the beginning.
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Fig. 3 Absolute error between groups on acquisition, retention and transfer blocks. A1-A4- refers to four acquisition blocks; R- refers to retention
block; T- refers to tranfer block; DS- Down syndrome; TD- typical development; SEM- standard error of mean
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Based on the present findings, we can only speculate
why the individuals with DS with high performance did
not improve. Considering that the motor and cognitive
function in people with DS are very different among
them [25] even between DS from school programs (all
alphabetized), probably the task was easier for the group
with high performance and they already show the best
score from the beginning of the protocol. This specula-
tion can be supported by Malak et al. [26], who
evaluated the association of the motor and cognitive
development in children with DS and concluded that the
motor development is associated with cognitive develop-
ment, i.e. mental age.
However, the primary purpose of practice is not

only to facilitate the performance of temporary effects
during acquisition but also provide improved durable
performance (assigned to the learning) of the
retention and transfer tests. From the results
obtained, there was no significant difference between
the last block of acquisition with retention and trans-
fer blocks in absolute error in both the TD (102 ms
to 119 ms, respectively) group, as in DS (349 ms to
407 ms, respectively) group. That is, both groups
maintained the ability to perform the task after a
certain time without running.
It is important to note that the small number of repe-

titions was sufficient to improve performance, but only
in the group with DS who had more difficulty in the
beginning of the task. For this group, even considering
an acquisition with few repetitions, participants under-
went an initial phase - characterized by a greater
number of errors, inconsistencies and high demand at-
tention - until a later stage, which is characterized by
greater consistency, fewer errors and likely reduced de-
mand attention. Those DS individuals organized their
reaching and aiming movements to achieve the precision
dictated by the task demands, while optimizing move-
ment speed and energy efficiency. When faced with un-
expected changes to the task demands, they are usually
very adept at adjusting their movement trajectories to
accommodate the new environmental constraints [27].
Considering the results of the last acquisition block

(TD = 102 ms and DS = 349 ms) with transfer block
(TD = 108 ms and DS = 385 ms), there were no statisti-
cally significant differences between blocks in both
groups. Therefore, a situation with increased speed of
the task did not cause significant performance drop.
Again, primarily participants with DS who started
with low performance after practice showed good
adaptability to a new situation in coincident timing
task. Considering the variable error, except for the
first block of the group with DS with worse perform-
ance, the variability of error is similar between DS
and people with typical development.

Those findings are partly in line with the notion that
DS individuals can improve their ability in a virtual com-
puter task (see Berg et al. [28]), The recent development
in the area of motor control allows researchers and prac-
titioners to tap into these reserves and use quantitative
indices of changes in motor synergies with practice to
optimize training programs for DS individuals [24].
Comparing the DS and TD groups, it was found that

the DS-group had worse performance in acquisition
than the group with typical development. This difference
was also observed in the phases of retention and trans-
fer. In DS, inability to effectively control movement
through online processing of information may account
for the slowness that is characteristic of their perform-
ance. They likely have difficulties due to less time in
deceleration of reaching, less anticipatory capacity,
longer movement times [29] and stability challenges of
ligamentous laxity and hypotonia (see Galli et al. [30]
and Cisterna et al. [31]).
Another factor that may contribute to greater difficulty in

performance in participants with DS is the movement pat-
tern and strategy used to accomplish the task. Individuals
with DS have difficulty performing precision goal-directed
movement with any degree of speed or efficiency and the
movement performed took twice as long to complete than
TD person [27] and individuals with DS have preference
for patterns of muscle activation characterized by higher
levels of co-contraction, that is, simultaneous activation of
muscle pairs acting at a joint in opposite directions (“agon-
ist-antagonist muscle pairs”) [32].
Considering the constant error and variable error, re-

sult indicates that in CE all individuals (DS and TD) had
a trend to delay the movement. Masumoto et al. [33]
evaluated adolescents with DS in a bimanual and unilat-
eral tapping task and found also that they presented
delay to reach the timing task. However in VE the DS-
group had a much larger variable error (M = 107 ms)
than TD- group (M = 39 ms), our findings confirm data
from Torriani-Pasin et al. [7], even in a 3D task the indi-
viduals with Down syndrome tend to perform tasks in
unstable and irregular coincidence of visual-motor
systems, when compared to control subjects. Individuals
with DS looked at experimental objects less frequently
than their typically and children with typical develop-
ment spent more time than DS in the highest visual
stimulation complexity zone [34].
Another difficultly for DS individuals is in the deficit

of the perceptual-motor abilities, which are responsible
for the abilities that support the acquisition of several
motor skills. Individuals with DS rely more on feedback
control, whereas they have problems with movement
planning and feed-forward control as showed by
Kearney and Gentile [29] and Spanò et al. [35], the
different strategy operated by individuals with DS leads
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to a different task performance. Probably DS has a
deficit in voluntary motor commands and preprogram-
ming of actions, which results in altered strategies of
movement that enhance security and stability instead of
efficiency of the performance [36].

Conclusions
Based on the present findings, individuals with DS are
able to learn movements from virtual tasks, even though
the movement time was higher compared to the TD in-
dividuals. The results showed that individuals with DS
who started with low performance improved coinci-
dence- timing task with virtual objects, but were less
accurate than typically developing individuals.
Although individuals with DS having different explora-

tory actions, perceptual-motor abilities, pattern and
movement strategies, results showed the ability to
improve performance in non-immersive virtual tasks
especially for individuals who have more difficulties,
which can encourage the use of virtual environments in
programs of motor habilitation in individuals with DS.

Limitations and future studies
As limitations of the study, we could not assess the cogni-
tive function and mental age of the participants with DS
or their access to computers or video games. This infor-
mation could give more explanations about the difference
between the groups with worse and better performance.
When compared to previous studies in this field, the

present study included a rather heterogeneous popula-
tion with a wide age range including adolescents and
adults with different gender. Even though we cannot rule
out the effects of these factors, it is believed that this did
not affect the results to a great extent. Both groups were
carefully matched for age and all participants in the DS
group showed to be able to perform the task.
Moreover, the computer program we used limited the

outcome parameters to non-immersive virtual task and
we could not compare with a real task, probably transfer
to a real task could have given even better insight into
our findings. Therefore, for future studies it would be
recommended to not only look at virtual task but also
transfer for real environment since this could provide
valuable information. Additionally, we suggest that this
non-immersive task of virtual reality may be an option
to be reproduced in others diseases with motor and
cognitive disabilities.

Abbreviations
AE: Absolute Error; CE: Constant Error; DS: Down Syndrome; TD: Typical
Development; VE: Variable Error

Acknowledgements
We acknowledge the participants in the study.

Funding
This study received financial support from the FAPESP (Fundação de Amparo à
Pesquisa do Estado de São Paulo, process number 2012/16970-6 and 2013/00619-0).

Availability of data and materials
Supporting datasets can be obtained from Talita Dias da Silva: write at
ft.taliatdias@gmail.com

Author's contributions
CBMM: drafted, designed and wrote the manuscript; TDS: study implementation,
data collection, performed data analysis and interpretation; LCA: help with
manuscript preparation; FF: help with data analysis and manuscript preparation;
LVA: Software development and data interpretation; FHIBF: Software development
and data interpretation; CL: help with data analysis and manuscript preparation.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This study was approved by the Ethics Committee for review of research
projects of the School of Arts, Sciences and Humanities, University of São
Paulo – EACH/USP under protocol number 1033/03. Written informed
consent was provided by the participants and/or their legal guardians.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo
Béttio, 1000, Ermelino Matarazzo, São Paulo 03828-000, Brazil. 2School of
Public Health, University of São Paulo, São Paulo, Brazil. 3Harvard School of
Public Health, Harvard University, Boston, MA, USA. 4Center for
Neurosciences (NEC), University of São Paulo, São Paulo, Brazil. 5Spaulding
Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical
School, Boston, MA, USA.

Received: 25 July 2016 Accepted: 30 March 2017

References
1. Lana-Elola E, Watson-Scales SD, Fisher EM, Tybulewicz VL. Down syndrome:

searching for the genetic culprits. Dis Model Mech. 2011;4:586–95.
2. Mancini MC, Silva PC, Gonçalves SC, Matins SM. Comparação do

desempenho funcional de crianças portadoras de síndrome de Down e
crianças com desenvolvimento normal aos 2 e 5 anos de idade. Arq
Neuropsiquiatr. 2003;61:15–409.

3. Chiviacowsky S, Wulf G, Machado C, Rydberg N. Self-controlled feedback
enhances learning in adults with down syndrome. Rev Bras Fisioter.
2012;16:191–6.

4. Latash ML, Kang N, Patterson D. Finger coordination in persons with down
syndrome: atypical patterns of coordination and the effects of practice. Exp
Brain Res. 2002;146:345–55.

5. Bussy G, Charrin E, Brun A, Curie A, des Portes V. Implicit procedural learning in
fragile X and down syndrome. J Intellect Disabil Res. 2011;55:521–8.

6. Ringenbach SD, Mulvey GM, Chen CC, Jung ML. Unimanual and bimanual
continuous movements benefit from visual instructions in persons with
down syndrome. J Mot Behav. 2012;44:233–9.

7. Torriani-Pasin C, Bonuzzi GM, Soares MA, Antunes GL, Palma GC, Monteiro
CBM, et al. Performance of down syndrome subjects during a coincident
timing task. Int Arch Med. 2013;6:15.

8. Courbois Y, Farran EK, Lemahieu A, Blades M, Mengue-Topio H, Sockeel P.
Wayfinding behaviour in down syndrome: a study with virtual
environments. Res Dev Disabil. 2013;34:1825–31.

9. Barton GJ, Hawken MB, Foster RJ, Holmes G, Butler PB. The effects of virtual
reality game training on trunk to pelvis coupling in a child with cerebral
palsy. J Neuroeng Rehabil. 2013;10:15.

de Mello Monteiro et al. BMC Neurology  (2017) 17:71 Page 7 of 8



10. Burdea GC, Cioi D, Kale A, Janes WE, Ross SA, Engsberg JR. Robotics and
gaming to improve ankle strength, motor control, and function in children
with cerebral palsy–a case study series. IEEE Trans Neural Syst Rehabil Eng.
2013;21:165–73.

11. Mitchell L, Ziviani J, Oftedal S, Boyd R. The effect of virtual reality interventions
on physical activity in children and adolescents with early brain injuries
including cerebral palsy. Dev Med Child Neurol. 2012;54:667–71.

12. Riener R, Dislaki E, Keller U, Koenig A, Van Hedel H, Nagle A. Virtual reality
aided training of combined arm and leg movements of children with CP.
Stud Health Technol Inform. 2013;184:349–55.

13. Silva TD, Monteiro CBM, Hasue RH, Moura MCDS, Correa AGD, Ficheman IK,
et al. Aprendizagem motora em tarefa virtual na Paralisia Cerebral. Temas
Desenvolv. 2013;104:47–53.

14. de Mello Monteiro CB, Massetti T, Silva TD, van der Kamp J, de Abreu LC,
Leone C, et al. Transfer of motor learning from virtual to natural
environments in individuals with cerebral palsy. Res Dev Disabil.
2014;35:2430–7.

15. Shea CH, Ashby AA. Modifications to the Bassin anticipation timer. Res Q
Exerc Sport. 1981;52:278–80.

16. Overdorf V, Page SJ, Schweighardt R, McGrath RE. Mental and physical
practice schedules in acquisition and retention of novel timing skills.
Percept Mot Skills. 2004;99:51–62.

17. Harrold D, Kozar B. Velocity, occlusion, and sex of subjects in coincidence of
anticipation. Percept Mot Skills. 2002;94:914–20.

18. Corrêa UC, Oliveira PH, Oliveira JA, Freudenheim AM, Meira-Junior CM,
Marinovic W, et al. “Timing” coincidente em tarefas complexas: estudo
exploratório do desempenho de adultos de diferentes idades em diferentes
velocidades de estímulo visual. Rev Bras Educ Fís Esporte. 2005;19:307–15.

19. Santos S, Corrêa UC, Freudenheim AM. Variabilidade de performance numa
tarefa de “timing” antecipatório em indivíduos de diferentes faixas etárias.
Rev Paul Educ Fís. 2003;17:154–62.

20. Williams K. Age difference on a coincident anticipation task: influence of
stereotypic or “preferred” movement speed. J Mot Behav. 1985;17:389–410.

21. Williams LR, Jasiewicz JM, Simmons RW. Coincidence timing of finger, arm,
and whole body movements. Percept Mot Skills. 2001;92:535–47.

22. Rosati G, Rodà A, Avanzini F, Masiero S. On the role of auditory feedback in
robot-assisted movement training after stroke: review of the literature.
Comput Intell Neurosci. 2013;2013:586138. doi:10.1155/2013/586138.
Published online 2013 December 8

23. Duncan MJ, Stanley M, Smith M, Price MJ, Wright SL. Coincidence
anticipation timing performance during an acute bout of brisk walking in
older adults: effect of stimulus speed. Neural Plast. 2015;2015:210213. doi:10.
1155/2015/210213.

24. Latash ML. Learning motor synergies by persons with down syndrome. J
Intellect Disabil Res. 2007;51:962–71.

25. Rihtman T, Tekuzener E, Parush S, Tenenbaum A, Bachrach SJ, Ornoy A. Are
the cognitive functions of children with down syndrome related to their
participation? Dev Med Child Neurol. 2010 Jan;52(1):72–8.

26. Malak R, Kotwicka M, Krawczyk-Wasielewska A, Mojs E, Samborski W. Motor
skills, cognitive development and balance functions of children with down
syndrome. Ann Agric Environ Med. 2013;20(4):803–6.

27. Elliott D, Hansen S, Grierson LE, Lyons J, Bennett SJ, Hayes SJ. Goal-directed
aiming: two components but multiple processes. Psychol Bull.
2010;136:1023–44.

28. Berg P, Becker T, Martian A, Primrose KD, Wingen J. Motor control outcomes
following Nintendo Wii use by a child with down syndrome. Pediatr Phys
Ther. 2012;24:78–84.

29. Kearney K, Gentile AM. Prehension in young children with down syndrome.
Acta Psychol. 2003;112:3–16.

30. Galli M, Cimolin V, Rigoldi C, Pau M, Costici P, Albertini G. The effects of low
arched feet on foot rotation during gait in children with down syndrome. J
Intellect Disabil Res. 2014;58(8):758–64. doi:10.1111/jir.12087. Epub 2013 Aug 19

31. Cisterna B, Costanzo M, Scherini E, Zancanaro C, Malatesta M. Ultrastructural
features of skeletal muscle in adult and aging Ts65Dn mice, a murine
model of down syndrome. Muscles Ligaments Tendons J. 2014;3(4):287–94.
eCollection 2013

32. Latash ML, Anson JG. Synergies in health and disease: relations to adaptive
changes in motor coordination. Phys Ther. 2006;86:1151–60.

33. Masumoto J, Abe T, Inui N. Adolescents with down syndrome exhibit
greater force and delay in onset of tapping movements. Percept Mot Skills.
2012;114(3):826–36.

34. Kawa R, Pisula E. Locomotor activity, object exploration and space
preference in children with autism and down syndrome. Acta Neurobiol
Exp. 2010;70:131–40.

35. Spanò M, Mercuri E, Randò T, Pantò T, Gagliano A, Henderson S, et al. Motor
and perceptual-motor competence in children with down syndrome:
variation in performance with age. Eur J Paediatr Neurol. 1999;3:7–13.

36. Vimercati SL, Galli M, Rigoldi C, Ancillao A, Albertini G. Motor strategies and
motor programs during an arm tapping task in adults with down
syndrome. Exp Brain Res. 2013;225:333–8.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

de Mello Monteiro et al. BMC Neurology  (2017) 17:71 Page 8 of 8

http://dx.doi.org/10.1155/2013/586138
http://dx.doi.org/10.1155/2015/210213
http://dx.doi.org/10.1155/2015/210213
http://dx.doi.org/10.1111/jir.12087

	Abstract
	Background
	Methods
	Results
	Conclusion
	Trial registration

	Background
	Methods
	Participants
	Material and apparatus
	Procedure and design
	Data analysis
	Constant error (CE)
	Absolute error (AE)
	Variable error (VE)


	Results
	Acquisition
	Constant error
	Absolute error
	Variable error

	Retention
	Transfer

	Discussion
	Conclusions
	Limitations and future studies
	Abbreviations

	Acknowledgements
	Funding
	Availability of data and materials
	Author's contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

