Skip to main content
Fig. 5 | BMC Neurology

Fig. 5

From: A new approach to characterize postural deficits in chemotherapy-induced peripheral neuropathy and to analyze postural adaptions after an exercise intervention

Fig. 5

Model parameters. Mean and standard deviation of a the neural controller with the proportional (Kp/mgh in 1/°), derivative (Kd/mgh in s/°) and integral (Ki/mgh in 1/s*°) contribution corrected for subjects’ masses and heights, of b the proprioceptive sensory weight (Wp in °/°) and c the lumped time delay (Td in seconds) for healthy control subjects (hCon), patients before (pre) and after (post) intervention, each shown in the eyes-open (eo) and eyes-closed (ec) condition and for b Wp in 0.5 and 1degree (deg) platform rotation. d shows the modified postural-control model used to identify abnormal postural control parameters in CIPN patients via an optimization procedure where differences between experimental data and model simulations were minimized: The model consists of a body represented by an inverted pendulum with the mass concentrated at the center of mass of the body and the sensors and neuromuscular systems including a Neural Controller. θ, body sway angle; h, height of the center of mass above the ankle joints; θ ref., external stimulus; Kp, proportional gain (stiffness factor), Kd, derivative gain (damping factor), Ki, integral gain of the Neural Controller; Ppas, passive stiffness factor; Dpas, passive damping factor; Wp, proprioceptive sensory weight; Td, feedback time delay; T, control torque; J, moment of inertia of the body; mgh, body mass*gravitational constant*height of the center of mass from the ankle joint; s, Laplace transform variable

Back to article page