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Abstract

Background: Recent work has demonstrated that fall risk can be attributed to cognitive as well as motor deficits.
Indeed, everyday walking in complex environments utilizes executive function, dual tasking, planning and scanning,
all while walking forward. Pilot studies suggest that a multi-modal intervention that combines treadmill training to
target motor function and a virtual reality obstacle course to address the cognitive components of fall risk may be
used to successfully address the motor-cognitive interactions that are fundamental for fall risk reduction. The
proposed randomized controlled trial will evaluate the effects of treadmill training augmented with virtual reality on
fall risk.

Methods/Design: Three hundred older adults with a history of falls will be recruited to participate in this study.
This will include older adults (n=100), patients with mild cognitive impairment (n=100), and patients with
Parkinson'’s disease (n=100). These three sub-groups will be recruited in order to evaluate the effects of the
intervention in people with a range of motor and cognitive deficits. Subjects will be randomly assigned to the
intervention group (treadmill training with virtual reality) or to the active-control group (treadmill training without
virtual reality). Each person will participate in a training program set in an outpatient setting 3 times per week for
6 weeks. Assessments will take place before, after, and T month and 6 months after the completion of the training.
A falls calendar will be kept by each participant for 6 months after completing the training to assess fall incidence
(i.e, the number of falls, multiple falls and falls rate). In addition, we will measure gait under usual and dual task
conditions, balance, community mobility, health related quality of life, user satisfaction and cognitive function.

Discussion: This randomized controlled trial will demonstrate the extent to which an intervention that combines
treadmill training augmented by virtual reality reduces fall risk, improves mobility and enhances cognitive function
in a diverse group of older adults. In addition, the comparison to an active control group that undergoes treadmill
training without virtual reality will provide evidence as to the added value of addressing motor cognitive
interactions as an integrated unit.
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Background

Gait impairments and falls are ubiquitous among older
adults and patients with common neurological diseases.
Approximately 30% of community-dwelling adults over
the age of 65 fall at least once a year [1,2]. In persons
with Parkinson’s disease (PD), mild cognitive impairment
(MCI) or dementia, falls are even more frequent
with annual incidence rising to 60-80% [2,3]. The
consequences of these falls may be severe, leading to
institutionalization, loss of functional independence, dis-
ability, fear of falling, depression and social isolation [4].

Most falls occur during walking [5,6] and, not surpris-
ingly, gait impairment has been associated with an
increased risk of falls [7,8]. Gait abnormalities in elderly
fallers and patients with PD include reduced gait speed,
stride length, and increased stride symmetry [9]. Fear of
falling, cautious gait [10,11], gait unsteadiness, or
dysrhythmicity of stepping have also been recognized as
mediators of fall risk [12-15].

There is a growing body of research that specifically
links the cognitive sub-domains of attention and execu-
tive function (EF) to gait alterations and fall risk [15-21].
EF apparently plays a critical role in the regulation of
gait especially under challenging conditions where
decisions need to be made in real-time [22]. Walking
while avoiding obstacles and walking while simultan-
eously performing another task, ie., dual tasking (DT),
place greater demands on cognitive resources such as
divided attention and executive control, judgment, and
reasoning, compared to “single task” walking [23-25]. EF
scores and dual tasking gait performance have been
associated with fall history and have been shown to pre-
dict future falls, even over several years of follow-up
[17,21,26]. Although there is no universal agreement,
many studies in patients with PD have reported that EF
and dual tasking gait abilities are associated with fall risk
[27-29] and attention-deficits predict future falls in
patients with PD [30]. This may explain why falls occur
so frequently among older adults, and even more so in
patients with PD and patients with MCIL. We suggest
that these three groups share cognitive deficits that con-
tribute to and exacerbate their fall risk. MCI patients are
cognitively impaired, by definition. As much as 60% of
patients who receive the diagnosis of PD already have
cognitive deficits [31,32], and many older adults suffer
from age-associated decline in cognitive function.

Another risk factor identified as a cause for falls in the
elderly is obstacle crossing. Compared to healthy young
adults, older adults walk more slowly during obstacle
crossing [5,33-36], with smaller steps [34-36] landing
dangerously closer to the obstacle with their lead limb
[36-38]. Age-related deficits in vision, proprioception
and visual-spatial orientation can also negatively impact
postural stability and lower limb kinematics when
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crossing obstacles [5,34,36,37,39]. Obstacle negotiation
heavily relies on the availability of ample cognitive
resources, due to the need for motor planning and visu-
ally dependent gait regulation [40,41].

Many intervention programs based on reported mul-
tiple risk factors have been proposed and evaluated to
reduce fall risk [42]. However, despite the extensive
knowledge on fall risk obtained in recent years, there is
no consensus as to the most efficacious or optimal treat-
ment approach [43,44]. Common treatments include
exercise programs to improve strength or balance, edu-
cational programs, medication optimization, environ-
mental modification and multi-factorial interventions
involving a combination of several modalities. To date,
however, the effects on fall risk tend to be small and the
reported changes are largely focused on motor aspects
with limited long-term retention [45-47].

Mahoney [48] suggested that perhaps the reason that
multi-factorial interventions are not consistently suc-
cessful is because they fail to address three major
concepts: 1) training should be intensive, focused on the
key impairment and become progressively more rigor-
ous; 2) the training should fit the target population; 3)
delivery of the intervention should include mechanisms
to maximize motor learning and induce a behavioural
change. We propose that insufficient focus on cognitive
aspects, in particular, the motor-cognitive interactions
that contribute to fall risk, might contribute to the sub-
optimal success of previous fall risk interventions. Even
if cognitive function is targeted, it is generally done so in
isolation and the motor-cognitive interactions are not
directly addressed in an integrated fashion needed to
successfully and safely ambulate in daily living.

To address this challenge, a multi-modal treadmill
training program augmented by virtual reality (VR) (see
Figure 1) was developed to deal with both the motor
and cognitive aspects of fall risk and to promote motor
learning critical for key tasks of safe ambulation. In gen-
eral, VR is defined as a “high-end-computer interface
that involves real time simulation and interactions
through multiple sensorial channels” [49-51]. VR can be
used to provide training in a more stimulating and
enriching environment than traditional rehabilitation
whilst providing feedback about performance to assist
with learning new motor strategies of movement. There-
fore, treadmill training augmented by VR is, theoretic-
ally, well-suited as a multi-factorial intervention for fall
risk since it is designed to focus on the motor-cognitive
aspects of fall risk such as dual tasking, obstacle negoti-
ation and executive function.

In a pilot study [49], 20 patients with PD participated
in an intervention based on a VR system for an obstacle
navigation task. Patients walked on a treadmill while ne-
gotiating obstacles in a VR scene projected on a wall in
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Figure 1 The V-TIME multi-modal intervention solution for reducing fall risk. Current treatment of fall risk focuses on motor, e.g,, gait,
problems. V-TIME focuses on both gait and cognitive deficits to optimally treat multiple, critical fall risk aspects and enhance mobility, physical
activity and cognitive function. The current working version of V-TIME is shown. A patient trains on a treadmill while viewing a virtual
environment that presents obstacles, different types of challenges, and feedback [49]. Written informed consent was obtained from the patient
for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of
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front of them. They trained for 3 times a week for 6 -
weeks for about 45 minutes in each session. Visual and
auditory feedback was provided by the VR simulation
upon error or success and at the end of each walk. After
6 weeks of training, comfortable gait speed significantly
improved, as did stride length, gait variability, and over-
ground obstacle negotiation. Dual task (DT) perform-
ance improved and there was evidence of enhanced task
planning and set shifting. Increased gait speeds under all
conditions (i.e.,, comfortable, fast, DT and six minute
walk) were not only maintained at follow-up, but also
continued to improve 4 weeks later, suggesting that the
training generated a positive feedback loop that modified
behaviour and overall mobility [49]. Encouraged by these
results, an additional pilot study was carried out. Five
elderly women who sustained at least 2 falls in the 6 -
months prior to the study trained using the same tread-
mill training with VR protocol. Here too, after training,
improvements were observed in dual tasking, cognitive
function, gait, and mobility, but perhaps the most prom-
ising finding was a decrease of 73% in the frequency of
falls in the 6 months post-training as compared to 6 -
months pre-training [52].

The accumulating evidence on the importance of
cognitive function to gait and falls combined with
these initial findings formed the basis of the present
study. The primary aim is to demonstrate that six
weeks of treadmill training augmented by VR (TT
+VR) reduces the risk of falls in a relatively large

and diverse group of older adults (n=300), many of
whom will likely have a spectrum of motor and cog-
nitive deficits. The study will compare training effects
of TT+VR against an active control paradigm (TT
without VR) in a randomized controlled trial. We
hypothesize that a 6 week intervention with TT+VR
compared to TT alone will reduce the incidence of
falls and decrease the risk of falls in elderly adults,
patients with PD and individuals with MCIL As a
secondary question, we will also explore the neural
correlates associated with dual task activation and any
plastic effects resulting from the training using im-
aging techniques. However, protocols for these studies
will not be presented in this manuscript.

Methods/ Design

Design

A prospective, single blinded, parallel group, randomized
controlled trial (RCT) with 6 month follow-up will be
employed. The study will include 300 older participants
who have experienced two or more falls in the previous
6 months. Participants will be randomized to either
the intervention or control group. The intervention
group will receive 18 sessions of Treadmill Training
with Virtual Reality (TT+VR) and the active control
comparison will receive 18 training sessions of tread-
mill training alone (TT) without the VR simulation
(see Figure 2).
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Figure 2 Summary of the study design and training protocol. TT: treadmill training. TT+VR: treadmill training augmented by the virtual

Participants and setting

The participants will be recruited from three groups:
older adults with no cognitive impairment (n=100); older
adults with mild cognitive impairment (MCI) (n=100)
and people with Parkinson’s disease (PD) with no cogni-
tive impairment (n=100). Subjects will be recruited if

they meet the following criteria:
Common inclusion criteria

e 2 or more falls within 6 months prior to the
beginning of the study

e Aged 60-85 years

e Able to walk for 5 minutes unassisted

e Adequate hearing (as evaluated by the whisper test)
and vision capabilities (as measured using a Snellen
chart).

e Stable medication for the past 1 month and
anticipated over a period of 6 months

Common exclusion criteria

e DPsychiatric co-morbidity (e.g., major depressive
disorder as determined by DSM 1V criteria)

o Clinical diagnosis of dementia or other severe
cognitive impairment (Mini Mental State Exam
score <24)

e History of stroke, traumatic brain injury or other
neurological disorders (other than PD and MCI, for
those groups)

e Acute lower back or lower extremity pain,
peripheral neuropathy, rheumatic and orthopaedic
diseases

e Unstable medical condition including cardio-
vascular instability in the past 6 months

e Unable to comply with the training or currently
participating in another interfering therapy or a fall
clinics program
Interfering therapy

Group specific criteria

Participants with PD

Inclusion

o Diagnosis of idiopathic PD, as defined by the UK
Brain Bank criteria
e Hoehn and Yahr stage II-1II
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e Taking anti-Parkinsonian medication

e Stable medication for past 1 month and anticipated
over next 6 months or stable Deep Brain
Stimulation for at least one month and expected
following 6 months

Exclusion

e Severe freezing of gait (defined as having >15 on the
new FOG questionnaire) [53]

MCI group
Inclusion

e Score 0.5 on the Clinical Dementia Rating Scale
(CDR)

e Free from any neurological disorders that may have
caused the cognitive impairment

Sample size calculation

The primary outcome measure is fall incidence rates
during the 6 month post-training follow-up period. The
sample size estimate is based on extrapolations from our
pilot studies [49] and other related promising pilot
work (e.g., Rosenblat et al. [54], Pai et al. [55] and,
Weerdesteyn et al. [56]). Power was set at 80%, alpha
was set at 5% and we accounted for drop out rate of
20%. Using a relatively conservative estimate, we assume
that the control group fall incidence rate, after interven-
tion, will be three falls per year. If we consider a 40% re-
duction for the treatment group relative to this, then,
during the 6 month monitoring of falls incidence, a total
of 166 subjects would be required for 80% power (83 in
each group) to detect differences between the two treat-
ment groups assuming non-inferiority with moderate
correlations among covariates (R-squared = 0.50). A
much smaller sample is needed to detect between group
differences for the secondary outcomes. For example,
with 22 subjects in the intervention and control arms,
we will have 90% power to detect an intervention effect
(assuming Cohen’s f for ANOVA of 0.21), in dual tasking
gait speed. To enhance our ability to examine the effects
of the intervention on fall incidence within the three
sub-groups (seniors, PD, MCI), we will aim to recruit
100 subjects per group, for a total of 300 subjects.

Recruitment and randomization procedure

The study will be conducted in 5 clinical centres across
Europe (Lab for Gait & Neurodynamics, Tel Aviv
Sourasky Medical Centre, Israel; Department of Re-
habilitation Sciences, Katholieke Universiteit Leuven,
Belgium; Institute for Ageing and Health, Newcastle
University UK; Department of Neurosciences, University
of Genoa, Italy; Departments of Geriatric Medicine &
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Neurology, Radboud University Nijmegen Medical Centre,
The Netherlands).

Ethical approval was obtained by ethics committees of
each of the above clinical sites. Eligible subjects, who
agree to participate, will be asked to provide an informed
written consent after which they will be randomized to
one of two arms of the study: 1) TT+VR; 2) TT. A
permuted blocked randomization procedure will be used
selecting randomly from a block size of 4, 6 or 8. Group
allocation will be performed by a third party not
involved in the day to day running of the study; the
treating therapist will be notified by e-mail to ensure
concealed allocation.

Intervention

All interventions will be delivered by therapists trained
in the standard protocols across centres in the consor-
tium countries. Consistent with the motor learning lit-
erature and the pilot studies [49,52], all subjects will be
trained 3 times a week for 6 weeks, each session will last
approximately 45 minutes.

Virtual reality system

Details of the instrumentation are provided elsewhere
[49,52]. Briefly, the system includes a camera based mo-
tion capture (Kinect) and a computer generated simula-
tion. The camera will be used to collect the movement
of the participant’s feet while walking on the treadmill.
These images will be transferred into the computer
simulation and projected to the patient on a large screen
while training, enabling the subjects to see their feet
walking within the VR simulation. The virtual environ-
ment (VE) will consist of obstacles, different pathways,
narrow corridors and distracters, requiring modulations
of step amplitude in two planes (i.e., height and width)
coordinated with walking behaviour. The speed, orienta-
tion, size, frequency of appearance and shape of the
targets will be manipulated according to individual
needs following a standardized protocol. Environmental
features (e.g., visibility, settings and distractions) will be
adjusted to increase training complexity. The VE will im-
pose a cognitive load requiring attention and response
selection as well as processing of rich visual stimuli in-
volving several perceptual processes. The system will
provide visual and auditory feedback of successful or un-
successful task performance to enhance motor learning.
Adaptability of the system is foreseen to adjust training
parameters to the clinical needs of the individual
participant.

TT+VR group (the intervention group)

Motor aspect of training

Gait speed over-ground will be measured over 10 meters
at the beginning of each week of training. This speed
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will be registered and the treadmill speed will be set ac-
cordingly, as detailed below. Training will be divided
into bouts of walking and rest breaks in between. The
duration of the initial session should be ideally 20 -
minutes of walking time. A safety harness will be
attached to an over head suspension system, but no
weight support will be provided.

Training progression

Training progression will be based on increasing both
motor and cognitive challenges, individualized to the
participant’s level of performance. The motor compo-
nent of training progression will include an increase in
the treadmill speed and duration of training. Treadmill
speed in the first week will be set at 80% of over ground
gait speed. In the second week, the treadmill speed will
increase to 90% of over ground speed. Another 10-
minutes in duration will be added. From the third week,
the speed goal will increase by 10% every week and 1 -
minute of walking will be added to each of the walking
bouts (a total of an additional 3—-5 minutes per session
compared to the previous session). This progression is
subject to the performance and the patient’s ability.

The cognitive components of training progression
will include changing the number, size and shape of
obstacles, and the frequency, speed and direction
at which they appear. The Virtual Environment char-
acteristics will also be manipulated by reducing visibility
and adding distracters (e.g., birds, cars). During week 1,
obstacles will appear infrequently (e.g., every 30 seconds,
at low level of difficulty), be unilateral in direction and
the environmental features will be minimal (ie., high
visibility, day time walking, minimal distracters). Based
on the subject’s performance in weeks 2 and 3, the fre-
quency of appearance of the obstacles will increase,
obstacles will appear on the more challenged side
and their features (horizontal vs. vertical) will be
individualized. Environmental features will appear with
some minimal distracters during weeks 2 and 3. In week
4, subjects will be introduced to a new environment to
allow for more diversity in training and to maximize
transfer to the real-world. Throughout, training should
maintain the ratio of 80:20 success/failure rates in order
to enhance motor learning. If subjects are not successful,
the difficulty level will be decreased to the level previ-
ously achieved and vice versa.

Treadmill training (TT) (active control) group

The participants will walk on the treadmill without re-
ceiving the feedback from the VR. As in the TT+VR
group, their gait speed over-ground will be measured at
the beginning of each week of training. Progression and
the time spent with the trainer will follow the same
guidelines as the motor progression of the TT+VR group
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and will include increasing the duration of each of the
walking bouts and increasing walking speed.

Assessment protocol

A repeated measures design will be employed with
assessments performed 1 week pre-training, post-
training, and at 1 month and 6 months post intervention
(Table 1). A trained assessor in each centre, not involved
in training and blinded to group allocation, will perform
all assessments. Each participant will be assessed at
about the same time of day to avoid variability of per-
formance due to any circadian rhythms or medication
intake cycle.

Outcome measures

Primary outcome measures

The primary outcome measure of the study is fall rate.
Participants will keep a falls calendar for 6 months post
intervention. Consistent with the recommendations of
the Prevention of Falls Network Europe (ProFaNE), a fall
will be defined as “an unexpected event in which the
participant comes to rest on the ground, floor or lower
level”. Each time the participant falls he/she will tick the
date on the calendar. These calendars will be returned
to the researchers every two weeks in a pre-addressed
envelope or using an online electronic calendar. Periodic
contact by the research staff with each participant will
be used to maximize compliance with the fall calendars.

Secondary outcome measures

Gait Gait speed and gait variability under usual and DT
conditions and while negotiating physical obstacles will
be measured. Participants will be asked to walk in a
well-lit corridor under 3 conditions each of 1 minute: i)
walking in a comfortable speed, ii) walking while
subtracting 3 s from a predefined number (dual task), iii)
walking while negotiating two obstacles placed on the
floor at specific locations. The GaitRite mat, a sensorized
7 meter carpet (CIR Systems, Inc. Haverton MA), will
capture individual footfall data using embedded pressure
sensors. This is a valid and reliable method of assessing
the spatiotemporal parameters of gait in healthy older
adults and in patients with Parkinson’s disease [57].
Spatiotemporal gait characteristics (e.g., gait speed (m/s),
stride length (m), stride time (s), swing time (%), asym-
metry, and step width (cm)) will be determined. Over-
ground obstacle negotiation will be evaluated by placing
physical obstacles on the GaitRite. The distance between
the heel and the physical obstacle during the loading re-
sponse of the lead foot will be measured to assess clear-
ance and efficient obstacle negotiation.

Small, lightweight 3 axial accelerometers (APDM,
Oregon, USA) will be worn on both feet, both wrists
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Table 1 Assessment of outcome measures across the protocol
Category Outcome measures Pre Post One month Six month
training  training follow up follow up
Primary outcome Falls Fall frequency X
measure
Secondary outcome Gait Gait speed X X X X
measures L
Gait variability X X X X
2 MWT X X X X
Balance and mobility FSST X X X X
SPPB X X X X
mini-BEST X X X X
Community ambulation X X X
Cognitive function MoCA X
T™MT X X X X
Mindstreams tests of cogntive X X X
function
Verbal Fluency X X X X
Healthy Related Quality ~ SF-36 X X X X
of Life FES- X X X X
User satisfaction and User satisfaction Questionnaire X

views

2MWT- 2 Minute Walk Test, FSST-Four Square Step Test, SPPB- Short Physical Performance Battery, mini-BEST- The mini-Balance Evaluation Systems Test, MOCA-
Montreal Cognitive Assessment, TMT- Trail Making Test, FES-I- Fall Efficacy Scale International.

and on the lower back of the participants during all gait
measurements to quantify temporal measures such as
stride time and gait variability [8]. Gait variability (i.e.,
the inconsistency from one stride to the next) will be
determined by calculating the magnitude of stride-to
-stride fluctuations, normalized to each subject’s mean
stride time to define the Coefficient of Variation (Coeffi-
cient of Variation (CV = (standard deviation/mean) x
100)). Gait variability is a validated and reliable measure
reflecting fall risk that has been used with patients with
PD [58], older adults [24] and individuals with MCI [59].
Data will be collected at 240 HZ, saved onto a computer
and analysed using proprietary software.

Endurance will be assessed using the 2 Minute Walk
Test. This performance-based tool was originally
developed to assess exercise tolerance among individuals
with respiratory disease, but has shown high test retest
reliability and validity in assessment of gait endurance in
older adults [60] and in individuals with neurological
conditions [61,62].

Balance and mobility

The Four Square Step Test (FSST) requires subjects to
rapidly change direction while stepping forward, back-
ward, and sideway, over a low obstacle. Time to
complete the test is measured. The test has been
validated in older adults [63] with sensitivity of 85% and
specificity of 88-100% in predicting fall risk [63].

The Short Physical Performance Battery (SPPB)
consists of three types of physical maneuvers: the bal-
ance tests, the gait speed test, and the chair stand test.
The SPPB is highly reliable in older adults (ICC=0.83-
0.89) and has demonstrated a strong and consistent as-
sociation with health status measures, in spite of the
socioeconomic and cultural differences [64].

The mini-Balance Evaluation Systems Test (mini-
BESTest) is a performance based measure differentiating
balance problems into 6 underlying systems that may
be impaired: biomechanical, stability limits, postural
responses, anticipatory postural adjustments, sensory
orientation, dynamic balance during gait and cognitive
effects. The mini-BESTest has been shown to be a reli-
able (ICC=0.91) and valid measure of balance in
individuals with PD [65].

Community ambulation will be assessed using 1) the
Physical Activity Scale for the Elderly (PASE). This 27
item self report questionnaire assess habitual physical
activity in the home and community environment.
The questionnaire was designed to address cultural
differences, is available in multiple languages and has
been validated for older adults [66]; 2) a tri-axial acceler-
ometer (Axivity Ltd.) will be worn by the participants
for 7 days to quantify and monitor stepping and physical
activity. The device which records at 100Hz will be
mounted on the trunk (L5) and will derive the following
outcome measures: step count, postural transitions, sed-
entary time, percentage walking time, number and time
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of walking and sedentary bouts. Data will be obtained
one-week pre and post training.

Cognitive function

Cognitive function will be assessed using a computerized
neuropsychological test battery (Mindstreams®, NeuroTrax
Corp., NJ) [67]. The battery assesses different cognitive
domains including memory, attemtion, executive function,
visual spatial processing and a global cognitive composite.
The test battery generates age and education adjusted com-
posite indices of each cognitive domain on an IQ like scale,
with the score of 100 representing the estimated population
mean normalized for age and education level. The battery
has been validated in elderly adults, patients with mild cog-
nitive impairment, and patients with PD and has shown to
be useful in predicting falls [17,21,68-70].

In addition, we will also include standardized neuro-
psychological tests such as the Montreal Cognitive As-
sessment (MoCA); a rapid screening instrument for
global cognitive dysfunction. Different cognitive domains
are assessed (attention and concentration, executive
functions, memory, language, visuo-constructional skills,
conceptual thinking, calculations, and orientation). The
MOCA was found to be a valid instrument for cognitive
screening in MCI and PD [71,72]. In this study the
MoCA will be used as a descriptive measure.

The Trail Making Test (TMT) is a neuropsychological
test of visual attention and task switching. It consists of
two parts in which the subject is instructed to connect a
set of 25 dots as fast as possible while still maintaining
accuracy. The test provides information about visual
search speed, scanning, speed of processing, mental
flexibility, and executive functioning. The TMT is valid
and reliable for older adults [73,74] and has been previ-
ously associated with decreased gait speed, dual task ac-
tivity, and obstacle clearance [75].This is a well suited
outcome measure given the nature of the training.

Verbal Fluency is a test of working memory and lan-
guage in which participants have to say as many words
as possible from a category in a given time (usually 60 -
seconds). The test includes both semantic and phonemic
sections, is related to executive function, and has been
shown to be highly reliable and valid in the elderly
population [76].

Health-related quality of life

The SF-36 Health Survey is a generic self-report ques-
tionnaire designed to address health related quality of
life. The SF-36 includes one multi-item scale measuring
several constructs such as physical functioning; bodily
pain; social functioning; general mental health (psycho-
logical distress and psychological wellbeing); vitality
(energy/fatigue); and general health perceptions. Criter-
ion validity has been established but the scores could
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also be divided into two aggregate summary measures;
the Physical Component Summary (PCS) and the Men-
tal Component Summary (MCS). SF-36 has been
validated for older adults and patients with PD [77,78].

Fear of Falling will be evaluated using the Falls Efficacy
Scale-International. The FES-I has been significantly
associated with performance-based measures of balance
and mobility including gait speed and medial-lateral
sway. The scale has been shown to be sensitive to
change in older adults with and without cognitive
impairments [79,80].

User satisfaction and views

A questionnaire was developed by the researchers to as-
sess the satisfaction of the participants from the training
and to try and obtain subjective information regarding
the usability and efficacy of such an intervention in re-
ducing fear of falling, fall risk and frequency of falls.

Data analysis

Statistical analysis will be undertaken using SPSS version
19.0 (SPSS Corp, Chicago, IL, USA). All analysis will be
conducted on an intention-to-treat principle using all
randomized participants. Demographic characteristics
and baseline data will be summarized by descriptive
statistics using means, standard deviations and 95% con-
fidence intervals for continuous variables, median and
inter-quartile ranges for non-normal continuous or or-
dinal data and percentages for categorical data, and will
be evaluated for normalcy and homogeneity. For the pri-
mary outcome measure, fall rate will be analyzed by cal-
culating relative risk using negative bionomial regression
models that adjust for any potential confounders [81].
Fall rate and fall status (none faller, faller and multiple
faller) will then be compared within and between
groups. The secondary outcome measures will be
analyzed using repeated measures analysis of variance
(RMANOVA) to assess differences between groups
(intervention) and across time (follow up) for each group
of participants and then compared across groups. All
data will be adjusted for multiple comparisons.

Safety considerations and adverse events

All measurements are non-invasive and place the subject
at no risk other than those that normally may occur dur-
ing walking. For some of the patients, in particular those
who were not practicing any kind of physical exercise
prior to the intervention; there is a slight possibility that
subjects might feel some muscle soreness and fatigue
after training. To prevent excessive fatigue, subjects will
be encouraged to take breaks as needed throughout all
study procedures. In addition, the study was designed
for gradual increases in intensity which will help to in-
crease endurance and build muscle strength. Virtual
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reality may cause cyber sickness, a sensation similar to
motion sickness. This phenomenon is, however, very
rare and is related to highly immersive technology. The
proposed study will use a 2D projection to deliver the
VR simulation which decreases the risk of developing
cyber sickness.

Discussion

The aim of this study is to establish a practical and feas-
ible solution for enhancing mobility, preventing falls and
reducing disability among diverse groups of older adults
using a unique intervention that combines treadmill
training and virtual reality. What sets this project apart
from previous work in this field is that the study simul-
taneously addresses both motor and cognitive function
and their interactions that are key to falls using a large,
RCT study design, with an active comparison control for
assessing efficacy. Training is provided in a virtual envir-
onment that implicitly challenges, teaches, and enhances
visual scanning, planning, DT abilities and obstacle ne-
gotiation. The additional training goals that aim to en-
hance the cognitive aspects of mobility have not yet
been integrated into common practice and are one of
the important added features of the proposed interven-
tion. The unique training program takes onboard all
aspects of motor learning in that it probes retention as
well as transfer of training to real-world activities to
maximize resilient effects.

In a sense, this study also addresses the concepts and
concerns raised by Mahoney et al. [48]. The proposed
training is intensive, focuses on the key impairment and
becomes progressively more rigorous. The training
and protocol were designed to meet the needs of
a diverse group of older adults including those
with cognitive deficits and motor impairment due to
neurodegeneration. The intervention maximizes motor
learning in order to induce a behavioural change. More-
over, training in the computer-controlled virtual envir-
onment makes the therapy and protocol standardized
and reproducible.

The training protocol that is at the basis of this study
was developed based on recently established guidelines
on complex interventions in geriatrics [82-87]. The
proposed protocol is based on the needs of the three
groups who share a high risk of falls, in part due to cog-
nitive deficits. Focus groups and questionnaires have
been used to refine the intervention. Feasibility of using
such an intervention was assessed and pilot studies were
carried out. Further, the outcome measures are validated
and selected to evaluate the effects of the intervention
on falls and the motor cognitive interactions that con-
tribute to fall risk. This process enables us to confidently
advance into a large randomized controlled trial to
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explore efficacy in comparison to an active training con-
trol group.

Evidence on the efficacy of fall prevention in geriatrics
is not yet ideal and large randomized control trials are
needed. To promote motor learning required for safe
ambulation, fall prevention interventions should include
motor and cognitive aspects relating to falls, task-
specific and generalized training, with the intervention
centred around the user’s needs. The proposed interven-
tion set out to bridge all these needs. The knowledge
that will be generated by the results of this study are
likely to inform new models of care that combine tech-
nology, mobility training, and cognitive remediation to
reduce risk of falls and enhance mobility even in a
chronic disease profile.

Conclusions

This randomized controlled trial will demonstrate the
extent to which an intervention that combines treadmill
training augmented by virtual reality reduces fall risk,
improves mobility and enhances cognitive function in a
diverse group of older adults. In addition, the compari-
son to an active control group that undergoes treadmill
training without the added virtual reality will provide
evidence as to the added value of an intervention
that addresses motor cognitive interactions as an
integrated unit.
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