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Cystatin C, a novel indicator of renal function,
reflects severity of cerebral microbleeds
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Abstract

Background: Chronic renal insufficiency, diagnosed using creatinine based estimated glomerular filtration rate
(GFR) or microalbumiuria, has been associated with the presence of cerebral microbleeds (CMBs). Cystatin C has been
shown to be a more sensitive renal indicator than conventional renal markers. Under the assumption that similar
pathologic mechanisms of the small vessel exist in the brain and kidney, we hypothesized that the levels of cystatin C
may delineate the relationship between CMBs and renal insufficiency by detecting subclinical kidney dysfunction,
which may be underestimated by other indicators, and thus reflect the severity of CMBs more accurately.

Methods: Data was prospectively collected for 683 patients with ischemic stroke. The severity of CMBs was
categorized by the number of lesions. Patients were divided into quartiles of cystatin C, estimated GFR and
microalbumin/creatinine ratios. Ordinal logistic regression analysis was used to examine the association of each renal
indicator with CMBs.

Results: In models including both quartiles of cystatin C and estimated GFR, only cystatin C quartiles were significant
(the highest vs. the lowest, adjusted OR, 1.88; 95% CI 1.05-3.38; p = 0.03) in contrast to estimated GFR (the highest
vs. the lowest, adjusted OR, 1.28; 95% CI 0.38-4.36; p = 0.70). A model including both quartiles of cystatin C and
microalbumin/creatinine ratio also showed that only cystatin C quartiles was associated with CMBs (the highest vs. the
lowest, adjusted OR, 2.06; 95% CI 1.07-3.94; p = 0.03). These associations were also observed in the logistic models
using log transformed-cystatin C, albumin/creatinine ratio and estimated GFR as continuous variables. Cystatin C was
a significant indicator of deep or infratenorial CMBs, but not strictly lobar CMBs. In addition, cystatin C showed the
greatest significance in c-statistics for the presence of CMBs (AUC = 0.73 ± 0.03; 95% CI 0.66-0.76; p = 0.02).

Conclusion: Cystatin C may be the most sensitive indicator of CMB severity among the renal disease markers.
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Background
Cerebral microbleeds (CMBs) are discrete or isolated,
punctate, hypo-intense lesions, smaller than 5 mm on
T2- weighted MRI [1,2]. They are clinically silent but are
strongly associated with advanced microvascular ischemic
disease and are a marker for increased risk of future
intracranial hemorrhagic events [3,4]. CMBs are a reflection
of generalized microangiopathy in cerebral small vessel
disease [5,6]. Small vessel disease in the brain and kidneys
are closely related through anatomical and vasoregulatory
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similarities, including high perfusion pressure, low
vascular resistance and the critical role of nitric oxide
in maintaining the microcirculation of the glomerulus
or cerebral perforating arterioles [7]. Recent studies
also reported that a close relationship exists between
renal dysfunction and the presence of CMBs in stroke
patients [8,9]. With this context in mind, an appropriate
indicator may exist that reflects the severity of the
small vessel pathologies of both the brain and the
kidneys. Most of the previous studies defined renal
insufficiency based on the conventional, creatinine-based
renal indicators, estimated glomerular filtration rate
(GFR) or microalbuminuria [10,11]. Cystatin C, a cysteine
proteinase inhibitor, has been proposed to be an alternative
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marker for renal function. It is abundant in the serum and
less dependent on extra renal factors compared to
creatinine [12,13]. It also has a greater sensitivity for
revealing mild renal dysfunction even in presumably
healthy individuals compared to conventional renal
indicators [14,15]. In addition, cystatin C levels have been
shown to correlate with silent cerebral infarctions and
white matter lesions [16,17]. However the association
between the cystatin C and CMB severity has not
been reported. We examined whether cystatin C is more
strongly associated with CMBs than the estimated GFR or
microalbumin/creatinine ratio.

Methods
Patients
Data was prospectively collected for 714 consecutive
Korean patients who were admitted to a tertiary medical
center with an ischemic stroke within 7 days of onset
between January 2008 and May 2011. The enrolled
population was ethnically homogeneous. We excluded
patients whose GRE MR images were not suitable for
evaluating CMBs as a result of motion or susceptibility
artifacts (n = 31). A total of 683 patients were included for
analysis. This study was approved by Seoul National
University Hospital institutional review board.

Laboratory and clinical information
Serum cystatin C was measured from blood samples drawn
upon admission with the use of a BN II nephelometer
(Siemens Healthcare Diagnostics, Inc) with a particle-
enhanced immunonephelometric assay (N Latex cystatin
C, Siemens Healthcare Diagnostics, Inc) [18]. Serum
creatinine was measured by the rate Jaffe method [19]. The
intra-individual coefficient of variation was approximately
2%. The estimated GFR was calculated by the abbreviated
(4-variable) Modification of Diet and Renal Disease Study
formula as follows: for creatinine in umol/L, estimated
GFR = (serum creatinine/88.4)–1.154 x (age–0.203) x (0.742, if
female) [20]. The urine microalbumin/creatinine ratio was
measured by a single spot sample at admission using
nephelometry and was reported as micrograms of
albumin per milligram creatinine [21]. All patients had
serum panels including hemoglobin A1c, lipid parameters,
and hemoglobin drawn early in the morning after fasting
overnight. We collected baseline demographic and clinical
information for all study participants, including age, sex,
use of antithrombotic or anticoagulant medication and
presence of cardiovascular risk factors such as hypertension
(determined by the previous use of antihypertensive
medication, a systolic blood pressure > 140 mm Hg or
a diastolic blood pressure > 90 mm Hg at discharge),
diabetes (determined by the previous use of antidiabetic
medication, a fasting blood glucose > 7.0 mmol/L or a
postprandial blood glucose after 2 hours >11.1 mmol/L
at discharge), dyslipidemia (determined by the previ-
ous use of lipid-lowering medication or a total choles-
terol > 6.2 mmol/L), heart disease (defined as patients
with previously diagnosed atrial fibrillation, myocardial
infarction, valvular heart disease or cardiomyopathy), and
previous stroke. We classified the stroke mechanism of
the patients based on the Trial of ORG 10172 in Acute
Stroke Treatment (TOAST) criteria [22].

Imaging information
MRI was performed using a 1.5 T superconducting magnet
system (GE Medical System, Milwaukee, WI). Gradient
Echo (GRE) T2*-weighted magnetic resonance imaging
(MRI) was performed as part of a routine protocol, and the
images were obtained in the axial plane with the following
parameters: repetition time/echo time = 500/15 msec; flip
angle = 26°; matrix size = 256 _ 192; slice thickness = 6 mm;
and gap width = 2 mm. Standard T2-weighted and fluid
attenuated inversion recovery (FLAIR) sequences were also
obtained. CMBs were defined as a well-defined focal area of
low signal on the GRE MRI less than 10 mm in diameter,
and they were counted throughout the whole brain by the
two trained neurologists. All GRE scans of every patient
were performed upon diagnosis of the ischemic stroke and
were examined twice for intra-rater variability (k = 0.93,
p < 0.01). The interval duration was four weeks. The CMB
grades of two raters were compared to each other to
determine inter-rater variability (k = 0.95, p < 0.01) [23].
CMB mimicking lesions (e.g. vessels, mineralization, air-
bone interfaces and partial volume artifacts at the edges of
the cerebellum) were excluded. The lesions were stratified
by location: the corticosubcortical area (cortex, subcortex
and white matter), deep gray mater (basal ganglia and
thalamus) and infratentorial area (brain stem and cerebel-
lum) [24]. We divided the CMBs into strictly lobar and
deep or infratentorial (with or without lobar CMBs)
groups according to location. Persons who had more than
one CMB restricted to the lobar location were classified as
“strictly lobar CMBs” patients. CMBs in a deep or infra-
tentorial location with or without lobar CMBs were classi-
fied as “deep or infratentorial CMBs” [25]. We graded the
severity of the CMBs based on the total number of CMBs:
normal = no CMBs; mild = 1 to 4; moderate = 5 to 9;
and severe ≧ 10 [24]. White matter lesions seen on
T2*-weighted or FLAIR images were defined according to
the criteria of Fazekas et al.: normal, being absent of white
matter lesions; punctuate, showing multiple periventricu-
lar hyperintense punctate lesions; early confluent, showing
early confluence of lesion foci; and confluent, showing
confluence of multiple areas [26].

Statistical analysis
The distributions of demographic, clinical, laboratory
and stroke data according to cystatin C levels were
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determined using the chi-square test for trends in
proportion or by one-way analysis of variance with
the Bonferroni method for post hoc analysis and the
Kruskal-Wallis test as appropriate. We used the chi
square test for trend to compare the distributions of
grades of CMBs according to the quartiles of cystatin
C. Multi-colinearity between the variables were assessed by
the Pearson correlation analysis (cystatin C and estimated
GFR, r = 0.43, p < 0.01; cystatin C and microalbumin/
creatinine ratio, r = 0.23, p < 0.01; cystatin C and creatinine,
r = 0.52, p < 0.01; estimated GFR and microalbumin/
creatinine, r = 0.81, p < 0.01).
To examine the association between CMB grades and

cystatin C according to groups with lacunar or non lacunar
stroke, we conducted partial correlation analyses, adjusted
for age and sex. We compared each correlation coeffient
using Fisher’s Z transformation. Proportional odds models
for logistic regression analyses were performed on the
quartiles of cystain C, microalbumin/creatinine ratio
and estimated GFR. First, the logistic model was conducted
using the quartiles of cystatin C, estimated GFR or
microalbumin/creatinine ratio separately. The second
model included two of the three indicators. Among
the three renal indicators, the multicolinearlity of the
estimated GFR and the microalbumin/creatine ratio was
0.81, more than 0.67 which may lead to spurious results in
logistic regression analysis [27]. Thus, we analyzed the
estimated GFR and microalbumin/creatine using the
individual logistic regression analysis with cystatin C.
The third ordinal logistic regression analyses were
also performed on the standard deviation of the log-
transformed values of cystatin C or estimated GFR and
microalbumin/creatinine ratio. We also conducted the
fourth ordinal logistic regression analyses according
to the location of CMBs (strictly vs. deep or infraten-
rorial CMBs).
These logistic models were adjusted for clinical

confounders including age, gender, total cholesterol,
diabetes, hypertension, dyslipidemia, previous heart disease,
smoking, previous anti thrombotic or anticoagulant
use, and white matter lesions. The proportional odds
assumption was assessed by the parallel line test.
Significance was set at a 2-tailed p < 0.05 level. We
assessed the improvement in discrimination by comparing
the area under the receiver operator characteristic
curves (AUC) in models with and without each renal
indicator. The ROC curve was generated to compare the
relationship between each renal indicator and the presence
of CMBs using multivariable logistic regression that
included variables of age, gender, diabetes, dyslipid-
emia, hypertension, smoking, total cholesterol, anti
thrombotic or anticoagulant use, and white matter le-
sion volume with or without cystatin C, microalbu-
miuria, and estimated GFR. We presented the values
in frequencies (percentages), means ± SDs, or medians
(interquartile ranges (IQR)) as appropriate. All the
statistical analyses were performed using SPSS 17.0.1
(SPSS Inc, Chicago, IL) and STATA version 7.0
(STATA Corp, College Station, Tex).

Results
Baseline characteristics
Among a total of 683 stroke patients, 443 (63.4%) were
male. The average age was 66.6 ± 12.3 years (range of
21 to 96 years). The number of patients with small
vessel occlusions was 145 (21.2%), and the number of
patients with large artery thrombosis was 196 (28.7%).
Cardioembolism was determined as the cause of
stroke in 136 (19.9%) patients, 96 (14.1%) patients
were classified as having a stroke of other determined
etiology according to the TOAST classification, and
110 (16.1%) patients had a stroke of unknown etiology.
Three hundred and forty-three patients had hypertension
(50.2%), 181 patients (26.5%) had diabetes, 200 patients
(29.3%) had dyslipidemia, and 151 patients (22.1%) had a
history of heart disease. Eighty eight patients were taking
Aspirin (ATC classification, B01AC06). Eight patients
were prescribed other anti platelet medications including
clopidogrel (B01AC04), ticlopidine (B01AC05), and
cilostazole (B01AC23). Thirty-four patients were on
warfarin (BO1AA03).
The cystatin C concentrations ranged from 27.0 to

603.7 nmol/L (median = 54.7, inter quartile range
[IQR] = 47.2 to 66.7). The estimated GFR ranged from
3.5 to 249.5 mL/min/1.73 m2 (mean ± SD = 80.5 ± 26.0).
The albumin/creatinine ratio was from 3.0 to 190.7 μg/mg
(median = 24.0; IQR = 11.0, 100.75). The subjects with
higher grades of CMBs were more likely to have a
previous history of stroke, higher cystatin C levels and
more confluent white matter lesions. Initial NIHSS scores
or history of antithrombotic medication use were not
different among the groups (Table 1). Fifty-four patients
were labeled as “strictly lobar CMBs” patients, and 135
patients were classified as the “deep or infratentorial
CMBs” group.
Interestingly, the association between the CMB grades

and cystatin C in the patients with lacunar stroke
showed a stronger correlation than that in the patients
with non lacunar stroke. (r = 0.26 at p < 0.01 vs. r = 0.09
at p < 0.05; Z score = 1.72 at p = 0.04).

The association between cystatin C, estimated GFR and
CMBs
Patients were divided into four groups based on the quar-
tile values of serum cystatin C (Q1 < 47.2, Q2 = 47.2-54.7,
Q3 = 54.7-66.7, and Q4 > 66.7 nmol/L), or the quartiles of
estimated GFR (Q4 > 66.1, Q3 = 66.1-78.8, Q2 = 78.8-94.7,
and Q1 > 94.7 ml/min/1.73 m2). The proportion of



Table 1 Baseline profiles

Variables Grade

Normal Mild Moderate Severe P

No. of CMBs 0 1-4 5-9 ≧10

No. of Cases, n (%) 494(72.3) 141(20.6) 24(3.5) 24(3.5)

Demographic data

Age, mean ± SD 65.7 ± 12.4 69.1 ± 10.9 67.2 ± 13.8 66.6 ± 12.2 0.02†

Male, n (%) 311(63.0) 90(63.8) 15(62.5) 17(70.8) 0.89**

Risk factors, n (%)

Hypertension 229(46.4) 85(60.3) 14(58.3) 15(62.5) 0.01**

Diabetes 125(25.3) 46(32.6) 4(16.7) 6(25.0) 0.23**

Dyslipidemia 152(30.8) 40(28.4) 5(20.8) 3(12.5) 0.20**

Smoking 181(36.6) 43(30.5) 3(12.5) 5(20.8) 0.08**

History of heart disease 105(21.3) 37(26.2) 4(16.7) 5(20.8) 0.56**

History of previous stroke 83(16.8) 39(27.7) 9(37.5) 8(33.3) <0.01**

Initial NIHSS* score 3[1,7] 3[1,5] 4[2,6] 3[1,5] 0.63‡

Stroke information, n (%)

Small vessel occlusion 88(17.8) 37(26.2) 11(45.8) 9(37.5) <0.02

Large artery thrombosis 153(31.0) 35(24.8) 3(12.5) 5(20.8)

Cardio embolism 87(19.6) 33(23.4) 3(12.5) 3(12.5)

Cryptogenic 79(16.0) 21(14.9) 5(20.8) 5(20.8)

Other etiology 79(15.6) 15(10.6) 2(8.3) 2(8.3)

Laboratory data

Hemoglobin (g/dL) 13.6 ± 2.0 13.3 ± 2.0 13.8 ± 2.1 18.6 ± 5.1 <0.01†

Total Cholesterol (mmol/L) 4.5 ± 1.1 4.3 ± 1.1 4.6 ± 0.8 4.6 ± 0.7 0.24†

White blood cell count (106/μL) 7.8 ± 2.8 7.7 ± 3.0 7.3 ± 2.0 6.8 ± 2.1 0.28

Cystatin C, 53.9 60.7 61.0 64.7 0.01‡

median[IQR] (nmol/L) [46.4,63.7] [47.9,74.9] [51.9,68.9] [54.9,82.2]

Creatinine (μmol/L) 99.3 ± 69.1 114.5 ± 83.7 92.3 ± 20.3 148.0 ± 52.9 0.01†

Estimated GFR*, 82.2 ± 25.7 74.1 ± 26.4 80.8 ± 26.5 75.2 ± 25.4 <0.01†

mean ± SD (ml/min/1.73 m2)

Microalbumin/Creatinine, 0.02 0.03 0.01 0.03 0.21‡

median[IQR] (μg/mg) [0.01,0.08] [0.01,0.18] [0.01,0.10] [0.01,0.20]

Severity of WML*, n (%)

Normal 207(42.2) 33(23.6) 1(4.2) 0(0) <0.01**

Punctate 131(26.7) 34(24.3) 1(4.2) 0(0)

Early confluent 46(9.4) 21(15.0) 3(12.5) 2(8.3)

Confluent 107(21.8) 52(37.1) 19(79.2) 22(11.0)

Anti thrombotics, n (%) 57(11.5) 28(19.9) 6(25.0) 5(20.8) 0.91**

Aspirin 49(9.9) 28(19.9) 6(25.0) 5920.8)

Other anti thrombotics 8(1.6) 0 0 0

Anticoagulant, warfarin, n (%) 18(3.6) 11(7.8) 3(12.5) 2(8.3) 0.31**

*NIHSS; National Institute of Health Stroke Scale, GFR;glomerular filtration rate, WML; white matter lesions.
p-values were calculated by the Chi-square test**, one-way analysis of variance with Bonferroni method†and Kruskal-Wallis test‡.
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patients with a moderate to severe number of CMBs
gradually increased as the cystatin C levels increased
(p for trend <0.01).
Estimated GFR and cystatin C levels were associated

with CMBs using an independent logistic model.
Compared to patients with the lowest levels of cysta-
tin C, patients with high cystatin C had a more
significant association with the presence of CMBs.
After adjusting for confounders, the cystatin C levels
(adjusted OR, 1.90) remained significant in individual
models. The estimated GFR analysis failed to show
significance (adjusted OR 1.82). In a second model
including both estimated GFR and cystatin C levels,
cystatin C was independently associated with an
increased risk of CMBs. Those with the highest cystatin C
levels had a 1.88 fold higher risk of severe CMBs
(95% confidential interval [CI], 1.05-3.38; p = 0.03).
The estimated GFR failed to show a significant asso-
ciation with CMB severity (adjusted OR, 1.28; 95%
CI, 0.38-4.36; p = 0.70). Age, hypertension, smoking
history and white matter lesion volume showed a
significant association with CMB severity after adjust-
ing for confounders (Table 2). After using clinical
categories of estimated GFR based on chronic kidney
disease stage, only cystatin C remained significantly
associated with the CMBs (see Additional file 1).
These results were reproduced (see Additional file 2)
after excluding patients with renal failure (n = 13).
Further, we conducted analyses using the newly de-
veloped estimated GFR equation based on both cre-
atinine and cystatin C, and found that the estimated
GFR using cystatin C or based on both creatinine
and cystatin C were better predictors of CMB sever-
ity than the estimated GFR based creatinine alone.
(see Additional file 3) [28].

The association between cystatin C, microalbuminuria
and CMBs
We also used additional multivariable models to exam-
ine the association between cystatin C, microalbumin/
creatinine ratio and CMBs. Crude and adjusted ORs for
the severity of CMBs are presented in Table 3. The
higher quartiles of microalbuminuria were not associated
with CMBs, as compared to the lowest quartile. The
crude ORs of the microalbumin/creatinine ratios
showed an increasing, but statistically insignificant
trend (ORs of Q4, Q3, Q2, 1.34, 1.28, 0.86, respectively;
p for trend = 0.20). After adjusting for other variables,
cystatin C (OR, 2.06; 95% CI, 1.07-3.94; p = 0.03)
remained as an independent predictor of the severity
of CMBs, in contrast to microalbumiuria levels (OR,
1.34, 95% CI, 0.71-1.43, p = 0.36).
In Table 4, log transformed cystatin C levels showed

an association with CMBs, but other renal indicators did
not. These analyses were repeated (see Additional file 4)
excluding the patients with renal failure (n = 13).

The association between cystatin C and the location of
CMBs
When we divided the CMB patients into strictly lobar
and deep or infratentorial (with or without lobar CMBs)
groups, the association between cystatin C quartiles and
CMBs was significant for the deep or infratentorial CMB
group but not for the strictly lobar CMB group (Table 5).
The adjusted OR of the fourth quartile of cystatin C
for the deep of infratentorial CMB grades was 6.67
(95% CI, 1.48–2.64; p = 0.01). In addition, only cystatin C
remained a significant indicator of CMBs grade in the deep
or infratentorial CMB group among the three indicators
(see Additional file 5 and Additional file 6).

The predictive value of cystatin C, microalbuminuria, and
estimated GFR for CMBs
The AUC of the logistic regression model calculated
without any renal indicators was 0.66 ± 0.03 (95% CI,
0.59-0.70; p = 0.02). The addition of cystatin C increased
the AUC (0.73 ± 0.03; 95% CI, 0.66-0.76; p = 0.02; differ-
ence = 0.07; 95% CI, 0.01-0.12; p < 0.01).
In contrast, adding the estimated GFR (0.68 ± 0.02; 95%

CI, 0.57-0.69; p = 0.02) or microalbumiuria (0.62 ± 0.03;
95% CI, 0.56-0.64; p = 0.02) did not show a profound
incremental change compared to the model without
the indicators. The AUC of the logistic regression
model including all the indicators did not show a dif-
ference between that of the model adding the cystatin
C alone (difference < 0.01; 95% CI, 0.00-0.02; p = 0.86).
Taken together, the levels of cystatin C appear to
have the greatest discriminating power among the
three indictors (Figure 1).

Discussion
We found that higher cystatin C concentrations showed a
greater association with severe CMB pathology especially
in patients of the highest quartile. One standard deviation
increase in the log-transformation of cystatin C levels
also showed a closer relationship with severe CMBs.
The estimated GFR and microalbumin/creatinine ratio
failed to show a significant association with the number of
CMBs. Moreover, the association was sustained in patients
with deep or infratentorial CMBs but not among those
with strictly lobar CMBs. In addition, the correlation
between the CMB grades and cystatin C in patients
with lacunar stroke showed a stronger association
than that in patients with non lacunar stroke. Cystatin C
was the most powerful indicator for CMBs among the
three renal markers. Our results corroborate previous
studies showing that renal dysfunction is independently
associated with CMBs [8,29]. Furthermore, we showed



Table 2 Ordinal logistic regression analysis for the association of renal indicators and cerebral microbleeds

Model1† Model2‡

Variables N Unadjusted OR 95% CI P Adjusted OR 95% CI p Adjusted OR 95% CI p Adjusted OR 95% CI p

Age 1.02 1.01-1.04 <0.01 1.02 1.02-1.04 <0.01 1.01 1.00-1.03 0.07 1.02 1.01-1.04 0.02

Male 1.08 0.65-1.31 0.66 1.36 0.73-1.36 0.76 1.36 0.91-2.03 0.13 1.31 0.87-1.31 0.20

Hypertension 1.74 1.24-2.44 <0.01 1.43 1.05-2.18 0.03 1.51 1.05-2.19 0.03 1.53 1.06-2.23 0.02

Diabetes 1.19 0.82-1.72 0.36 0.85 0.57-1.28 0.45 1.23 0.74-1.68 0.59 1.18 0.78-1.78 0.44

Dyslipidemia 1.35 0.51-1.08 0.12 0.68 0.45-1.02 0.06 1.22 1.00-2.19 0.05 1.49 1.00-2.22 0.05

Heart disease 1.15 0.70-1.70 0.48 1.05 0.66-1.66 0.82 1.05 0.70-1.60 0.80 1.00 0.65-1.52 1.00

Smoking 1.62 1.12-2.34 0.01 1.35 0.86-2.13 0.05 1.91 1.25-2.92 <0.01 1.52 1.01-2.28 <0.01

Anticoagulant or thrombotics 2.26 1.53-2,26 <0.01 1.72 1.08-2.72 0.02 1.51 1.00-2.29 0.05 1.48 0.98-2.25 0.07

Total cholesterol 1.07 0.91-1.26 0.42 1.01 0.81-1.01 0.43 1.01 0.85-1.21 0.89 1.03 0.87-1.23 0.72

WML*

Confluent 6.24 3.96-9.83 <0.01 4.08 2.37-7.02 <0.01 4.82 2.98-7.80 <0.01 4.56 2.80-7.41 <0.01

Early confluent 3.92 2.47-6.22 <0.01 2.66 1.60-4.41 <0.01 2.72 1.74-4.25 <0.01 2.62 1.67-4.12 <0.01

Puctate 1.82 1.06-3.14 0.03 1.31 0.72-2.39 0.38 1.57 0.91-2.70 0.11 1.45 0.83-2.51 0.19

Normal ref ref ref

p for trend <0.01 <0.01 <0.01

Quartiles of cystatin C

Q4(≥66.7) 168 2.19 1.40-3.40 <0.01 1.90 1.07-3.37 0.02 1.88 1.05-3.38 0.03

Q3(54.7-66.7) 173 1.57 0.92-2.46 0.10 1.31 0.45-1.28 0.35 1.24 0.74-2.08 0.42

Q2(47.2-54.7) 162 0.98 0.61-1.58 0.16 1.54 0.85-2.80 0.16 0.83 0.49-1.41 0.49

Q1(≤47.2), ref 180

p for trend <0.01 <0.01 <0.01

Quartiles of eGFR*

Q4(≤66.1) 171 2.26 1.42-3.62 <0.01 1.82 0.38-4.00 0.72 1.28 0.38-4.36 0.70

Q3(66.1-78.8) 175 1.23 0.50-1.33 0.41 1.44 0.95-3.99 0.67 0.78 0.35-1.70 0.93

Q2(78.8-94.7) 164 1.18 0.50-1.40 0.51 1.33 0.70-2.11 0.50 1.11 0.61-2.03 1.11

Q1(≥94.7),ref 173

p for trend <0.01 <0.01 0.51

*WML; white matter lesions, eGFR; estimated glomerular filtration rate.
†Model 1: quartiles of estimated GFR and cystatin C were analyzed separately in the individual ordinal logistic regression model.
‡Model 2: quartiles of estimated GFR and cystatin C were analyzed together in the same logistic regression model.
Model 1 and model 2 were adjusted for covariates; age, sex, total cholesterol, diabetes, hypertension, dyslipidemia, previous heart disease, smoking, previous anti thrombotic or anticoagulant use, and white
matter lesions.
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Table 3 Ordinal logistic regression analysis for the association of renal indicators and cerebral microbleeds

Model1† Model2‡

Variables N Unadjusted OR 95% CI P Adjusted OR 95% CI p Adjusted OR 95% CI p Adjusted OR 95% CI p

Age, per year 1.02 1.01-1.04 <0.01 1.02 1.02-1.04 <0.01 1.02 1.00-1.04 0.06 1.01 1.01-1.05 0.01

Male 1.08 0.65-1.31 0.66 1.36 0.73-1.36 0.76 1.39 0.87-2.22 0.17 1.31 0.86-2.12 0.27

Hypertension 1.74 1.24-2.44 <0.01 1.43 1.05-2.18 0.03 1.77 1.14-2.78 <0.01 1.83 1.17-2.86 <0.01

Diabetes 1.19 0.82-1.72 0.36 0.85 0.57-1.28 0.45 1.04 0.64-1.68 0.88 1.10 0.68-1.79 0.70

Dyslipidemia 1.35 0.51-1.08 0.12 0.68 0.45-1.02 0.06 1.72 1.08-2.73 0.02 1.76 1.10-2.82 0.02

Heart disease 1.15 0.70-1.70 0.48 1.05 0.66-1.66 0.82 1.03 0.63-1.67 0.91 1.06 0.65-1.74 0.81

Smoking 1.62 1.12-2.34 0.01 1.35 0.86-2.13 0.05 1.22 0.76-1.96 0.41 1.26 0.78-2.04 0.35

Anticoagulant or thrombotics 2.26 1.53-2,26 <0.01 1.72 1.08-2.72 0.02 1.67 1.01-2.76 0.05 1.63 0.98-2.70 0.26

Total cholesterol, per mmol/L 1.07 0.91-1.26 0.42 1.01 0.81-1.01 0.43 1.01 0.83-1.23 0.93 1.05 0.86-1.28 0.27

WML*

Confluent 6.24 3.96-9.83 <0.01 4.08 2.37-7.02 <0.01 4.87 2.78-8.52 <0.01 4.56 2.59-8.03 <0.01

Early confluent 3.92 2.47-6.22 <0.01 2.66 1.60-4.41 <0.01 2.67 1.57-4.53 <0.01 2.54 1.49-4.34 <0.01

Puctate 1.82 1.06-3.14 0.03 1.31 0.72-2.39 0.38 1.60 0.85-3.01 0.15 .1.49 0.79-2.83 0.22

Normal,ref

p for trend <0.01 <0.01 <0.01

Quartiles of cystatin C

Q4(≥66.7) 168 2.19 1.40-3.40 <0.01 1.90 1.07-3.37 0.02 2.06 1.07-3.94 0.03

Q3(54.7-66.7) 173 1.57 0.92-2.46 0.10 1.31 0.45-1.28 0.35 2.20 1.18-4.09 0.01

Q2(47.2-54.7) 162 0.98 0.61-1.58 0.16 1.54 0.85-2.80 0.16 1.36 0.78-2.36 0.27

Q1(≤47.2), ref 180

p for trend <0.01 <0.01 <0.01

Quartiles of Alb/Cr*,

Q4(≥100.8) 160 1.52 0.87-2.66 0.14 1.61 0.88-2.95 0.13 1.34 0.71-1.43 0.36

Q3(24.0-.100.8) 136 1.20 0.70-2.06 0.51 1.32 0.75-2.29 0.33 1.28 0.73-1.48 0.38

Q2(11.0-24.0) 217 0.97 0.52-1.80 0.91 1.09 0.59-2.03 0.78 0.86 0.53-1.61 0.76

Q1(≤11.0),ref 170

p for trend 0.10 0.16 0.20

*WML;white matter lesions, Alb/Cr; albumin/creatinine ratio.
†Model 1: quartiles of microalbumin/creatinine and cystatin C were analyzed separately in the individual ordinal logistic regression model.
‡Model 2: quartiles of microalbumin/creatinine and cystatin C were analyzed together in the same logistic regression model.
Model 1 and model 2 were adjusted for covariates; age, sex, total cholesterol, diabetes, hypertension, dyslipidemia, previous heart disease, smoking, previous anti thrombotic or anticoagulant use, and white
matter lesions.
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Table 4 logistic regression analysis for the association of renal indicators and cerebral microbleeds

Model 1† Model 2‡

Variables Unadjusted
OR

95% CI p Adjusted
OR

95% CI p Adjusted
OR

95% CI p Adjusted
OR

p

Log-Cystatin C, per SD* 1.37 1.18-1.59 <0.01 1.30 1.05-1.69 0.02 1.27 1.04-1.61 0.02 1.73 1.82-3.08 <0.01

Log-albumin/Creatinine, per SD 0.90 0.81-1.01 0.08 0.90 0.82-1.03 0.93 1.00 0.87-1.14 0.96

Estimated GFR*, per SD 1.01 0.64-0.91 <0.01 1.01 0.82-1.30 0.80 1.01 0.80-1.27 0.86
*SD; standard deviation, GFR; glomerular filtration rate.
†Model 1: Estimated GFR and log transformed cystatin C, and microalbumin/creatinine ratios were analyzed separately in an individual ordinal logistic model.
‡Model 2: the first ordinal logistic regression analysis was performed using log transformed value of cystatin C and estimated GFR together. The second model
used log transformed values of cystatin C and microalbumin/creatinine ratios as variables. All models were adjusted for covariates: age, sex, total cholesterol,
diabetes, hypertension, dyslipidemia, previous heart disease, smoking, previous anti thrombotic or anticoagulant use, and white matter lesions.
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that cystatin C may reflect the severity of CMBs in a dose
dependent manner more accurately than other renal
indicators.
Cystatin C concentration is less affected by extrarenal

factors compared to creatinine [12]. It has been used as
a predictor of coronary heart disease, heart failure, and
all causes of mortality in various populations by the
detection of subclinical renal insufficiency [30-32]. Its
prognostic value for adverse outcomes was independent
of conventional renal parameters [31-33]. In studies of small
arteriopathies, cystatin C also showed a strong association
with white mater lesions or silent brain infarctions
compared to estimated GFR [16,17]. Our results seem
to support the finding of these previous studies.
White matter lesions were significantly associated with

CMBs in this study. Recent studies suggested CMBs may
be one of pathologic continuum with white matter lesions
and lacunar infarcts [34]. Spontaneous hypertensive rat
model reported that the initial early, silent damage to the
Table 5 Ordinal logistic regression analyses according to the

Variables N Unadjusted OR 9

Strictly lobar CMBs 54

Quartiles of cystatin C

Q4(≥66.7) 23 6.14 0.0

Q3(54.7-66.7) 14 4.84 0.0

Q2(47.2-54.7) 5 1.54 0.0

Q1(≤47.2), ref 12

p for trend

Deep or infratentorial CMBs 135

Quartiles of cystatin C

Q4(≥66.7) 45 5.00 1.3

Q3(54.7-66.7) 39 1.50 0.5

Q2(47.2-54.7) 23 1.00 0.4

Q1(≤47.2),ref 28

p for trend

Adjusted for the covariates: age, sex, total cholesterol, diabetes, hypertension, dyslip
anticoagulant use and white matter lesions.
blood brain barrier initiates a pathological cascade-via
microbleeds- that leads to the formation of obstructive
thrombi, which cause white matter lesions or lacunar in-
farcts [35]. In this context, all these lesions might be based
on the fragility of vasculature irrespective of their different
radiologic findings [36].
In addition, hypertension was significantly associated

with the severity of CMBs. Large prospective cohort stud-
ies have also reported that hypertension is a risk factor for
CMBs [25]. In particular, CMBs in the corticosubcortical
junction or infratentorial lesions result from hypertensive
or atherosclerotic microangiopathy. Hypertensive burden
strongly affect the microvasculature of both the brain and
kidneys [37]. In support of this, modulators of the renin
angiotensin system have been shown to be effective in
preventing proteinuria and also the aggravation of cerebral
small vessel disease [38,39]. Optimal blood pressure
control is regarded as the foremost determinant of
cerebrovascular and renal protection [40].
location of CMBs

5% CI P Adjusted OR 95% CI P

1-1.78 0.13 5.23 0.30-8.98 0.13

1-3.80 0.29 2.82 0.46-1.69 0.11

3-11.2 0.76 1.37 0.05-3.77 0.85

0.10 0.50

0-1.91 0.02 6.27 1.48-2.64 0.01

1-4.34 0.46 2.48 0.76-8.02 0.13

0-2.28 0.93 1.10 0.43-2.78 0.83

0.02 0.02

idemia, previous heart disease, smoking, previous anti thrombotic or



Figure 1 The predictive value of each renal indicator for the presence of CMBs.
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The estimated GFR failed to show an association after
adjusting for the white matter lesions. The white matter
lesion volume may play a role as a potent confounder
for CMBs in this study [41]. Microalbuminuria was not
associated with CMBs in our results. A previous study
reported that patients with a proteinuria grade of one or
more had at least a twofold increased risk of having
CMBs compared to patients with trace proteinuria or
none at all [29]. This difference might be explained by
age and different ethnicities which may affect the urine
albumin concentrations. Our group was relatively younger
than those of the previous study, and different levels
of albumin secretion according to ethnicity may have
contributed to the small proportion of patients with
overt proteinuria [42].
The association between cystatin C levels and CMBs

could be understood by the manifestation of microvascular
damage of two end organs, the brain and the kidneys.
Both vascular beds are exposed to high pulsatile pressure
on account of upstream vasodilation. They are passively
perfused at a high flow rate throughout systolic and
diastolic periods, and by contrast, their smallest arteries
have low resistance [7,19,37]. Thus, they are exposed
to high shear stress, and are susceptible to hypertensive
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insults and variations in blood pressure [43]. CMBs are
indicators of previous occurrences of blood extravasation
from advanced fibro-hyalinized arterioles. Chronic kidney
disease is also characterized by glomerular endothelial
dysfunction affected by lipohyalinosis [44,45]. In addition,
nitric oxide plays an important role in the proliferation of
smooth muscle and maintenance of constant blood
flow. Decreased nitric oxide levels in the degenerated
endothelium of microangiopathic vessels was found to
increase pro-inflammatory and pro-thrombotic properties,
and eventually lead to a loss of blood flow auto-regulation
[46]. Finally, sodium retention, activation of the renin-
angiotensin system, and elevated catecholamine levels lead
to increased blood pressure [47]. These effects might
partially contribute to the occurrence of CMBs in renal
insufficiency. Considering the similar pathomechanisms in
small vessel diseases of the brain and kidney, cystatin C, a
more reliable marker of renal function, might represent
the degree of severity of CMBs more accurately [17].
Growing evidence suggested that CMBs are an indicator

of a bleeding prone brain. CMBs are closely associated
with the occurrence and outcome of hemorrhagic
transformation after thrombolysis in ischemic stroke
[48]. Their location and numbers are potent predictors for
the outcome of spontaneous or antithrombotic related
intracranial hemorrhages [3,49]. The association between
renal indicators and CMBs may explain in part why these
trends were more profound in patients with chronic
kidney disease [50].
There are some caveats to this study. First, this is a

cross-sectional study and no causal relationship between
CMBs and cystatin C can be evaluated. Second, cystatin C
levels were not measured repeatedly. An acute phase
reaction accompanying stroke or the stroke severity may
influence the levels of cystatin C, though information
about the changes in cystatin C levels after acute car-
diovascular events has not been reported. Third, this study
was conducted in patients with stroke. The included
parties probably had greater co-morbidities, e.g. diabetes
and hypertension, which are also risk factors for CMBs,
than a community based population; thus, they were likely
to have more CMBs than a healthy population. These
results should be confirmed in a healthy population with
various ethnicities. Fourth, we used GRE scans at diagno-
sis of stroke. The presence of CMBs might be affected by
the ischemic stroke [51]. However, the rapid appearance
of CMBs after stroke was only related to the baseline
number of CMBs and white matter lesion volumes. Thus,
this bias had little impact on our results. Fifth, we were
unable to obtain a history of the previous use of cardiovas-
cular medication in some patients meticulously. This
might be one confounder in our study as a recent study
has reported the association between these medications
and CMBs [52].
Conclusions
Our results showed that cystatin C may be a more sensitive
indicator to detect the severity of CMBs compared to
the estimated GFR or microalbumin/creatinine ratio
in patients with ischemic stroke. CMBs strongly correlated
with the occurrence and clinical outcome of intracranial
hemorrhages. Given its association with the severity of
CMBs, cystatin C levels could help stratify the risk for
intracranial hemorrhage more accurately. Further studies
are needed to clarify this issue.
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