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Abstract

Background: Autism spectrum disorders (ASD) are increasingly prevalent and have a significant impact on the lives
of patients and their families. Currently, the diagnosis is determined by clinical judgment and no definitive
physiological biomarker for ASD exists. Quantitative biomarkers obtainable from clinical neuroimaging data – such as
the scalp electroencephalogram (EEG) - would provide an important aid to clinicians in the diagnosis of ASD. The
interpretation of prior studies in this area has been limited by mixed results and the lack of validation procedures.
Here we use retrospective clinical data from a well-characterized population of children with ASD to evaluate the
rhythms and coupling patterns present in the EEG to develop and validate an electrophysiological biomarker of ASD.

Methods: EEG data were acquired from a population of ASD (n = 27) and control (n = 55) children 4–8 years old. Data
were divided into training (n = 13 ASD, n = 24 control) and validation (n = 14 ASD, n = 31 control) groups. Evaluation
of spectral and functional network properties in the first group of patients motivated three biomarkers that were
computed in the second group of age-matched patients for validation.

Results: Three biomarkers of ASD were identified in the first patient group: (1) reduced posterior/anterior power ratio
in the alpha frequency range (8–14 Hz), which we label the “peak alpha ratio”, (2) reduced global density in functional
networks, and (3) a reduction in the mean connectivity strength of a subset of functional network edges. Of these
three biomarkers, the first and third were validated in a second group of patients. Using the two validated biomarkers,
we were able to classify ASD subjects with 83 % sensitivity and 68 % specificity in a post-hoc analysis.

Conclusions: This study demonstrates that clinical EEG can provide quantitative biomarkers to assist diagnosis of
autism. These results corroborate the general finding that ASD subjects have decreased alpha power gradients and
network connectivities compared to control subjects. In addition, this study demonstrates the necessity of using
statistical techniques to validate EEG biomarkers identified using exploratory methods.
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Background
Autism Spectrum Disorders (ASDs) are a group of disor-
ders characterized by impairment in communication,
and social interaction, rigidity of interests, and repetitive
stereotypical behaviors [1]. First characterized as a behav-
ioral disorder in 1943, the diagnosis of autism appears to
be increasing, from less than 3 per 10,000 in the 1970’s to
more than 30 per 10,000 in the 1990s [2]. In 2012, the

Centers for Disease Control reported a frequency of 1 in
88 children [3, 4]. The symptoms and severity of ASD var-
ies significantly, and mild symptoms or those masked by
other handicaps may go unrecognized. Appropriate treat-
ments, especially in children, have been found to lead to
improved prognosis [5, 6], which has motivated the search
for biomarkers that can assist identification of ASD in
children [7–9].
Because ASDs are defined by behavioral traits, the

diagnosis relies on questionnaires and observation. Mul-
tiple genetic and biological risk factors have been identi-
fied [6], however isolating a common metabolic or genetic
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pathophysiology leading to the ASD phenotype has
proven difficult [10]. An alternate approach is to measure
differences in observable brain function. There is a grow-
ing consensus that ASD is characterized by an impairment
in the communication between brain areas, rather than a
deficit in a localized brain region [11–21]. Advances in
neuroimaging and signal processing allow for inference
and analysis of functional brain networks, which represent
the dynamic relationships between activity recorded in
different brain regions [22]. Analytical methods derived
from the field of graph theory allow measurement and
comparison of functional networks in health and dis-
ease [13, 23–25]. While functional magnetic resonance
imaging (fMRI) has received much attention as a tool
for investigating functional brain networks derived from
hemodynamic signals, the scalp electroencephalogram
(EEG) provides several distinct advantages as it is less ex-
pensive, less intrusive, less affected by head motion arti-
facts, and provides a direct measure of brain voltage
activity. In addition, the EEG provides exquisite temporal
resolution, allowing for investigation of cortical rhythms,
as characterized in the power spectra, which have also
been associated with brain function and dysfunction [26].
Thus, EEG provides benefits as a complimentary tool to
fMRI, with advantages for use in children with autism in
particular.
Despite these powerful tools, both EEG and fMRI

research of ASD have so far produced varied and some-
times contradictory results. Arguably the most consistent
finding is a reduced level of coupling in activity of ASD
subjects between ‘long range’ areas [12, 16, 19, 27–41],
though even this finding is not universal [42–50]. ‘Short
range’ coupling has been found to be both greater
[12, 34, 37, 39] and lower [27–29, 31, 32, 44, 47, 48, 51, 52]
in ASD subjects compared to control subjects. While a
number of studies report seemingly similar results, all
previously reported studies have used exploratory methods
with results found using different techniques, limiting
interpretation and cross-study validation. Post-analysis val-
idation has not been employed in existing studies of ASD
biomarkers, but is an important step to separate statisti-
cally robust findings from chance observations. Without a
consensus on particular measures associated with ASD or
its individual characteristics, the search for definitive,
physiological biomarkers of ASD continues.
In this study, we use spectral and functional network

analysis of clinical EEG data recorded from a population
of children to propose a cortical biomarker for autism. We
first use an exploratory dataset of age-matched (4–8 years)
ASD and neurotypical children to develop hypotheses
based on analysis of power spectral features and measures
of functional network connectivity. From the exploratory
group of subjects, we derive the following hypotheses:
1) The ratio of the power of the posterior alpha rhythm

(8–14 Hz) peak to the anterior alpha rhythm peak is
significantly lower in ASD than control subjects. 2) The
functional network density is lower in ASD subjects
than control subjects. 3) A select group of edges pro-
vide a more sensitive and specific biomarker of ASD.
We then test these hypotheses in a validation dataset of
subjects and show that both the first and third hypoth-
eses, but not the second, are validated. These results
provide a validated study for EEG biomarkers of ASD
based on changes in brain rhythms and functional net-
work characteristics.

Methods
Subjects and EEG recordings
All subjects ages 4–8 years diagnosed with ASD by a spe-
cialist in child neurology, child psychiatry, or developmental
pediatrics, and with an EEG obtained between 2/1/2002-4/
1/2011 in the neurophysiology unit at Massachusetts
General Hospital were retrospectively identified. In order
to reduce variability in the ASD group, subjects diagnosed
with epilepsy or found to have epileptiform activity on
EEG were excluded from analysis. For control data, sub-
jects age 4–8 years with normal EEG recordings (as de-
fined by clinical electroencephalographers independent
from this study) were retrospectively identified from re-
cordings performed at Massachusetts General Hospital
between 2/1/2002 and 4/1/2011. Clinical chart review was
performed and only those children with documented nor-
mal neurodevelopment and non-epileptic events without
known EEG characteristics were included in the control
group for analysis. For both the ASD group and control
group, neurodevelopmental status was determined from
chart review of the clinical assessments just prior to or fol-
lowing the EEG recording. Active medications at the time
of EEG include in the ASD training data, one subject was
taking 0.1 mg of Clonidine and one subject was taking
20 mg of Ritalin, and in the ASD validation data one sub-
ject was taking 0.05 mg Clonodine and 0.5 mg Risperdal.
Of the control subjects, no medications were taken in the
training group, and in the validation group one subject
was taking 50 mg of Amitriptyline, and one subject took
0.05 mg of Clonidine prior to the EEG. Twenty-seven chil-
dren with ASD (25 M and 2 F) and fifty-five controls
(29 M and 26 F) were included for analysis. In the ASD
training group (defined below), one subject had ADHD
and one reported headaches. In the ASD validation group
(defined below), three subjects had ADHD - one of which
had depression, and one of which had tics – while one
other subject had only tics, another subject had ADD, and
another subject had anxiety. Of the 55 neurotypical con-
trols, 13 had migraines or other headache syndromes, 9
had a syncopal event, 8 had tics, 4 had anxiety, 1 had sleep
apnea, 1 had breath holding spells, and 1 had essential
tremor. Although formal scales of ASD severity were not
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used in this population, chart review of physical exam and
clinical assessments was performed retrospectively by a
board certified child neurologist (CJC). Using the DSM
V criteria, severity was estimated as follows: in the
training group of thirteen ASD subjects: eight mild,
four moderate, and one severe ASD. In the validation
group of fourteen ASD subjects: five mild, three moder-
ate, and six severe ASD.
In an effort to identify a clinically feasible and relevant

EEG biomarker for ASD, we utilized routine EEG re-
cordings following standard clinical recording tech-
niques. All children were given the same instructions
prior to the evaluation, including recommendations for
mild sleep deprivation (awaking the child 2–4 h prior
to regular morning arousal). In our dataset, sleep was
recorded in 18/27 ASD subjects and 45/55 healthy con-
trols. In all cases with a sleep recording, sleep onset
was within 40 min of the start of the EEG recording
session. In all cases, the wake EEG was obtained first
and a posterior dominant rhythm was obtained during
a period of quiet restfulness with eyes closed. For re-
cordings of quiet wakefulness, patients were recorded
in a quiet room without active stimulation.
Recordings included electrooculogram (two channels),

scalp EEG (19 Ag/AgCl electrodes placed according to
the 10–20 international system: FP2, F4, C4, P4, O2, F8,
T4, T6, Fz, Cz, Pz, Fp1, F3, C3, P3, O1, F7, T3, and T5)
and electrocardiogram using a standard clinical record-
ing system (Xltek, a subsidiary of Natus Medical). Sig-
nals were sampled at 200, 256, 500 or 512 Hz and stored
on a local server. Analysis of the data from these sub-
jects was performed retrospectively under protocols ap-
proved and monitored by local Institutional Review
Boards according to the National Institutes of Health
guidelines.
Prior to analysis, subject datasets were divided into

two groups, one group for exploratory analysis and hy-
pothesis creation and a second group for hypothesis val-
idation. The subjects in each group were selected to
preserve approximately similar age distributions in each
group (Table 1). In this way, hypotheses generated in the
first group were tested, and validated or disputed in the
second group, thereby controlling for spurious findings
due to type I error. EEG recordings were manually
reviewed by an experienced electroencephalographer
(CJC) and large movements and muscle artifact

removed. Wake and non-rapid eye movement (NREM)
sleep intervals were identified by visual analysis as per
standard criteria [53]. Only patients with at least 100 s
of artifact-free EEG data were included in the explora-
tory group (13 ASD, 24 Control) and validation group
(14 ASD, 31 Control).

Data preprocessing for network and spectral analysis
For network analysis, the EEG data were filtered with a
3rd order Butterworth, zero-phase filter (notch filtered at
60 Hz to remove line noise, high pass at 0.5 Hz to avoid
slow drift, and low pass at 50 Hz to avoid higher-
frequency line noise harmonics). Because the EEG data
were selected to avoid large movements and muscle
artifact, noncontiguous points occurred; we removed
0.5 s from both sides of each noncontiguous point be-
fore further analysis. Visual analysis and a simulation
study (not shown) confirmed that this removal was suffi-
cient to mitigate artifacts produced at the noncontiguous
points during the filtering process. For spectral analysis,
the EEG data were not filtered, but 0.5 s was removed
from each noncontiguous point to maintain consistency
with the network analysis. In order to optimize near-
field activity and reduce electrical contamination from
the physical reference, both filtered and non-filtered data
were then re-referenced according to the longitudinal bi-
polar (‘double banana’) montage, leaving 18 bipolar sig-
nals (‘derivations’) in place of the original 19 electrode
signals. This reference montage was chosen in lieu of
other popular montages such as the common average or
Hjorth-Laplacian references because of its effectiveness
and widespread clinical usage. While the common aver-
age reference and spline Laplacian reference perform
reasonably well when used with a large enough number
of electrodes (e.g., 128 or more), these references are ex-
pected to perform poorly when applied to the standard,
low density 10/20 electrode system (see [54], page 295).
In addition, the common average reference has been
found to increase spurious coupling in some cases [55].
In contrast, bipolar montages are considered one of the
best available options to improve spatial resolution in
EEG with a limited number of electrodes (see [54], p.
291). Hjorth (or nearest-neighbor) Laplacian is closely
related, however we chose the double banana montage
due to its extensive use clinically.

Table 1 Patient demographics

Group Age 4 Age 5 Age 6 Age 7 Age 8 Total

ASD Training 2 M 2 M, 1 F 4 M 3 M 1 M 12 M, 1 F

ASD Validation 1 M 2 M 4 M 5 M, 1 F 1 M 13 M, 1 F

Control Training 3 F 4 M, 1 F 5 M, 1 F 3 M, 3 F 1 M, 3 F 13 M, 11 F

Control Validation 4 M, 2 F 3 M, 3 F 4 M, 1 F 2 M, 5 F 3 M, 4 F 16 M, 15 F
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All EEG data were then divided into non-overlapping
windows of 2 s duration (windows containing concatenated
data from noncontiguous time points were discarded). We
use 2 s intervals to approximately maintain stationarity
in the time series (which requires short epochs) while
keeping sufficient data for accurate coupling estimates
(which requires long epochs). Finally, we normalized
the data from each electrode within each window to
have zero mean. All data preprocessing and subsequent
analysis were performed using custom software devel-
oped in MATLAB.

Spectral analysis procedure
For the spectral analysis of the unfiltered data, the power
spectrum for each 2 s epoch was computed using the
multitaper methods implemented in the Chronux tool-
box [56] with 5 tapers and a time-bandwidth product of
3, so that the resulting frequency resolution was 1.5 Hz.
Frequencies below 0.5 Hz were omitted to avoid low-
frequency drift in the data. For each subject this resulted
in a power spectrum for each of the 18 re-referenced
signals, for each 2 s epoch.
To characterize the power spectra for each patient we

computed a summary statistic – the “peak alpha-ratio” –
as follows (Fig. 1). First, we computed the power
spectrum of each signal for each epoch of the dataset,
and then averaged the power spectra across all epochs.
Second, we computed the ratio of this average power be-
tween four pairs of posterior to anterior signals (Far Left:
T5-O1/Fp1-F7; Medial Left: P3-O1/Fp1-F3; Medial
Right: P4-O2/Fp2-F4; Far Right: T6-O2/Fp2-F8). Third,
we determined the maximum value of the ratio within
the alpha frequency range (8–14 Hz) for each of the four
channel pairs. These four maximum back/front ratios
were then averaged to produce the summary statistic,
mean “peak alpha-ratio”, for each patient. We choose to
compute the spectral ratio for three reasons. First, the
posterior to anterior alpha gradient is one of the most
widely observed EEG features in healthy controls and
thus is an intuitive feature to evaluate in a disease popu-
lation [57]. In addition, this metric has been previously
correlated with behavioral inhibition and sociability [58,
59]. Second, as described in Results, changes in power
(not the ratio) between the ASD and control subjects at
all electrode deviations reveal no significant differences.
Third, we choose to compute the frontal/posterior ratio
to normalize the spectral results of each individual subject.
This choice of normalization protects against artifacts that
impact the overall amplitude of voltage activity for each
subject (e.g., a subject with thicker hair may be expected
to have reduced electrode conductance and an overall re-
duction in EEG amplitude), and we expect this
normalization to make the results more robust to changes

in clinical settings and routine (e.g., to changes in elec-
trode recording equipment).

Functional network inference and measures
While there are many approaches to determining func-
tional connectivity from time series data [60], including
multiple coupling measures (e.g., linear or non-linear)
and different strategies for determining network edges,
we selected a simple measure of linear coupling: the
cross correlation. The cross correlation is a bivariate
measure of linear association between two brain regions,
and serves as a basic measure of electrocortical func-
tional connectivity [24, 61]. We note that most linear
and nonlinear measures appear to perform equally well
on simulated and observed macroscopic brain voltage
data [62, 63].
Each subject possessed at least 50, 2-s epochs of data

(min 57, max 1256, mean 254), which is sufficient to
support stable functional network representations [64–66].
To create functional networks, we follow the procedure
outlined in [67] and applied in [64–66]. We briefly describe
this procedure here (Fig. 1). For each patient, we create a
functional network for each 2 s epoch of filtered data using
the 18 derivations (signals) of data, based on the cross cor-
relation of the data between each pair of derivations. We
note that each signal in each 2 s interval is normalized by
its variance (or total power) before performing the correl-
ation analysis. Doing so reduces the differences in ampli-
tude between signals and mitigates a potential confounding
factor in the correlation analysis [68]. In addition, we show
in Results that differences in correlation between the ASD
and control subjects are not accompanied by changes in
the (absolute) EEG power in the 2.5-17.5 Hz range (i.e., the
broad, low frequency range which dominates the correl-
ation measure). This observation suggests that changes in
EEG power (i.e., in the signal to noise ratio) do not con-
found the functional connectivity results, in accordance
with [68, 69]. We use the maximum absolute value of the
cross correlation over time lags of ±500 ms to measure the
coupling (which encompasses the duration of known
neurophysiological processes and cross-cortical conduction
times [70, 71]). To assess the variability of the cross correl-
ation across lags, we compute the average variance of the
cross correlation between all derivation pairs and all 2 s
epochs for a subject; this provides a common measure of
variability that we apply to assess the significance of each
correlation statistic (see [67]).
For each 2 s epoch, an undirected binary functional

network is inferred from these correlations based on
their significance. Each node represents a derivation (e.g.,
channel T5 – channel O1), an edge value of 1 represents a
statistically significant correlation between the two deriva-
tions, and an edge value of 0 indicates a weaker correlation.
To correct for the multiple significance tests within each
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2 s epoch, we use a linear step-up procedure controlling
the false detection rate (FDR) with q = 0.05. For this choice
of q, 5 % of the network connections are expected to be
falsely declared [72]. This procedure results in a threshold-
ing of the significance tests of the correlation — not of the
correlation value itself — for each 2 s epoch [67]. The net-
works obtained in this manner have an associated measure
of uncertainty, which is the expected number of edges in-
correctly declared present.
To mitigate the impact of volume conduction [54, 61]

on the functional network analysis, we identified the cor-
relations deemed significant at zero lag, and removed
these edges from the analysis. In doing so, we expect to re-
move both spurious correlations due to volume conduc-
tion and true correlations that occur at zero lag; in this
sense, this procedure is conservative. This approach has
an added benefit of reducing the effect of montage selec-
tion, whereby subtraction of signals may result in spurious
coupling between derivations that share electrodes.

To assess the network structure, we apply two mea-
sures of network connectivity [23]. The density for each
network is calculated in the standard way as the number
of edges detected (at non-zero lag) divided by the total
number of possible edges (153 minus the number of
spurious edges detected at zero lag). The mean density
for each subject is calculated as the average density
across all epochs for the subject. The mean density for
each group (ASD and control) is calculated as the mean
of the subject densities within each group. The degree is
also calculated in the standard way as the number of
edges that connect to each node, and average degree
values for a subject and group are calculated in the same
way as the average density values.
In addition to correlation networks, we also computed

networks with a second measure of linear association -
the coherence, estimated using the multi-taper method
[73]. As for the correlation networks, we inferred coher-
ence networks for all derivative pairs over 2 s epochs.

Fig. 1 Construction of power ratio and functional networks from multivariate scalp EEG recordings. ai Example EEG data from re-referenced 18
channels (broadband, 0.5 - 50 Hz) according to the bipolar “double banana” montage. Filtered and unfiltered data are divided into 2 s epochs.
aii From unfiltered data power spectra are calculated for each channel using the multitaper method. aiii The ratio of power spectra are obtained
from the power spectra of the posterior four derivations (T5-O1, P3-O1, P4-O2, T6-O2) divided by the anterior four derivations (Fp1-F7, Fp1-F3,
Fp2-F4, Fp2-F8). Shown here is the mean posterior/frontal power spectra ratio to illustrate the properties of the peak alpha-ratio statistic. b For
each channel pair filtered data (0.5 - 50 Hz) from 2 s epochs are used to calculate the cross-correlation. Two example traces for Fp2-F8 and T4-T6
show a correlation here with maximal coupling at a time lag of −50 ms. The significance of the maximum absolute value of the cross-correlation
(blue circle) is determined using an analytic procedure (see Methods). c Example binary coupling networks derived from four 2-s epochs. Significant
electrode coupling is represented with an edge. These networks are averaged, resulting in a weighted coupling network for each subject. These are
then compared against bootstrapped edge weight distributions in (d). d To create bootstrapped edge weight distributions, surrogate
networks mirroring the original datasets are created by randomly sampling functional networks with replacement from all epochs of all
subjects of both groups. Original ASD and control edge weights are compared to the surrogate edge weight distributions, and edges
most significantly outside the distribution (p < 1/100,000) are selected to make a mask of highly significant edges. This mask is used to
select the edges with the greatest difference between the ASD and control groups
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To calculate a p-value to identify significant edges in the
coherence networks, we first transformed the coherence,
C, to the quantity (ν0 − 1)|C|2/(1 − |C|2), which has an
approximate F-distribution with two and ν0 − 2 degrees
of freedom under the null hypothesis of no coherence.
Here, ν0 is twice the number of tapers, either 10 or 16.
We then corrected for multiple significance tests using a
linear step-up FDR controlling procedure with q = 0.05.
Coherence networks were computed for four electrode
montages - double banana, transverse, Hjorth Laplacian,
and neck reference – and for both sleep and wake data,
at 4 frequencies with 5 Hz bandwidth and 8 tapers (cen-
ters at 3.5 Hz, 8.5 Hz, 13.5 Hz, and 18.5 Hz) and 8 fre-
quencies with 3 Hz bandwidth and 5 tapers (centers at
2.5 Hz, 5.5 Hz, 8.5 Hz, 11.5 Hz, 14.5 Hz, 17.5 Hz,
20.5 Hz, and 23.5 Hz). However, we found no significant
differences in density between the ASD and control
groups in the exploratory analysis, and the analysis of
coherence networks was not continued in the validation
dataset.

Bootstrap test for significantly different edges
With the aim of developing a biomarker for ASD, we
sought to assess the difference in network structure be-
tween the ASD and control groups. While a network-
wide measurement such as the density is informative, a
measure that localizes differences between ASD and
control networks to more specific connections (e.g., net-
work edges) would provide additional information. Know-
ledge of specific edge differences would allow us to focus
on just these edges, reducing noise introduced by non-
informative edges, and potentially producing a more sensi-
tive and specific biomarker.
To that end, a bootstrap analysis was performed to test

whether a significant difference occurs between the ASD
and control groups in the appearance of each edge. We
began with the null hypothesis that no difference exists
between the two populations. We then created surrogate
data for each subject by randomly drawing with replace-
ment functional networks (each derived from a 2 s
epoch) from the combination of all ASD and control
subjects. This process of generating surrogate data was
then repeated for all subjects. In this way, the surrogate
data for each subject of each group was created. If the
null hypothesis is correct, we should find no statistically
significant differences between the network features de-
duced from the original ASD and control groups com-
pared to the surrogate data.
We repeated this process of generating surrogate data

and computing network measures 100,000 times to cre-
ate a distribution of average edge weights for each edge
in the ASD group and in the control group. For each of
the 100,000 surrogates of both groups, 153 average edge
weights were calculated (one for each node pair). We

note that the average edge weights were calculated in
the same way as for the original data; that is, for each
subject we computed an average network across the 2 s
epochs, and then these subject networks were averaged
to produce a population average network for the ASD
group, and a population average network for the control
group. The 100,000 surrogates correspond to 100,000
population average networks for the ASD group, and
100,000 population average networks for the control
group. In these surrogate data, the 100,000 values for
each edge weight establish the bootstrap distributions of
the edge weights for the ASD group and control group.
We then compared each observed average ASD edge

weight to the corresponding surrogate ASD distribu-
tion, and each observed average control edge weight to
the corresponding surrogate control distribution. This
bootstrapping allows us to examine each edge individu-
ally, and to determine the statistical significance of par-
ticular edges in the ASD and control groups. Finally, we
determined the subset of edges identified as the most
significantly different in the observed data compared to
the surrogate data. In practice, these edges were associ-
ated with the smallest p-values detectable in the boot-
strap procedure (p < 10−5). The edges identified in this way
were used to generate a “mask”, or selection of edges most
significantly different from the bootstrap distribution, with
the purpose of developing a biomarker of ASD (Fig. 1).

Classification of datasets
We also performed a discriminant analysis to classify the
validation subjects into ASD and control groups. To do
so, we used the MATLAB function classify, selecting the
classification option ‘quadratic’; in this method, a discrim-
inant function fits a multivariate normal density to each
group, with covariance estimates stratified by group. We
trained the classifier on the first group of ASD and control
subjects, and tested the classifier on the second group of
validation subjects using the two validated significant
quantitative measures identified in the training data (peak
alpha ratio and mask density, i.e., the mean weight of a
subset of edges).

Results
In this section, we describe the application of spectral
and network analysis to EEG data recorded from ASD
and control subjects. Using an initial exploratory analysis
on a subset of ASD and control subjects, we build hy-
potheses that we then test in a second group of ASD
and control subjects. In this way, we identify and valid-
ate two biomarkers of ASD that can be inferred from
standard EEG clinical recordings. Below we briefly re-
view the exploratory measures tested and then describe
in detail the measures tested on the validation dataset.
In the spectral analysis, we focus on a measure of the
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antero-posterior spectral power gradient, a metric previ-
ously correlated with behavioral inhibition and sociabil-
ity [58, 59]. In the network analysis, we first examine the
network density. We then examine node degree to deter-
mine if the differences in density are driven by a subset
of spatial locations, or are a property of the entire net-
work. We next identify a subset of edges that appear sig-
nificantly more common in the control group, and
significantly less common in the ASD group. These se-
lect edges provide a subset of highly significant edges to
apply in a biomarker. Finally, we attempt to classify the
two populations in the validation group using a subset
of measures deduced from the training group.

Spectral analysis reveals an alpha-band biomarker of ASD
To assess rhythmic activity in the EEG data, power spectra
were computed from numerous short epochs (Fig. 2,
also see Methods: Spectral analysis procedure). Visual

inspection of the average power spectra during wakeful-
ness suggests differences between the ASD and control
groups (Fig. 2a, top two rows): the anterior power spectra
have higher mean power in the ASD subjects (blue) than
the control subjects (red) at alpha frequency and above
(plateauing near 20 Hz). In addition, visual inspection sug-
gests that both ASD (blue) and control (red) subject popu-
lation mean power spectra possess a broad peak in the
alpha frequency range (~10 Hz) in the posterior four
channels, consistent with the well characterized posterior
dominant alpha rhythm present in quiet wakefulness [74,
75]. We note that visual inspection of the power spectra
of the posterior four derivations reveals a larger peak in
alpha power of the control subjects (Fig. 2a, red) com-
pared to the ASD subjects (Fig. 2a, blue).
To characterize these differences in power, for each

subject in the exploratory group we calculated the mean
power from 2.5 Hz to 17.5 Hz, in steps of 3 Hz. We note

Fig. 2 Posterior to anterior power spectra ratio differs significantly between ASD and control groups. a Power spectra of ASD and control groups
recorded at the anterior (Fp1-F7, Fp1-F3, Fp3-F4, Fp2-F8) and posterior (T5-O1, P3-O1, P4-O2, T6-O2) nodes, calculated for each 2 s epoch, and
averaged over all epochs. Training group analysis (top) and validation group analysis (bottom). Dashed lines represent two standard errors of
mean. Power in units of 10log10 (μV2/Hz). b Averaged power spectra ratio between posterior and anterior channels (i.e., T5-O1/Fp1-F7) averaged
over epochs and computed at four locations, then averaged over subjects to create a group average for the training (top) and validation (bottom)
groups. Upper and lower 95 % confidence bounds indicated by dotted blue (ASD) and dotted red (control) lines. This result motivated the creation of
the peak alpha-ratio statistic (Fig. 2c). c For each epoch, the maximum values were obtained of the four power ratios, in the alpha frequency band,
and averaged. These ratios were then averaged over all epochs for each subject in the ASD (blue, Asperger’s in green) and control (red) groups. The
peak alpha ratio is lower in the ASD group in the training (p≤ 0.0034) and validation data (p≤ 0.0025). Error bars represent two standard errors of
the mean
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that this analysis covers frequencies across the classically
defined frequency bands. We omitted higher frequencies
due to the increased relative impact of muscle artifact in
those ranges [76]. Using this metric, over these 6 frequen-
cies and 18 derivations, we found 9 significantly different
power values between the ASD and control populations
out of 108 comparisons (significances ranged from p =
0.0099 to 0.0459). When corrected for multiple compari-
sons using a False Detection Rate (FDR) control, no sig-
nificant differences remained. We also computed power
spectra for NREM sleep data in the exploratory group,
but found by visual inspection that the mean power
spectra for the ASD and control populations at each
derivation overlapped. We therefore did not explore the
sleep data further.
Because no significant differences were found at indi-

vidual derivations, we considered ratios of power. Abso-
lute differences in mean power are expected to be
muted by our normalization procedures, however power
ratios will not be affected. Population differences in the
anterior and posterior derivations are enhanced in the
averaged posterior/frontal spectral ratios (Fig. 2b). Visual
inspection of the spectral ratio of posterior derivations
to frontal derivations averaged across derivations and
subjects revealed a peak most prominent in the alpha
band. In the exploratory group, the ratios exhibit a sharp
peak near 10 Hz for both control (Fig. 2b, red) and ASD
(Fig. 2b, blue) subjects, and the peak is visibly larger in
the control group compared to the ASD. To further
characterize these results beyond visual inspection, we
calculate a single measure, here labeled the “peak alpha
ratio”. This measure focuses on the antero-posterior
EEG spectral power gradient, and provides a numeric
summary statistic to compare the ASD and control
groups. The peak alpha ratio is calculated for each sub-
ject at every 2 s epoch as follows (for detailed descrip-
tion, see Methods: Spectral analysis procedure). Power
spectra are averaged over all epochs, and then the four
posterior derivations are divided by the corresponding
power spectra of the four anterior derivations, which re-
sults in four spectral ratios as a function of frequency
(from 0 to 60 Hz). The maximum value in the alpha fre-
quency (8–14 Hz) band of each ratio is determined, and
then the four maximal values are averaged to produce a
single alpha ratio for the epoch. Alpha ratios for all epochs
for a subject are then averaged to produce a mean alpha
ratio for the subject (Fig. 2c). Applying this measure to the
exploratory group, we find that the ASD population has a
significantly lower mean peak alpha ratio (p ≤ 0.0034) than
the control population, consistent with the visual inspec-
tion results (Fig. 2a,b). We note that the peak alpha ratios
for EEG data recorded during sleep in the exploratory
group showed little to no peak, and ASD and control
values exhibited no significant differences.

Spectral features in the second group of subjects – the
validation group – remain much the same (Fig. 2). In
the validation group, the ASD population’s mean peak
alpha ratio is significantly below that of the control
population (p ≤ 0.0025). We conclude that the significant
spectral features identified in the first group of subjects
are validated in the second group of subjects.

Functional network analysis reveals specific biomarkers
of ASD
Network density
After inferring the functional networks from the EEG
data (see Methods, Functional network inference and
measures), we investigate differences in network top-
ology between the ASD and control groups. Many statis-
tics exist to assess network structure [13, 23]; here we
focus on one of the most fundamental – the density –
which is computed by summing the number of edges in
a network, and then dividing by the number of possible
edges. We note that, for the functional networks in-
ferred here, a higher density value indicates an increased
level of correlation within the network. The mean
density across epochs was calculated for each subject,
and averaged within-group (Fig. 3a). In the training
group, the ASD population produced a significantly
lower mean density than that of the control population
(p ≤ 0.028), consistent with some findings in the litera-
ture [16, 18, 40, 77–81]. However, in the validation ana-
lysis, we found no significant difference in density between
the two groups (p = 0.502, Fig. 3a).
We also examined the mean density for EEG data re-

corded during NREM sleep in the exploratory group,
but we detected very few edges (approximately 0.005
density) and found no significant difference between the
mean ASD and control populations (p = 0.4578). Finally,
we investigated the density in the correlation networks
using alternative reference montages, including the
transverse and Hjorth Laplacian [54] reference mon-
tages. The results were similar to the double banana
montage for the wake data (Additional file 1: Figure S1)
and for the sleep data. In addition to analysis of correl-
ation networks, we also considered networks inferred
using a frequency domain measure of linear association:
the coherence (see Methods). We computed the density
of these coherence networks for the exploratory group
sleep and wake data using four reference montages
(double banana, transverse, Hjorth Laplacian, and neck)
at 4 frequencies with 5 Hz bandwidth (centers at 3.5 Hz,
8.5 Hz, 13.5 Hz, and 18.5 Hz) and 8 frequencies with
3 Hz bandwidth (centers at 2.5 Hz, 5.5 Hz, 8.5 Hz,
11.5 Hz, 14.5 Hz, 17.5 Hz, 20.5 Hz, and 23.5 Hz). Using
the double banana montage on wake data, at 5 Hz band-
width, the coherence densities were found to have no
significant difference except at 13.5 Hz (p = 0.0055). At
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3 Hz bandwidth, the only significant difference between
ASD and control was found at 14.5 Hz (p = 0.0312). At
this frequency the coherence density values were low
(approximately 0.01), and further examination revealed
that the significance was driven by two control subjects
with high coherence values, thus this result was not con-
sidered reliable. The coherence results were not exam-
ined further in this study.
In an effort to spatially localize the functional network

differences between the ASD and control populations,
we computed measures of localized density of different
brain regions between groups. To compute these mea-
sures we restricted the derivations used in our density
calculation to a subset of the network corresponding to
a specific region of the scalp, comparing the left and
right hemispheres, and the anterior to posterior halves
of the network. We found the ASD population mean
density to be significantly lower than the control popula-
tion mean density in the left hemisphere (p = 0.036),
right hemisphere (p = 0.013), and near significance in
the anterior hemisphere (p = 0.073) and posterior he-
misphere (p = 0.058). The left-right inter-hemispheric
density (i.e., the density of connections between left and
right hemispheres) difference was also nearly significant

(p = 0.058), but the anterior-posterior inter-hemispheric
density (i.e., the density of connections between nodes in
the anterior and posterior halves of the full network)
was not found to differ significantly between the groups
(p = 0.954). These results indicated that density differ-
ences were not localized to specific regions, but were
distributed throughout the brain. Because the overall
change in density was not validated in the second data
group, and because network degree analysis likewise did
not indicate localization of differences in connectivity
(see Network degree below), we did not perform ana-
lysis of the density in specific brain regions in the val-
idation population.

Network degree
In an effort to spatially localize the functional network
differences between the ASD and control populations,
we computed a second statistic – the degree – which
measures the number of edges that contact a node. In
the training data (Fig. 3b, top) we tested each node be-
tween ASD and control populations and found no signifi-
cant differences when Bonferroni corrected (p > 0.0028 for
all edges, where Bonferroni correction of p = 0.05 for 18
comparisons is 0.05/18 = 0.0028), indicating no evidence

Fig. 3 Network analysis reveals that select edges show a significantly diminished density in ASD versus control groups, though not in overall
mean density. a Mean density of ASD (blue, Asperger’s in green) and control (red) groups. In the training data, the mean density of the ASD
group was significantly lower than the mean density of the control group (p ≤ 0.028). However, in the validation data no significant difference
was found (p = 0.50). Error bars represent two standard errors of the mean. b In the training data, no significant difference in degree between
ASD and control groups was found at any node location. c The “edge mask”. Edges in the mean control network which were significantly
greater than the surrogate control distribution are shown in red (n = 23), while edges in the mean ASD network which were significantly lower
than the surrogate ASD distribution are shown in blue (n = 16). Seven edges (shown in orange) were found to distinguish both control from
surrogate and ASD from surrogate, and were retrospectively used to form a mask of highly selective edges. d The mask density reveals a
significant difference between the ASD group and the control group in training data, as expected (p≤ 0.0019). The mask density of the ASD
group was significantly lower than the mask density of the control group (p≤ 0.0085) in the validation data as well. e In a retrospective study,
the intersection mask density was computed. In both the training and validation data, the ASD intersection mask density was found to be
significantly lower than the control intersection mask density (p≤ 0.0163 in training data, p≤ 0.0006 in validation data)
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for spatial organization of the difference in the node de-
gree between the two groups.

Mask density
We expect high variability in the functional networks in-
ferred from each 2 s epoch, as the brain responds to evolv-
ing internal and external demands. To establish more
stable functional network representations, we computed
the average functional network of each patient. In practice,
the average functional network is the mean of all functional
networks inferred across time for a patient. The average
functional network is a weighted network, in which the
edge weight indicates the proportion of times that edge ap-
pears in all epochs for a patient. For example, an edge
weight of 0 indicates that two pairs of sensors (i.e., deriva-
tions) are never correlated across all 2 s epochs, while an
edge weight of 1 indicates two pairs of sensors that remain
correlated in each 2 s epoch. We have recently shown that
average functional networks computed for more than
100 s of data constitute stable network templates or “cores”
[64, 66]. These template networks computed for the ASD
and control subjects reveal heterogeneous network struc-
tures within each group, rather than a common difference
visually distinguishing each ASD subject from each control
subject (Fig. 4a). We then computed the mean of these
template networks across subjects within each group,
resulting in the mean ASD template network, and the
mean control template network (Fig. 4b). The mean ASD
and control template networks displayed grossly similar
structures, with slight differences in specific edge weights
difficult to discern from visual inspection alone.
We next considered whether these template networks

facilitate the development of an additional biomarker of
ASD. To do so, we investigated specific edge weights.
To identify those edges that differed most significantly

between the ASD and control subjects, we generated
surrogate network data. Briefly, we generated these sur-
rogate data under the null hypothesis of no difference
between the ASD and control populations (see Methods,
Bootstrap test for significantly different edges). We find
in the mean ASD template network 16 edges with sig-
nificantly lower weights than in the surrogate ASD dis-
tribution (p ≤ 10−5), and two edges with significantly
greater weights than in the ASD surrogate distribution
(p ≤ 10−5). Conversely, we find in the control population
23 edges with significantly higher weights than in the
surrogate control distribution (p ≤10−5), and only one
edge with significantly lower weight than in the surro-
gate control distribution (p ≤ 10−5). Using the 16 edges
from the ASD population significantly lower than their
surrogate distribution and the 23 edges from the control
population significantly higher than their surrogate dis-
tribution we constructed an edge mask (Fig. 3c), repre-
senting a candidate subset of edges to distinguish the
ASD and control groups (Table 2). If these edges are truly
selective, then analysis focused only on these edges should
improve the distinguishability of the ASD and control
populations beyond a global network density measure
that includes all edges.
To quantify this in a summary statistic, we computed

the proportion of edges in the edge mask for each net-
work in all subjects and both populations. The result is a
single statistic for each network, which we call the mask
density. For each subject, we compute the average mask
density across all 2 s epochs. In the training analysis, we
find a significantly higher mask density in the control
group versus the ASD group (p ≤ 0.0019, Fig. 3d). We
then applied the same edge mask – deduced from the
training data - to the validation data. Here, we again find
that the mask density is significantly higher in the control

Fig. 4 Sample mean networks for the ASD and control subjects exhibit variability, and the mean group networks exhibit qualitatively similar
patterns. a Example networks from 5 ASD subjects (top row, blue) and 5 control subjects (bottom row, red) are shown to demonstrate how
individual subjects varied in their mean network edge weights. While some edges were consistently more represented (as in the frontal area, for
example), individual subjects did not exhibit identical network weight patterns across the group. b Mean group networks for ASD (top row, blue)
and control (bottom row, red) appear to have superficially similar patterns of edge weights
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networks compared to the ASD networks (p ≤ 0.0085,
Fig. 3d). In this case, the connectivity strength of a subset
of edges serves as a robust biomarker of ASD.

Post-hoc measures
To further explore features of the population data, we
performed the following eight analyses after validation
of the two biomarkers.

Classification model
We performed a quadratic discriminant analysis (QDA)
classification with the two validated biomarkers. Using
the peak alpha ratio and the mask density, we trained a
QDA classifier on the training group of subjects (excluding
Asperger’s subjects), and then tested this classifier on the
validation group of subjects (excluding Asperger’s sub-
jects). The QDA classifier successfully classified ASD sub-
jects with 83 % sensitivity (10/12 correctly classified as
ASD) and 68 % specificity (21/31 subjects correctly classi-
fied as control, Fig. 5).

Edge mask
The mask used in the initial classification was a union of
edges from the ASD mean network that were signifi-
cantly less than surrogate distribution, and edges from
the control mean network that were significantly greater
than surrogate distribution. There were seven edges that
were common to these two groups, which we call the
intersection mask. To investigate whether this intersec-
tion mask better discriminated the ASD and control
groups, we performed a post-hoc calculation of this
intersection mask density (using only the seven edges
identified, see Table 2) and classification analysis similar
to that described above, but now using the intersection
mask. Consistent with the results reported above, we
find a significantly higher intersection mask density in
the control group versus the ASD group in the training
data (p ≤ 0.0163, Fig. 3e) and in the validation data (p ≤
0.0006, Fig. 3e). Using the peak alpha ratio and the inter-
section mask density, we then trained a QDA classifier
on the training group of subjects, and then tested this

Fig. 5 Discriminant analysis classifies the ASD and control groups. a Scatter plots of the quadratic discriminant analysis (QDA) using the two
validated measures of peak alpha ratio and mask density. Classification rate was 83 % sensitivity and 68 % specificity. For classification purposes,
Asperger’s subjects were excluded. The quadratic classification curve (magenta) was trained on the training data population (top) and used to
classify the validation data population (bottom). b The validated measures for all patients (both the training and validation groups), and including the
Asperger’s subjects (green circles), displayed here for visualization. Visual inspection suggests a difference between ASD and control populations, and
that Asperger’s subjects are removed from the main cluster of ASD subjects

Table 2 Edges chosen for “mask”

ASD mask network edges Fp1-F3/Fp1-F7; F3-C3/F7-T3; C3-P3/C4-P4; C3-P3/T3-T5; P3-O1/P4-O2; P3-O1/T5-O1; F4-C4/F8-T4; F4-C4/T4-T6;
C4-P4/P4-O2; C4-P4/T4-T6; C4-P4/T6-O2; C4-P4/Cz-Pz; P4-O2/T5-O1; P4-O2/T6-O2; T5-O1/T6-O2; T4-T6/Cz-Pz

Control mask network edges Fp1-F3/Fp2-F4; Fp1-F3/Fp1-F7; Fp1-F3/F7-T3; Fp1-F3/Fp2-F8; Fp1-F3/F8-T4; F3-C3/F7-T3; F3-C3/T3-T5;
F3-C3/Fp2-F8; C3-P3/T3-T5; P3-O1/T5-O1; Fp2-F4/Fp1-F7; Fp2-F4/F7-T3; Fp2-F4/Fp2-F8; Fp2-F4/F8-T4; F4-C4/C4-P4;
C4-P4/T4-T6; C4-P4/Cz-Pz; P4-O2/T6-O2; Fp1-F7/F7-T3; Fp1-F7/Fp2-F8; Fp1-F7/F8-T4; F7-T3/Fp2-F8; Fp2-F8/F8-T4

Edges common to both masks Fp1-F3/Fp1-F7; F3-C3/F7-T3; C3-P3/T3-T5; P3-O1/T5-O1; C4-P4/T4-T6; C4-P4/Cz-Pz; P4-O2/T6-O2

ASD edges were significantly below the surrogate ASD bootstrap distribution, and control edges were significantly above the surrogate control bootstrap
distribution
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classifier on the validation group of subjects. The QDA
classifier performed similarly to the classification with
the union mask, and successfully classified ASD subjects
with 83 % accuracy and 64.5 % specificity.

Gender
ASD is known to be more common in males than females
[82–84]. We performed post-hoc analysis of male versus
female subjects using control subject data only, and found
no difference in density or mask density. For the spectral
analysis, there was a significantly higher peak alpha ratio
found for male subjects compared to female subjects in
the training group (20.46 versus 8.38, p = 0.039), such that
the peak alpha ratio in neurotypical females was closer
to ASD values; the peak alpha ratio was also greater in
males compared to females in the validation group,
however this difference was not significant (14.33 ver-
sus 14.10, p = 0.3792).

Asperger’s syndrome
Five of our ASD subjects met criteria for Asperger’s syn-
drome (a less severe form of ASD [85]), three from the
exploratory population and two from the validation
population. When evaluated separately, we found that
the results for the Asperger’s subjects were either be-
tween the ASD-only and the control subject averages or
outlying to both overall populations (see green markers
in Figs. 2, 3, 5). For the exploratory population, the alpha
ratio was 5.5 for ASD subjects excluding Asperger’s sub-
jects, 6.2 for Asperger’s subjects, and 15.2 for control
subjects; while mean density was 0.034 for ASD subjects
excluding Asperger’s subjects, 0.039 for Asperger’s sub-
jects, and 0.046 for control subjects; the mask density
was 0.10 for ASD subjects excluding Asperger’s subjects,
0.14 for Asperger’s subjects, and 0.18 for control sub-
jects. For the validation population, the alpha ratio was
4.31 for ASD subjects without Asperger’s subjects, 24.40
for Asperger’s subjects, and 14.20 for control subjects,
while mean density was 0.037 for ASD subjects without
Asperger’s subjects, 0.099 for Asperger’s subjects, and
0.041 for control subjects, and mask density was 0.113
for ASD subjects without Asperger’s subjects, 0.320 for
Asperger’s subjects, and 0.160 for control subjects. In-
clusion or exclusion of the Asperger’s subjects in the
ASD group altered the p-values reported above, did not
affect the significance of the results reported. These
observations for a small group (five) of Asperger’s sub-
jects suggest further study from a larger population is
warranted.

Data stability
In the exploratory group we examined the effects of dif-
ferences of number of epochs, number of subjects in
each population, and differences in number of subjects

at each age for the density and peak alpha ratio. We
compared ASD and control populations using the first
100 epochs, the last 100 epochs, 100 randomly selected
epochs, and in all cases found the ASD density to be
consistently significantly lower than control population
mean density. We also repeated this same analysis using
only 13 control subjects (to equal the number of ASD
subjects), randomly selected 100 times, and in each case
found changes in density and peak alpha ratio consistent
with the previous analysis. Finally, we repeated the ana-
lysis above, but first averaged subjects within each age
group, and then across the age groups, and found results
consistent with the previous analysis, both for density
and for peak alpha ratio.

Effects of the presence of sleep
To evaluate whether sleep, or lack thereof, impacted
group differences on the wake EEG, we conducted a
post-hoc analysis of the two validated biomarkers (alpha
ratio and mask score) for all subjects (exploratory and
validation) who slept versus those who did not sleep
during the EEG recording session. We found no signifi-
cant differences within the ASD and control groups. Be-
tween groups (ASD versus control) for the “sleep” and
“did-not-sleep” conditions, we found that the validated
results persisted. In addition, we note that maximum
power in the alpha band of the 4 posterior electrode de-
viations was significantly higher in the ASD subjects
compared to the control subjects, whether subjects who
did not sleep were included (p = 0.0015) or excluded (p =
0.033) from the analysis. These results do not provide evi-
dence that the presence of sleep during the EEG recording
session affected the alpha band findings. We note that
these results are consistent with our previous findings that
stable functional networks in the EEG persist across differ-
ent states of consciousness [64].

Addressing high frequency myogenic artifact contamination
Electromyogram (EMG) contamination has been shown
to impact the EEG at all frequencies [76], particularly in
the beta frequency range (i.e., 14 – 30 Hz) and above.
To evaluate for possible EMG contamination, we calcu-
lated the validated mask score measure for all subjects
with data bandpass filtered between 1–10 Hz. We found
that the mask score remained significantly different be-
tween groups (p = 0.0016), indicating that this network
biomarker was not driven by myogenic artifact.

Addressing low frequency myogenic artifact contamination
An important concern in the analysis of scalp EEG data
is the presence of muscle artifact. To assess the impact
of muscle artifact, we computed the slope of the loga-
rithmic power versus logarithmic frequency in the four
frontal electrode deviations. For normal neuronal
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population activity, this slope is known to be approxi-
mately −2 (e.g., [86]). The effect of broadband muscle
artifact is to increase this slope, i.e., to “flatten” the power
spectrum. Computing this slope for the exploratory popu-
lation from 1–15 Hz (e.g., including low frequencies
through the alpha band), we find that for each subject and
frontal electrode, the slope ranges between [−3, −1.7] in
ASD subjects, and [−3.3, −1.5] in control subjects. These
slope values are consistent with neuronal activity not
dominated by muscle artifact. Moreover, we find no sig-
nificant differences in the slope between the two groups at
any of the four frontal electrodes. These results support
the conclusions that muscle artifacts are not dominant in
the lower frequency band (1–15 Hz), and that the impact
of muscle artifact is similar in the ASD and control
groups.

Application of the weighted phase-lag index produces
similar density results
To investigate how an alternate method of coupling ana-
lysis impacts the results, we reanalyzed the combined
data using the Weighted Phase-Lag Index (WPLI) [87].
We chose this measure because of its utility for minim-
izing the effects of volume conduction [87]. We focused
the WPLI analysis on the alpha frequency range (8–12 Hz),
motivated by the spectral analysis results and the require-
ment of a relatively narrow frequency interval for a mean-
ingful calculation of phase. Using this alternate measure,
we found that the validated mask score remained signifi-
cantly different (p = 0.036) between groups (see Additional
file 2: Figure S2).

Distribution of ASD severity on validated biomarkers
The distribution of ASD severity (see Methods, Subjects
and EEG recordings) with regard to the validated bio-
markers was also examined. This preliminary analysis -
for a limited number of subjects - suggests that the severity
of ASD symptoms is correlated with the proposed bio-
markers (see Additional file 3: Figure S3). However, future
studies utilizing data collected systematically to assess ASD
severity are required to further assess the significance of
this relationship.

Discussion
In this manuscript, we described an approach to find
and validate electrophysiological biomarkers for the
quantitative identification and characterization of autism
in children. Using a validation group, we confirmed two
hypotheses: the peak alpha ratio is lower in ASD than
control subjects, and the connectivity strength of a select
group of edges is lower in ASD than control subjects.
We also performed a discriminant analysis using the
training group to train the classifier, and the validation
group to test the classifier, using our two validated

hypothesized measures: the peak alpha ratio and the
mask density, and found that the classifier was able to
successfully identify ASD subjects in the validation
data with 83 % accuracy and control subjects with
68 % accuracy. These results suggest that specific and
robust electrophysiological biomarkers of ASD exist,
and may provide an additional tool for quantitative
diagnosis of ASD.

Spectral features of ASD
Recent EEG studies on the brain rhythms that distin-
guish ASD from control subjects have produced conflict-
ing reports, in terms of power, brain location, and
frequency, including results in the alpha frequency band
[4, 16, 43, 79, 80, 88–91]. Changes in brain rhythms as-
sociated with ASD remain an active area of research,
and understanding the reasons for differences in the re-
ported changes remains a challenge. Analysis of subtle
disorders such as ASD using brain imaging is known to
be confounded by many artifacts [92]. Different results
in the reported literature may be due to differences in
task, subject population demographics, choice of EEG
reference [54], or methodology. Low statistical power in
EEG studies, caused by too few subjects, may also im-
pact the reported results [92, 93]. Moreover, the broad
category of ASD may include subject populations with
qualitatively different neurophysiology, and therefore re-
sult in the study of qualitatively different phenomenon.
The consequent difficulties of comparing results across
studies highlights the utility of studies with high subject
numbers and within study validation of hypotheses.
In this study, using data from both an exploratory

dataset group and validation test group obtained during
unconstrained states, we found no significant differences
in mean power in any frequency band between ASD and
control groups. However, we show that the peak alpha
ratio, which represents the anterior-posterior alpha
gradient, is significantly lower in the ASD group than
the control group, in both the training and validation
populations.
Higher frontal power and lower posterior power has

also been observed in relation to higher behavioral in-
hibition and lower sociability [58]. While this measure
has not been directly related to ASD, abnormal social in-
teractions is one of the main behavioral traits used to
diagnose autism [1]. In addition, a higher alpha gradient
is observed in the behavioral state of quiet wakefulness
and with brain maturation [94]. Our findings may reflect
immaturity in cortical rhythms or the decreased ability
of ASD patients to generate this behavioral state. The re-
producibility and significance of the changes in alpha
band activity reported here suggest this measure may
serve as a reliable biomarker of ASD. Future studies in-
cluding detailed behavioral assessments are needed to
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determine if alterations in this cortical measure correlate
with specific behavioral symptoms.

Network features of ASD
Much recent work has focused on the inference and
analysis of network structure in ASD [95, 96]. Typically,
this work has analyzed the anatomical connections (i.e.,
the “structural network”) between brain regions. The ana-
lysis of “functional networks” inferred from scalp EEG
data of ASD subjects is relatively sparse ([80, 91, 97, 98]
for example). Functional networks are presumed to reveal
the transient patterns in communication between brain
regions [22]. Because ASD has been postulated to be a dis-
order of communication between various brain regions,
analysis of functional networks is a natural choice. The
most frequently reported finding has been lower wide-
spread network connectivity, and occasionally higher local
connectivity in specific locations (EEG: [40, 77, 78, 89],
fMRI: [16, 18, 88], MEG: [79, 81]). However, contradictory
findings have also been reported (EEG: [36, 44, 45, 47],
fMRI: [50, 91], MEG: [79], Other/Multiple modalities:
[80, 99, 100]). Specifically, recent work has reported
higher long range connectivity in ASD subjects (fMRI:
[43, 46], Other/Multiple modalities: [80]). Connecting
EEG network findings to behavior and pathology remains
an active research challenge. To that end, lower long-
range connectivity in ASD has been related to clinical
symptoms such as reduced capacity to integrate brain
areas needed for task performance and socialization, while
higher local connectivity has been related to an increased
focus on specific tasks that is seen in the obsession with
repetitive behaviors (fMRI: [17, 101] MEG: [81]). However,
further research is required to establish definitive relation-
ships between alterations in EEG functional networks and
specific behavioral profiles.
In the exploratory phase of our study, we found that

overall connectivity, as measured by the density of func-
tional networks inferred using the cross correlation was
significantly lower in the ASD group than the control
group, consistent with reported results in the literature.
However, this finding was not reproduced in a subsequent
validation study, highlighting the uncertainty of the initial
results. Although we carefully selected patients and EEG
segments for analysis, potential explanations for this lack
of validation include the considerable measurement noise
inherent in EEG, the diversity of characteristics inherent
in ASD, and the choice of coupling analysis parameters. A
measure of density that targets specific edges revealed signifi-
cantly lower connectivity in the ASD subjects that was con-
firmed in the validation study. We therefore hypothesize that
the proposed spatially focused analysis is a more sensitive
measure, potentially omitting non-relevant brain activity that
may obfuscate the differences between the subject groups.

An EEG classifier for ASD
A primary goal of this work was to use the scalp EEG
to propose a biomarker for ASD. Using a common
quadratic discriminant analysis, trained on the training
group of subjects and tested on the validation group,
but excluding Asperger’s subjects we classified 83 % of
ASD subjects and 68 % of control subjects correctly.
There have been few previous attempts to classify ASD
subjects based on EEG data [7, 40, 97, 102]. Combined
with existing diagnosis procedures, a biomarker de-
duced from scalp EEG would provide an additional
cost-effective and relatively straightforward procedure
to improve ASD diagnosis. Ultimately, a deep under-
standing of ASD will require insight into the biological
and neurological mechanisms of the disease. However,
new biomarkers may immediately help clinicians both
diagnosis ASD and assess the severity. Although we did
not consider severity of ASD symptoms in the analysis,
we did find a broad range of deduced measure values
within the ASD population. In the peak alpha ratio and
selected edge subset weight there was considerable vari-
ation within groups. Moreover, we note that the ASD sub-
jects diagnosed with Asperger’s syndrome tended to have
peak alpha ratios and mask density values closer to the
mean control group values than the mean ASD group
values (Fig. 5). This indicates the possibility that the
proposed biomarkers, and perhaps others, could be
parametrically related to the severity of ASD symptoms.
To further test the relationship between metrics in-
ferred from electrophysiological data and disease sever-
ity remains a topic of continuing study. A complete
understanding of this relationship would benefit from
additional clinical diagnosis relating quantitative mea-
surements to severity of behavior and behavioral test
scores, behavioral analysis that includes the control
population, and more specific behavioral tasks during
recording.

Conclusions
The field of quantitative analysis of brain activity through
spectral and network analysis is a promising one. Recently,
more research has focused on the application of these
tools to electrophysiological signals for characterization of
ASD [80]. In this work, we separated two large subject
pools for the exploration of hypotheses and the subse-
quent validation of these hypotheses with a completely
naïve testing population. This study has the benefit of a
large subject pool, and represents one of very few EEG
studies conducted on children with ASD, when the condi-
tion still has the best possible prognosis for amelioration
[6]. We also used principled methods to mitigate the im-
pact of common challenges in EEG research, including
the effects of volume conduction and reference effects.
However this study was limited by a lack of recorded
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severity scale of ASD or socio-behavioral analysis for all
subjects, which might relate the level of the proposed bio-
markers to the severity of the symptoms. In addition, the
clinical data consisted of spontaneous behavior, which
means that no task was performed, and subject movement
was not stringently controlled. This lack of behavioral
constraint invariably adds noise to the data, but also has
the potential benefit of making the results more widely ap-
plicable in clinical use. We evaluated clinical EEGs obtained
under standardized recording settings for all subjects. How-
ever, it is possible that differences in vigilance between
ASD and control groups could affect the findings. Finally,
we note that subjects diagnosed with Asperger’s disease
were not removed from the analysis, which introduces an
additional variability into the ASD subject population.
In general, brain imaging research in ASD suffers from

many significant sources of potential discrepancy and
ambiguity, so it becomes essential for studies to be con-
ducted with high numbers of subjects and within study
validation. In particular, because different convergent
causes (genetically or neuro-anatomically) may result in
similar behavioral outcomes, establishing a specific rela-
tionship between imaging or biological metrics with be-
havioral diagnostic tests that measure severity of ASD
symptoms, from the most severely affected and through
the normal population [103, 104], may provide new in-
sights. Efforts to standardize the development of diag-
nostic testing in psychiatry are already underway, as
performed by Arfken et al. [105, 106], who use EEG
findings from the literature to present a systematic ap-
proach for standardizing biomarkers into clinically useful
diagnostic screens; a similar approach could potentially
be applied here. This study represents a step in the dir-
ection of finding neuroimaging metrics that clinicians
may use to diagnose ASD, and potentially measure se-
verity and decide on proper treatment approach.
We have demonstrated two biomarkers, an alpha fre-

quency power measure and a subset of edges, that sig-
nificantly differentiate between a population of ASD and
control subjects, and which were validated within study.
Although these population indicators do not provide a
definitive diagnosis of ASD, they do provide comple-
mentary quantitative tools for clinicians to supplement
existing diagnosis criteria. Moreover, these results fur-
ther support the utility of quantitative EEG analysis in
the diagnosis of ASD.

Additional files

Additional file 1: Figure S1. Cross correlation network density using
Transverse Bipolar and Hjorth-Laplacian reference montages. Cross
correlation network density was examined using transverse bipolar (top)
and Hjorth-Laplacian (bottom) reference montages as well as longitudinal
bipolar for wake and sleep data (wake data shown). The results found

were qualitatively similar to those found using the longitudinal bipolar
(double banana) montage.

Additional file 2: Figure S2. Application of the weighted phase-lag
index produces similar density results. WPLI analysis on the alpha fre-
quency range (8-12 Hz). (Left) Full network density of ASD (blue) and
control (red) groups is not significantly different (p > 0.1). (Right) Mask
density reveals a significant difference (p = 0.036) between the ASD group
(blue) and the control group (red).

Additional file 3: Figure S3. Analysis of biomarkers as a function of
ASD severity. A scatter plot of ASD subjects coded by severity (black =
severe ASD, blue = moderate ASD, green =mild ASD) and control
subjects (red) illustrates a possible correlation between severity and the
biomarkers of mask score (vertical axis) and alpha ratio (horizontal axis)
found in this study.
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