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Abstract

Background: Primary familial brain calcification is a rare autosomal dominant or recessive neurodegenerative
disease, characterized by bilateral brain calcifications in different areas of the brain. It is a clinically heterogeneous
disease and patients are reported to exhibit a wide spectrum of neurological and psychiatric symptoms. Mutations
in five genes have been identified so far including SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG. PDGFRB encodes the
platelet-derived growth factor receptor-beta, and is expressed in neurons, vascular smooth muscle cells and pericytes.
Patients with a PDGFRB mutation seem to exhibit a milder phenotype and milder brain calcification on brain imaging
than patients with SLC20A2 and PDGFB mutations. However, this is based on a few observations so far.

Case presentation: We present a Danish family with bilateral brain calcifications and mild clinical symptoms of
primary familial brain calcification, segregating with a novel PDGFRB sequence variant: c.1834G > A; p.(Gly612Arg),
detected by whole exome sequencing. The variant results in physiochemical changes at the amino acid level, and
affects a highly conserved nucleotide as well as amino acid. It is located in the tyrosine kinase domain of PDGFRβ.
Segregation analysis and in silico analyses predicted the missense variant to be disease causing.

Conclusion: Our study confirms that PDGFRB mutation carriers in general have a mild clinical phenotype, and basal
ganglia calcifications can be detected by a CT scan, also in asymptomatic mutation carriers.
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Background
Primary familial brain calcification (PFBC) is a rare pro-
gressive neurodegenerative disease, previously known as
Fahr’s disease or idiopathic basal ganglia calcification. It is
inherited in an autosomal dominant as well as an auto-
somal recessive manner, and is characterized by bilateral
calcifications in the basal ganglia and other brain regions
including the cerebellum, thalamus and the brain stem
[1]. Brain calcification is a common finding in older
people [2, 3] and can be a secondary manifestation of

different diseases [4]. However, the calcification in PFBC
is more severe than what is expected during normal aging.
PFBC is a clinically heterogeneous disease. Patients are

reported to exhibit a wide spectrum of neurological and/
or psychiatric symptoms. Most frequent symptoms seem
to be movement disorders, psychiatric symptoms, and
cognitive impairment, although some affected individuals
remain asymptomatic [1, 5].
Approximately, no more than one fourth of individuals

with a clinical diagnosis of PFBC are found to have a
heterozygous pathogenic variant in one of the four genes
known to cause autosomal dominant PFBC: SLC20A2,
PDGFRB, PDGFB and XPR1, and some may have muta-
tions in the MYORG gene related to autosomal recessive
PFBC [6].
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PDGFRB is located at 5q32 and encodes the receptor
for platelet-derived growth factor beta (PDGF-B).
PDGFRβ (Platelet-Derived Growth Factor Receptor Beta)
is expressed in neurons, vascular smooth muscle cells
and pericytes [7–9]. There seems to be a tendency of a
mild phenotype and a high proportion of asymptomatic
individuals in patients with PDGFRB variants compared
to patients with SLC20A2 and PDGFB variants [1, 5].
Ten different sequence variants in PDGFRB in patients

with PFBC have been reported so far [10]. A number of
other phenotypes have been associated with sequence
variants in PDGFRB including infantile myofibromatosis
and Kosaki overgrowth syndrome [11–13].
We detected a novel PDGFRB missense variant by

exome sequencing in a Danish family with bilateral brain
calcifications and mild clinical symptoms of PFBC.
Segregation analysis of the family could demonstrate
that basal ganglia calcifications can be detected by a CT
scan, also in asymptomatic mutation carriers.

Case presentation
The proband (III:1) is a 58-year-old woman with
paresthesia and tendency to muscle cramps in the lower
legs and feet.
She was referred to a neurologist at the age of 56

because of a sensation of warmth/cold in the lower legs
and tendency to cramp in the lower legs, especially the
feet. Neurological examination was normal. She was
born with atrial septal defect (ASD), has had rheumatoid
arthritis since the age of 28 years, has hypercholesterol-
emia, and recently she was diagnosed with anxiety.
MRI of the brain showed bilateral calcifications in the

globus pallidus, putamen, thalamus and nucleus denta-
tus, as well as diffuse white matter lesions in both cere-
bral hemispheres consistent with chronic ischemia
(leukoaraiosis). Cerebral computerized tomography (CT)
scan also showed bilateral calcifications in the basal
ganglia and cerebellum, and distinct periventricular
leukoaraiosis.
The probands mother (II:2), have paroxysmal atrial fib-

rillation, and was admitted to hospital at the age of 74
years suspected of having transient ischemic attack. She
presented with sudden blindness on both eyes and
dizziness, lasting for about 3–4 min. Neurological exam-
ination showed decreased vibratory sensation, and the
Achilles reflexes was absent bilateral. MRI of the brain
showed distinct leukoaraiosis due to ischemic demyelin-
ation. CT scan was not performed.
The monozygotic twin sister of the proband (III:2) was

admitted to hospital at the age of 49 years because of
paresthesia on the left side. Since her mid-fifties she has
had sore muscles in all four extremities. At the time of
diagnosis, she suffered from restless legs syndrome with
an urge to move the legs, unpleasant sensations in her

legs and sometimes in the hands as well, totally relieved
by the movement. Neurological examination was normal
except slight insecurity at Rombergs test. A CT scan
showed bilateral calcifications in the basal ganglia and
cerebellum, extensive periventricular leukoaraiosis.
Magnetic resonance imaging (MRI) showed white matter
lesions in both cerebral hemispheres and the brain stem.
She was also born with ASD. The two monozygotic twin
sisters are concordant with respect to the age of onset.
A younger sister (III:3), who suffers from epilepsy, was

admitted to hospital at the age of 48 years because of
transient dizziness and hemiparesis at the right side.
Both CT scan and brain MRI showed bilateral calcifica-
tions in the basal ganglia and cerebellar areas, as well as
distinct leukoaraiosis.
The probands youngest sister (III:4) is clinically

asymptomatic. Nevertheless, she has bilateral calcifica-
tions in the basal ganglia and in the nucleus dentatus on
her CT scan (Table 1, Fig. 1).
DNA from the proband and her mother was extracted

from EDTA-stabilized peripheral blood lymphocytes and
subjected to exome capture using NimbleGen SeqCap
EZ MedExome (Roche), followed by sequencing on an
Illumina NextSeq550 platform to a mean coverage of
140x, with 95% of targeted bases covered with minimum
30x coverage. Raw reads were aligned using the
Burrows-Wheeler Alignment tool v. 0.7.15 [14] and the
GATK (Genome Analysis Toolkit) Best Practice pipeline
v. 3.8–0 was used for variant calling [15]. Annotation
and filtering of variants was performed using VarSeq
2.0.2 (Golden Helix). The sequence variant has been
confirmed by bidirectional Sanger sequencing of
PDGFRB (NM_002609.3) according to standard
procedures.
Whole exome sequencing on DNA from the proband

and her mother, and bidirectional Sanger sequencing of
PDGFRB in III:2, III:3 and III:4, showed heterozygosity
for a novel sequence variant, c.1834G>A; p.(Gly612Arg)
in PDGFRB. The sequence variant is located in exon 13
within the tyrosine kinase domain [Table 2], and can be
classified as likely pathogenic class 4 variant according
to the American College of Medical Genetics and Gen-
omics and the Association for Molecular Pathology [16].
A CADD score of 29.5 further support the pathogenicity
of the variant [17].
The clinical findings in the present family are compatible

with the phenotype associated with variants in PDGFRB
(Fig. 1, Table 1).

Discussion and conclusion
We present a family with mild clinical signs of PFBC, in
which a not previously reported heterozygous sequence
variant in PDGFRB was found to segregate. The variant,
c.1834G>A; p.(Gly612Arg), is located in exon 13 and
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results in a glycine being substituted by an arginine in
the tyrosine kinase domain of PDGFRβ. Glycine at
amino acid position 612 in PDGFRβ is evolutionary
conserved to Fruit fly (Fig. 2). Conversion to arginine re-
sults in a physiochemical change, and is predicted to be
disease causing by the in silico program MutationTaster
[18], deleterious by SIFT [19] and probably damaging by

PolyPhen-2 [20]. It is most likely that heterozygosity for
this variant explains the phenotype of the affected family
members, who presented with a mild clinical phenotype
of PFBC, but widespread calcifications on a CT-scan.
PDGFRβ is a cell-surface tyrosine kinase receptor. It

consists of an intracellular tyrosine-kinase domain and
five extracellular immunoglobulin loops [21]. Activation

Table 1 Clinical features and imaging findings of family members heterozygous for the PDGFRB sequence variant

Patient Age at onset of clinical
symptoms, years

Age at
evaluation, years

Clinical features CT scan MRI

II:2 NA 74 TIA
Atrial fibrillation
Decreased
vibratory sensation

ND Leukoaraiosis

III:1 54 56 Anxiety
Paresthesia
Tendency to
cramp in feet.
Congenital ASD

Basal ganglia, cerebellum, distinct
periventricular leukoaraiosis.

Pa, Pu, T, D
Diffuse white matter lesions at temporal
horns, corona radiata, centrum semiovale,
subcortical and periventricular consistent
with chronic ischemia

III:2 49 56 Paresthesia
Sore muscles
Congenital ASD

Basal ganglia, cerebellum, distinct
leukoaraiosis

WM lesions in both cerebral hemispheres
and brain stem

III:3 48 48 Epilepsy
Transient dizziness
and hemiparesis

Basal ganglia and cerebellar areas ND

III:4 52 None Ca, lentiformis, D ND

Abbreviations: NA = not applicable, ND = not done, Ca = caudate calcifications, D = dentate calcifications, Pa = globus pallidus calcifications, Pu = putamen
calcifications, T = thalamic calcifications; TIA = transient ischemic attack
All calcifications mentioned in the table are bilateral

Fig. 1 Pedigree of the family. The proband is marked with an arrow, filled symbols indicate individuals with brain calcification on CT, + indicate
mutation carriers
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of PDGFRβ results in dimerization of the receptor and
autophosphorylation of tyrosine residues. This further
activates downstream signaling pathways which mediates
cellular proliferation, differentiation, survival, and migra-
tion [21].
The intracellular protein tyrosine kinase domain

mediates the intrinsic functions of the activated PDGFRβ
receptor, thus altered phosphorylation at the tyrosine
kinase domain may induce impaired signaling in the
PDGF-B/PDGFRβ pathway. A functional study concluded
that missense variants in the tyrosine kinase domain of
PDGFRβ directly interfere with autophosphorylation
of the PDGFRβ receptor [22]. Furthermore, several
studies have shown that in patients with PFBC,

PDGFB and PDGFRB variants lead to decreased
PDGF-B/PDGFRβ signaling [22–24]. In contrast, in-
creased signaling is associated with cancers, infantile
myofibromatosis, Kosaki overgrowth syndrome and
Penttinen syndrome [11–13, 25, 26].
The amino acid substitution, p.(Gly612Arg), as

detected in all family members with CT scans in accord-
ance with a diagnosis of PFBC in the present family, is
located in the intracellular tyrosine kinase domain, and
is predicted to impair the PDGF-B/PDGFRβ pathway.
Two pathophysiological hypotheses for the molecular

mechanism of PFBC caused by PDGFRB mutations have
been suggested. Loss of function of PDGFRB could
induce calcium depositions in the brain, by impairing

Table 2 Variants reported in PDGFRB and associated with PFBC

Nucleotide substitution
(Ref.)

Amino acid
substitution

Exon Domain affected Global allele frequency
(gnomAD)

In silico analysis

c.3G>A [30] p.(Met1Ile) 2 Initiation codon No data SIFT: damaging
MutationTaster: polymorphism
PolyPhen-2: benign

c.676C>T [31] p.(Arg226Cys) 5 Extracellular, Ig-like C2-type
3

No data SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.1126C>T [32] p.(Arg376Trp) 7 Extracellular, Ig-like C2-type
4

0.00000829/2 SIFT: deleterious
MutationTaster: disease causing
PolyPhen2: probably damaging

c.1787C>T [31] p.(Pro596Leu) 12 Tyrosine kinase domain 0.00080/2 SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.1834G>A (*) p.(Gly612Arg) 13 Tyrosine kinase domain No Data SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.1973 T>C [27] p.(Leu658Pro) 14 Tyrosine kinase domain No data SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.2083C>T [22] p.(Arg695Cys) 15 Tyrosine kinase domain 0.000110/27 SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.2209G>A [30] p.(Asp737Asn) 16 Tyrosine kinase domain 0.00000406/1 SIFT: Tolerated
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.2531A>G [31] p.(Asp844Gly) 18 Tyrosine kinase domain No data SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.2959C>T [27] p.(Arg987Trp) 22 – 0.0000285/7 SIFT: deleterious
MutationTaster: disease causing
PolyPhen-2: probably
damaging

c.3212A>T [5] p.(Glu1071Val) 23 – No data SIFT: Tolerated
MutationTaster: disease causing
PolyPhen-2: possibly damaging

*Detected in the present study
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the integrity of the blood-brain barrier. This hypothesis
might be supported by the functional studies, who found
that PDGFRB variants and PDGFB variants associated
with PFBC results in loss/reduced function of the gene
product [22–24]. Another hypothesis suggests that an
activating mutation could induce brain calcifications
directly through influence of the PDGF-Pit-1 pathway
[27]. Although different hypotheses have been sug-
gested, it is not yet clear how impaired PDGF-B/
PDGFRβ signaling leads to microvascular calcification
in the brain [24, 27].
In patients with PFBC, expressivity is highly variable

in symptoms, age of onset (median 31 years, range 6–77
years) [28] and severity of symptoms, even within the
same family. A systematic review by Tadic et al., showed
that the penetrance of the imaging phenotype is 100%,
however the penetrance of the clinical phenotype is re-
duced to 61% [1]. Especially patients with a PDGFRB
mutation seem to exhibit a mild clinical phenotype and
have the highest proportion of asymptomatic individuals
[1]. This is consistent with the findings in the present
study, where family members with the sequence variant
presented with a mild clinical phenotype of PFBC with
few or no neurological symptoms, but all who were
evaluated with a CT scan presented with calcifications
on brain imaging (Table 1).
According to Nicolas et al., no correlation is found

between location of calcification and symptoms, nor
between the extent of calcification and the severity of
symptoms [5]. However, it has been observed that the
severity of calcifications is higher in symptomatic versus
asymptomatic people [5, 29]. Furthermore, it has been
reported that PDGFRB mutation carriers seem to have a
milder brain calcification [28].
In conclusion, we report a novel heterozygous mis-

sense variant, c.1834G>A; p.(Gly612Arg) in PDGFRB in
a family with a mild form of PFBC. Our study confirms
that PDGFRB mutation carriers in general may have a

mild clinical phenotype, and basal ganglia calcifications
can be detected by a CT scan also in asymptomatic
mutation carriers.
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