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Abstract 

Background:  Growing evidence suggests a mutual interaction between gut microbiome alterations and ALS patho-
genesis. However, previous studies were susceptible to potential confounding factors and reverse causation bias, 
likely leading to inconsistent and biased results.

Objectives:  To decipher the potentially mutual relationship between gut microbiota and ALS, we used a bidirec-
tional two-sample MR approach to examine the associations between the gut microbiome and ALS.

Results:  Using the inverse variance-weighted method, OTU10032 unclassified Enterobacteriaceae species-level OTU 
and unclassified Acidaminococcaceae were associated with a higher risk of ALS (per relative abundance: OR, 1.04; 95% 
CI, 1.01–1.07; P = 0.011 and OR, 1.02; 95% CI, 1.01–1.04; P = 0.009, respectively). Importantly, Gamma-Glu-Phe was 
showed potential deleterious effects on the risk of ALS (genetically predicted per a 1-standard deviation increase in 
the level of Gamma-Glu-Phe: OR, 1.96; 95% CI, 1.50–2.55; P = 0.012). Sensitivity analysis of the two candidate genera 
and metabolites using the MR-Egger and weighted-median methods produced similar estimates, and no horizontal 
pleiotropy or outliers were observed. Intriguingly, genetically predicted ALS was associated with an increase in the 
relative abundance of OTU4607_Sutterella (per 1-unit higher log odds: β, 2.23; 95% CI, 1.27–3.18; P = 0.020) and Lacto-
bacillales_ORDER (per 1-unit higher log odds: β, 0.51; 95% CI, 0.09–0.94; P = 0.019).

Conclusions:  Our findings provide novel evidence supporting the bidirectional relationship between the gut 
microbiota and ALS. These results may contribute to designing microbiome- and microbiome-dependent metabolite 
interventions in future ALS clinical trials.

Keywords:  Amyotrophic lateral sclerosis, Gut microbiota, Gamma-glutamyl amino acids, Bidirectional relationships, 
Two-sample Mendelian randomization
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Background
Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative motor neuron disease accompanied by both 
systemic and central nervous system–specific inflamma-
tion as well as energy dysmetabolism [1–3]. Structural 
components of the bacteria and various metabolites (pro-
inflammatory cytokines or anti-inflammatory) secreted 
by the gut microbiota can stimulate or inhibit a cascade 
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of inflammatory pathways on both a local and systemic 
scale [4]. Additionally, by-products of metabolic pro-
cesses in bacteria, including some short-chain fatty acids, 
can play a role in inhibiting inflammatory processes [5]. 
These local and systemic inflammatory, which in turn 
could lead to perturbed gut-microbiota (dysbiosis) and 
increased intestinal permeability (leaky-gut) [6]. These 
potential pathogenetic factors have recently been found 
to mutually interact with the gut microbiota [7, 8], sug-
gesting that the gut microbiota could be involved in the 
development of the disease and be affected by the disease 
vice versa (Fig. 1).

Observational studies have shown that the interface 
between the host and the gut microbiome may be altered 
in mouse models of ALS [9, 10], including impaired gut 
barrier function and a dysbiotic microbiome configu-
ration that can be partially corrected by butyrate sup-
plementation [10]. Studies of whether gut microbiome 
dysbiosis occurs between ALS patients and healthy 
controls have yielded conflicting results [11–13]. Nota-
bly, a recent study [14] of 11 distinct commensal bac-
teria based on their individual supplementation into 

antibiotic-treated Sod1-Tg mice found that Akkerman-
sia muciniphila (AM) and AM-associated nicotinamide 
ameliorate symptoms of ALS. In humans, distinct micro-
biome and metabolite configurations have been observed 
in a small preliminary study that compared 37 patients 
with ALS with household controls [14].

Growing but conflicting evidence is attractive, rais-
ing the hypothesis of a mutual interaction between gut 
microbiome alterations and ALS pathogenesis. How-
ever, it has been difficult to determine whether these 
changes in the intestinal microbiota are causative of 
ALS disease, an exacerbating factor for disease, or a 
consequence of disease. The composition and diversity 
of the gut microbiome can be easily altered as a result 
of bacterial infections, antibiotic treatment, lifestyle 
changes, surgery, and long-term changes in diet [4]. 
Available evidence is in large part inadequate, as obser-
vational studies are susceptible to these potential con-
founding and reverse causation biases, which can lead 
to inconsistent and biased results [15–17]. To some 
extent, data from antibiotic-treated Sod1-Tg mice could 
demonstrate causal relationships but are scarce, and the 

Fig. 1  Graphic Abstract



Page 3 of 10Zhang et al. BMC Neurology            (2022) 22:8 	

number of commensal bacteria that have been investi-
gated is limited [14].

The Mendelian randomization (MR) approach is a 
widely used genetic epidemiological method for assess-
ing causal associations between risk factors and disease 
by exploiting genetic variants as instrumental variables 
(IVs) for exposure [18–20]. This approach is less likely to 
be affected by the confounding or reverse causation bias 
that exists in observational findings.

Therefore, to decipher the potentially mutual rela-
tionship between the gut microbiota and ALS, we used 
a bidirectional two-sample MR approach to examine 
the associations between the gut microbiome and ALS 
(Fig. 2). Notably, the gut microbiome is remote from the 
disease site of ALS, it is suggested that a potential sys-
temic influx of microbiome-regulated metabolites may 
affect the susceptibility of motor neurons in ALS. We also 
estimated the effects of potential metabolites on ALS in 
MR design.

Methods
The detailed approach of selection of IVs for expo-
sures, genome-wide association study (GWAS) sum-
mary statistics for ALS, and MR analysis were previously 
described [21]. The MR approach we used was based 
on the following three assumptions: 1) genetic variants 
(single nucleotide polymorphisms (SNPs)) used as IVs 
are associated with exposures; 2) genetic variants are 

not associated with confounders; and 3) genetic variants 
influence the risk of outcomes only through interested 
exposures, not through other pathways [22] (Fig.  2). 
The IVs (F statistic > 10) for all the exposures were suf-
ficiently informative [23].

Genetically predicted gut microbiota genera
Genetic instruments of the abundance of 98 genera of 
gut microbiota at the level of genome-wide significance 
(P < 5 × 10− 8) were obtained from available GWAS data 
of stool samples in humans [24]. As a result, indepen-
dently significant SNPs were identified for 22 genera 
of the gut microbiota, but no significant genetic vari-
ants were found for the remaining 76 genera of the gut 
microbiota.

If an SNP was not available for an outcome, a highly cor-
related proxy SNP (r2 > 0.9) (https://​ldlink.​nci.​nih.​gov/) was 
used instead, if available. We checked the phenotypes of 
selected SNPs using comprehensive genotype-to-pheno-
type cross-references (GWAS Catalog [25]) and repeated 
the analysis with potentially pleiotropic SNPs excluded. We 
calculated SNP-specific F statistics as a quotient of squared 
SNP-genus association and its variance [26].

Genetically predicted gut microbial metabolites
A transsynaptic, glutaminergic, excitotoxic mecha-
nism (the so-called dying-forward hypothesis) has been 

Fig. 2  Schematic representation of the study

https://ldlink.nci.nih.gov/
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proposed as a pathophysiological biomarker in ALS [27]. 
We therefore used 18 potential blood metabolites that 
might have causal effects on the development of ALS, 
including a group of gamma-glutamyl amino acids [28]. 
The candidate metabolites were identified among 486 
untargeted serum metabolites from Shin’s study [29]. A 
total of 7824 adult individuals from 2 European cohorts 
were included in the GWAS analysis. Metabolomics data 
were acquired based on nontargeted mass spectrometry 
analysis of human fasting serum [29].

For each of the metabolites, we selected SNPs that 
showed an association at P < 1 × 10− 5 as candidate IVs of 
the specific metabolite. Then, a clumping procedure was 
conducted with European 1000G as a reference panel to 
identify the independent variants, with a linkage disequi-
librium threshold of r2 < 0.01 in a 500-kb window.

Genetically predicted ALS
We drew on summary statistics from the largest and 
most recent GWAS of ALS [30] patients who were 
defined as having been diagnosed with probable or defi-
nite ALS according to the El Escorial criteria (Brooks, 
1994) by a neurologist specializing in ALS. This GWAS 
of ALS involving 20,806 patients and 59,804 controls of 
European ancestry identified 10 independent genome-
wide significant SNPs at the level of P < 5 × 10− 8 [30].

Statistical analysis
For each direction of the potential relationship, we com-
bined MR estimates using an inverse variance-weighted 
method (IVW) meta-analysis, which essentially trans-
lates to a weighted regression of SNP outcome effects on 
SNP exposure effects where the intercept is constrained 
to zero. The IV assumptions can be biased if instru-
ment SNPs show horizontal pleiotropy, influencing the 
outcome through causal pathways other than exposure 
[22]. Therefore, other established MR methods, includ-
ing weighted, weighted median mode, and MR Egger 
regression, were also applied to confirm the IVW results 
(number of SNPs ≥3) because their estimates are known 
to be relatively robust to horizontal pleiotropy, although 
at the cost of reduced statistical power [31]. MR Egger 
regression allows the intercept to be freely estimated as 
an indicator of average pleiotropic bias. Effect estimates 
are reported in β values when the outcome is continuous 
(i.e., the abundance of each genus of gut microbiota) and 
are converted to ORs when the outcome is dichotomous 
(i.e., ALS status).

To assess the robustness of significant results, we con-
ducted further tests for horizontal pleiotropy using meta-
analytic methods to detect heterogeneous outcomes, 
including leave-1-SNP-out analyses and the MR Egger 
intercept test of deviation from the null [32].

The analyses were performed with R version 3.1.1 
(R foundation) and Stata version 11.2 (Stata Corp, Col-
lege Station, TX). All human research was approved by 
the relevant institutional review boards and conducted 
according to the Declaration of Helsinki. Ethical approval 
was obtained from relevant Research Ethics Committees 
and from the review boards of Peking University Third 
Hospital.

Results
Effects of genetically predicted gut microbiota on ALS
The resulting lists of instrument SNPs for each genus of 
gut microbiota are given in Table 1.

On the basis of 2 independent SNPs, OTU10032 
unclassified Enterobacteriaceae was associated with a 
higher risk of ALS (per relative abundance: OR, 1.04; 95% 
CI, 1.01–1.07; P = 0.011) (Fig. 3, eFigure 1). Additionally, 
on the basis of 4 uncorrelated SNPs, unclassified Acid-
aminococcaceae was associated with a higher risk of ALS 
(per relative abundance: OR, 1.02; 95% CI, 1.01–1.04; 
P = 0.009) (Fig. 3, eFigure 2). The independent SNPs for 
two genera with r 2 = 0 are listed in eTable  1. Sensitiv-
ity analysis for the two candidate genera using the MR-
Egger and weighted-median methods produced similar 
estimates, and no horizontal pleiotropy or outliers were 
observed (eTable 2–3).

Importantly, gamma-glutamyl amino acids showed 
potential deleterious effects on the risk of ALS. Gamma-
glutamylphenylalanine (Gamma-Glu-Phe), a peptide in 
the gamma-glutamyl pathway, showed a significantly 
increased risk of ALS (genetically predicted per 1-stand-
ard deviation (SD) increase in the level of Gamma-Glu-
Phe: OR, 1.96; 95% CI, 1.50–2.55; P = 0.012) (Fig.  4). 
In addition, two metabolites, 1-arachidonoyl-GPI and 
3-methyl-2-oxobutyrate, were also estimated to be asso-
ciated with a higher risk of ALS, with a genetically pre-
dicted per 1-SD increase in levels: OR, 1.64; 95% CI, 
1.37–1.96; P = 0.005 for 1-arachidonoyl-GPI and OR, 
2.78; 95% CI, 1.98–3.90; P = 0.003 for 3-methyl-2-ox-
obutyrate. The results also showed that a genetically pre-
dicted increase in the levels of 4-acetamidobutanoate 
may lower the risk of ALS (per 1-SD increase in lev-
els: OR, 0.49; 95% CI, 0.36–0.66; P = 0.020). Sensitiv-
ity analysis for the metabolites using the MR-Egger and 
weighted-median methods produced similar estimates, 
and no horizontal pleiotropy or outliers were observed 
(eTable 4).

Effects of genetically predicted ALS on gut microbiota
On the basis of 2 independent SNPs, genetically pre-
dicted ALS was associated with an increase in the rela-
tive abundance of OTU4607_Sutterella (per 1-unit 
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Fig. 3  Odds ratio for association of genetically predicted gut microbiota with amyotrophic lateral sclerosis. OR: odds ratio; CI: confidence internal. 
OR (95% CI) means risk of amyotrophic lateral sclerosis per 1-allele increase in single nucleotide polymorphisms related to greater abundance of gut 
microbiota

Fig. 4  Causal effect of microbiome-dependent metabolites on the risk of ALS. OR: odds ratio; CI: confidence internal
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higher log odds: β, 2.23; 95% CI, 1.27–3.18; P = 0.020). 
The risk of ALS on each OTU4607_Sutterella-related 
SNP effect was estimated and is shown in eFigure 3. Sim-
ilarly, on the basis of 2 independent SNPs, genetically 
predicted ALS was associated with an increase in the 
relative abundance of Lactobacillales_order (per 1-unit 
higher log odds: β, 0.51; 95% CI, 0.09–0.94; P = 0.019). 
Single Lactobacillales_ORDER-related SNP effect was 
estimated and is shown in eFigure  4. The estimated 
effects of ALS on the microbiota of each genus are listed 
in eTable  5. No horizontal pleiotropy or outliers were 
observed.

Discussion
This study assessed the causal effects of potential micro-
biome modulators of human ALS and added intriguing 
evidence implicating some genera of the gut microbiome 
in modifying susceptibility to ALS. These genera attenu-
ate ALS risk through gamma-glutamyl-related metabolite 
levels, supporting that a trans-synaptic, glutaminergic, 
excitotoxic mechanism could provide a pathogenic basis 
for ALS. These results may contribute to designing 
microbiome- and microbiome-dependent metabolite 
interventions in future ALS clinical trials. We further 
provide genetic evidence that the pathophysiology of 
ALS is associated with an altered relative abundance of 
the microbiota, strengthening the bidirectional relation-
ship between the gut microbiota and ALS.

The gut microbiome is a source of these poten-
tially disease-modifying bioactive metabolites and has 
recently been suggested to contribute to the pathogen-
esis of neurological disorders [33, 34]. The family Enter-
obacteriaceae includes over 30 genera and 120 species 
of Enterobacteriaceae, but more than 95% of clinically 
significant strains fall into 10 genera and fewer than 25 
species. All members of the Enterobacteriaceae fam-
ily ferment glucose with acid production and nitro-
gen metabolism. Glutamine synthetases (GSs) are key 
enzymes of nitrogen metabolism, and their activity is 
modulated by nitrogen repression [35]. Acidaminococ-
caceae, an important glutamate-fermenting family of 
microbes, produces ammonia as the major end prod-
uct through glutamate fermentation [36]. It is possible 
that alterations in the microbiomes of the two genera 
lead to changes in gamma-glutamyl-related metabolite 
levels. Circulating bioactive gamma-glutamyl-related 
metabolite levels produced by the gut microbiome per-
meate the blood–brain barrier, after which they can play 
important roles in the pathogenesis of brain-related dis-
eases [37].

Our study showed that higher ALS susceptibil-
ity was associated with a higher relative abundance of 

OTU4607_Sutterella and Lactobacillales_ORDER. In 
previous studies, gut dysbiosis, particularly reduced lev-
els of butyrate-producing bacteria and higher E. coli and 
Enterobacteria abundance, was also found in ALS mice 
and ALS patients [9, 38]. Furthermore, butyrate and 
short-chain fatty acids (SCFAs) produced by gut microbi-
ota have been proposed as promising potential therapeu-
tic agents affecting ALS progression [39, 40]. However, 
unravelling the interplay between the gut microbiome 
and ALS is imperative, and more direct evidence and 
results are needed to clarify how the gut microbiota 
improves or aggravates ALS.

There are several strengths in the present study, includ-
ing the assessment of genera of gut microbiota and promis-
ing metabolites in relation to ALS, the use of data from the 
largest GWASs to date and bidirectional MR design. This 
design technique minimizes confounding by known and 
unknown factors and avoids reverse causation. In addition, 
consistent results from several sensitivity analyses, includ-
ing the use of weighted mode, weighted median, and MR-
Egger methods, indicate the robustness of our findings. 
Several limitations merit consideration. First, we used a 
limited number of gut microbiota and ALS SNPs as IVs; we 
cannot exclude that our findings might have been affected 
by weak instrument bias, although all genetic instruments 
were associated with exposure (F-statistic > 10). Second, 
another potential source of bias in MR analyses is popula-
tion stratification. We reduced this bias because the dataset 
for gut microbiota, metabolites and ALS was restricted to 
individuals of European ancestry. Replication with func-
tionally relevant genetic prediction of gut microbiota is 
warranted given the substantial difference in gut micro-
biota composition among different populations. Finally, 
16S rRNA gene sequencing only permits resolution from 
the genus to the phylum level rather than at a more spe-
cific level, resulting in biased results if some specific species 
contributed to ALS.

Conclusion
Our findings provide novel evidence supporting the 
bidirectional relationship between the gut microbiota 
and ALS and highlight that a transsynaptic, glutaminer-
gic, excitotoxic mechanism could provide a pathogenic 
basis for ALS. These results may contribute to design-
ing microbiome- and microbiome-dependent metabolite 
interventions in future ALS clinical trials.

Abbreviations
ALS: Amyotrophic lateral sclerosis; MR: Mendelian randomization; AM: Akker-
mansia muciniphila; IVs: Instrumental variables; IVW: Inverse variance-weighted 
method; SNPs: Single nucleotide polymorphisms; GWASs: Genome-wide 
association studies; OR: Odds ratio; GS: Glutamine synthetases.
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fied Acidaminococcaceae with amyotrophic lateral sclerosis. Squares rep-
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intervals (CIs); diamond represent the overall odds ratio with its 95% CI.

Additional file 8: eFigure 3. Association of genetically predicted amyo-
trophic lateral sclerosis with OTU4607 Sutterella. Squares represent the 
effect estimates of the relative abundance ofOTU4607 Sutterellaper 1-unit 
higher log odds of amyotrophic lateral sclerosis; horizontal lines represent 
95% confidence intervals (CIs); diamond represent the effect size with its 
95% CI.

Additional file 9: eFigure 4. Association of genetically predicted amyo-
trophic lateral sclerosis with Lactobacillalesorder. Squares represent the 
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95% confidence intervals (CIs); diamond represent the effect size with its 
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