
Chen et al. BMC Neurology           (2022) 22:16  
https://doi.org/10.1186/s12883-021-02541-w

RESEARCH

A predictive model for postoperative 
progressive haemorrhagic injury in traumatic 
brain injuries
Tiange Chen1†, Siming Chen1†, Yun Wu1, Yilei Chen1, Lei Wang2 and Jinfang Liu1* 

Abstract 

Background:  Progressive haemorrhagic injury after surgery in patients with traumatic brain injury often results in 
poor patient outcomes. This study aimed to develop and validate a practical predictive tool that can reliably estimate 
the risk of postoperative progressive haemorrhagic injury (PHI) in patients with traumatic brain injury (TBI).

Methods:  Data from 645 patients who underwent surgery for TBI between March 2018 and December 2020 were 
collected. The outcome was postoperative intracranial PHI, which was assessed on postoperative computed tomog-
raphy. The least absolute shrinkage and selection operator (LASSO) regression model, univariate analysis, and Delphi 
method were applied to select the most relevant prognostic predictors. We combined conventional coagulation test 
(CCT) data, thromboelastography (TEG) variables, and several predictors to develop a predictive model using binary 
logistic regression and then presented the results as a nomogram. The predictive performance of the model was 
assessed with calibration and discrimination. Internal validation was assessed.

Results:  The signature, which consisted of 11 selected features, was significantly associated with intracranial PHI 
(p < 0.05, for both primary and validation cohorts). Predictors in the prediction nomogram included age, S-pressure, 
D-pressure, pulse, temperature, reaction time, PLT, prothrombin time, activated partial thromboplastin time, FIB, and 
kinetics values. The model showed good discrimination, with an area under the curve of 0.8694 (95% CI, 0.8083–
0.9304), and good calibration.

Conclusion:  This model is based on a nomogram incorporating CCT and TEG variables, which can be conveniently 
derived at hospital admission. It allows determination of this individual risk for postoperative intracranial PHI and will 
facilitate a timely intervention to improve outcomes.
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Background
Nearly 50 million people worldwide suffer from trau-
matic brain injury (TBI) each year [1]. According to a 
study by the Global Burden of Disease, the prevalence 

of TBI increased by 8.4% between 1990 and 2016 
[2].C,oagulopathy is a common complication of TBI and 
is associated with an increased morbidity and mortality 
[3]; it has an estimated incidence of 7–63% [4, 5]. Coagu-
lopathy is often the main cause of postoperative progres-
sive haemorrhagic injury (PHI) [6, 7]. For patients who 
have undergone surgery after TBI, intracranial PHI often 
leads to increased intracranial pressure and cerebral her-
niation, further threatening the patients’ lives. Studies 
have shown that the mortality rate of patients with PHI 

Open Access

*Correspondence:  jinfang_liu@csu.edu.cn
†Tiange Chen and Siming Chen should be considered as co-first authors.
1 Department of Neurosurgery, Xiangya Hospital, Central South 
University, No.87 Xiangya Road, Changsha, Hunan 410008, People’s 
Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-021-02541-w&domain=pdf


Page 2 of 9Chen et al. BMC Neurology           (2022) 22:16 

is nine times higher that of patients without PHI [8]. The 
incidence of PHI in patients with craniocerebral trauma 
is approximately 23% [9, 10].

Predicting the outcome of this condition is challeng-
ing because of the complex mechanism of coagulopathy 
and the lack of uniform diagnostic and evaluation cri-
teria. Routine laboratory indicators for clinical detec-
tion of coagulopathy mainly include prothrombin time 
(PT), activated partial thromboplastin time (APTT), 
international normalised ratio (INR), and platelet count, 
jointly called conventional coagulation test (CCT) find-
ings. Although widely used, CCTs have several limi-
tations. First, the determination of platelet count and 
fibrinogen can only reflect quantity, not function. Sec-
ond, PT, APTT, and INR can reflect the disturbance of 
a single pathway but cannot be used to assess the com-
plex interaction between multiple pathways and the 
overall coagulation function [11].Many hospitals also 
use thromboelastography (TEG) for the clinical detec-
tion of coagulation diseases; the measures used in TEG 
include reaction time (R), kinetics time (K), α angle, max-
imum amplitude (MA), percent lysis 30 min after MA, 
and coagulation index. As a measure of clot strength, 
TEG does not rely on biochemical pathways affecting 
coagulation [12]. Windelov et  al. showed that TEG was 
more effective than CCT in predicting poor prognosis in 
patients with craniocerebral trauma [13]. Other studies 
have shown that TEG can provide information on coagu-
lation function faster than CCT can, thus enabling timely 
correction of coagulation dysfunction in patients with 
craniocerebral trauma [14, 15].

Therefore, CCT together with TEG can effectively 
reflect the quantity and quality of coagulation factors and 
platelets, reflect the speed and intensity of clot forma-
tion, and, thus, reflect the overall coagulation function. A 
clinical prediction model based on CCT and TEG could 
enable clinicians to intuitively understand the coagula-
tion function of patients with craniocerebral trauma, 
provide a basis for component blood transfusion, reduce 
occurrence of postoperative PHI, and improve the prog-
nosis of patients. To this end, we developed and validated 
a clinical prediction model to support the management 
of postoperative coagulopathy in patients with TBI.

Methods
Patients
We collected the clinical medical records and imaging 
data of 645 TBI patients admitted to the Department of 
Neurosurgery, Xiangya Hospital, Central South Univer-
sity from March 2018 to December 2020 who met the 
following inclusion criteria: (1) a clear history of head 
trauma, (2) age ≥ 18 years, (3) hospital admission within 
72 h after injury, and (4) need for surgical treatment. The 

exclusion criteria were: (1) use of antiplatelet (such as 
aspirin and clopidogrel) or anticoagulant drugs (such as 
warfarin); (2) severe multiple organ failure; (3) associated 
hematologic system diseases; (4) hemodynamic insta-
bility during admission to the intensive care unit (heart 
rate < 50 beats/min or systolic blood pressure < 90 mmHg 
or mean arterial pressure < 65 mmHg); (5) severe multiple 
injuries (ISS ≥ 25 points); (6) previous central nervous 
system diseases (such as stroke and brain tumour); (7) 
pregnancy; and (8) incomplete clinical data.

Data extraction
The clinical data, including demographic characteristics, 
Glasgow Coma Scale (GCS) score upon admission, pupil 
diameter, light reflex, and postoperative CCTs and TEG 
findings, were extracted from the hospital’s case manage-
ment system.

Statistical analysis
All statistical analyses were conducted using the R soft-
ware (version 4.0.3; https://​www.​Rproj​ect.​org). Demo-
graphic data of the patients were evaluated by T test and 
X2 test. For continuous variables, t-test is used for com-
parison, and for categorical variables, X2 test is used. The 
reported statistical significance levels were all two-sided, 
with statistical significance set at 0.05.

Outcome measures
All patients underwent a computed tomography (CT) 
scan within 6 h postoperatively to determine if there 
was any bleeding in the surgical area. Subsequently, CT 
scans were performed from 6 h after surgery to the time 
of discharge as needed to determine whether PHI had 
occurred.

Our outcome was postoperative intracranial PHI, 
which was defined as a intracranial haemorrhage on any 
subsequent postoperative computed tomography (CT) 
scan that was not seen in the initial scan or the amount 
of bleeding in the original site was 25% higher than that 
in the previous CT scan [16, 17]. We divided the patients 
into two groups according to the above criteria, namely 
PHI group and non-PHI group.

Predictor variables
We screened several features from 16 candidate predic-
tors (i.e. age, gender, S-pressure, D-pressure, pulse, tem-
perature, GCS score, R, K, αangel, MA, PLT, PT, APTT, 
FIB), which were consistently associated with the out-
come of PHI, using the least absolute shrinkage and selec-
tion operator (LASSO) binary logistic regression model, 
univariate analysis, and the Delphi method for inclusion 
in the prediction models [18]. We log transformed values 
for continuous variables, such as temperature and K.

https://www.rproject.org
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Model development
The association between predictor variables and out-
comes was analysed using logistic regression models. 
Prognostic strength was quantified as odds ratios (ORs) 
with 95% confidence intervals (CIs). In order to facilitate 
clinical application, we established a nomogram based 
on binary logic analysis. Receiver operating characteris-
tic (ROC) curves were drawn to evaluate the predictive 
value of the model.

Model performance
An ROC curve was plotted using R software, and the 
ability of the model to discriminate between patients 
with PHI and without PHI was assessed using an area 
under the receiver operator characteristics (AUC) curve 
analysis. A perfect model would have an AUC of 1.

Model validation
Internal validation evaluates the stability of a prediction 
model against random changes in sample composition. 
Due to limitation of samples, external validation is not 
appropriate in our study. Internal validation was per-
formed using the bootstrap resampling technique, where 
regression models were fitted in 100 bootstrap replicates 
drawn with replacement from the development sample. 
The model was refitted in each bootstrap replicate and 
tested on the original sample to estimate optimism in 
model performance.

All methods were performed in accordance with the 
TRIPOD statement published in 2015 [19].

Results
Clinical characteristics
Patient characteristics are shown in Table  1. We col-
lected data of 645 patients treated in the Neurosurgical 
intensive care unit of Xiangya Hospital. A total of 153 
patients and 247 patients were excluded because of lack 
of TEG, PT, APTT tests data information, respectively. 
One patient was excluded because outcome data was 
not available (Fig.  1). In total, 203 patients did not suf-
fer intracranial PHI after surgery, but it was observed 
in 41 patients. There was no statistical difference in the 
distributions of age, sex, D-pressure, pulse, temperature, 
GCS score, R value, K value, angle, and MA between the 
two groups (PHI group and non-PHI group). S-pressure 
(p =  0.04), PLT (p < 0.001), APTT (p < 0.001), and FIB 
(p = 0.003) were significantly associated with postopera-
tive intracranial PHI.

Feature selection
In total, 16 candidate features were extracted from TEG 
and CCT variables. Of these, 11 potential predictors 
were selected on the basis of 244 patients in the cohort 
(Fig.  2). The predictors were selected by the LASSO 
logistic regression model were non-zero coefficients 
(Fig.  3). Based on the advice of experienced professor 

Table 1  Demographic and clinical characteristics of the study population

APTT activated partial thromboplastin time, FIB fibrinogen, GCS Glasgow Coma Scale, IQR interquartile range, INR international normalised ratio, K kinetics time, MA 
maximum amplitude, PHI progressive haemorrhagic injury, PLT platelets, PT prothrombin time, R reaction time, SD standard deviation

Characteristic PHI (+) PHI (−) p-value

Age, mean ± SD, years 54.90 ± 12.73 52.08 ± 13.90 0.243

Gender, No. (%) 0.869

  Male 31 (75.61%) 151 (74.38%)

  Female 10 (24.39%) 52 (25.62%)

S-pressure, median (IQR) 134.0 (118.5–155.5) 129.0 (117.0–134.0) 0.040

D-pressure, median (IQR) 77.0 (69.5–85.0) 76.0 (70.0–80.0) 0.591

Pulse, median (IQR) 80.0 (70.0–90.5) 80.0 (75.0–90.0) 0.649

Temperature, median (IQR) 37.0 (36.7–37.3) 37.0 (36.5–37.2) 0.331

GCS score, median (IQR) 8 (6–13) 9 (7–13) 0.354

R, median (IQR) 6.3 (5.4–7.3) 6.2 (5.1–7.3) 0.329

K, median (IQR) 1.5 (1.3–2.0) 1.6 (1.2–2.2) 0.695

α angel, median (IQR) 67.4 (60.5–71.7) 67.6 (60.8–72.2) 0.579

MA, median (IQR) 68.7 (60.1–75.3) 66.9 (61.4–72.5) 0.342

PLT, median (IQR) 104.0 (84.5–143.5) 149.0 (111.0–205.0) <0.0001

PT, median (IQR) 16.2 (15.1–17.0) 14.3 (13.4–15.5) <0.0001

APTT, median (IQR) 38.3 (34.5–43.7) 32.60 (29.1–38.4) <0.0001

FIB, median (IQR) 2.7 (2.1–3.9) 3.7 (2.6–4.9) 0.003

INR, median (IQR) 1.3 (1.2–1.3) 1.1 (1.1–1.2) <0.0001
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Fig. 1  Screening of the patient cohort for the development of the prediction model

Fig. 2  Feature selection using the least absolute shrinkage and selection operator binary logistic regression model, while the univariate Analysis 
and Delphi method are used for potential predictor selection
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of neurosurgeries and researchers at our institution, 16 
variables were evaluated using the Delphi method; from 
these, the most relevant clinical predictors were selected.

Based on the univariate analysis, Delphi method and 
Lasso technique results, 11 final predictors were identi-
fied: age, S-pressure, D-pressure, pulse, temperature, R, 
PLT, PT, APTT, FIB and K value (Table 2).

Model development
A model incorporating age, S-pressure, D-pressure, 
pulse, temperature, R, PLT, PT, APTT, FIB, and K value 
was developed and presented as a nomogram (Fig. 4).

Performance assessment
Good discrimination (Fig.  5A) and good calibration 
(Fig. 5B) were observed in the validation set. The AUC of 

Fig. 3  Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. A Tuning parameter (λ) 
selection in the LASSO model using 10-fold cross-validation via minimum criteria. The area under the receiver operating characteristic (AUC) curve 
was plotted against log (λ). Vertical lines were drawn at the optimal values using the minimum criteria and one standard error of the minimum 
criteria (the 1-SE criteria). A value of 0.004 with log (λ) of − 5.324 was chosen (1-SE criteria) according to the 10-fold cross-validation. B LASSO 
coefficient profiles of 16 texture features. A coefficient profile plot was plotted against the log (λ) sequence. Using 10-fold cross-validation, the 
optimal λ resulted in 11 non-zero coefficients
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the nomogram was 0.8694 (95% CI, 0.8083–0.9304), and 
since it was > 0.75, it was considered to have excellent 
discrimination. In addition, the Hosmer-Lemeshow test 
also produced a nonsignificant p-value of 0.7233, which 
can prove the same thing [20].

Clinical usefulness of the model
The decision curve analysis (DCA) constructed by our 
data provided a net benefit over the “treat-all” or “treat-
none” strategy at a high-risk threshold probability > 2.0% 
(Fig.  6), which show that the model is clinically useful. 
For instance, with a high-risk threshold probability of 
40%, use of the model could provide an added net ben-
efit of 0.268 compared to the “treat-all” or “treat-none” 
strategy.

Discussion
To our knowledge, various of predictive models have 
been used to help clinician to evaluate the outcome 
of TBI patients [21]. However, this is the first study to 
develop and internally validate a tool to predict postop-
erative intracranial PHI in patients with TBI using CCT-
TEG-based clinically relevant predictors.

By intuitively predicting the risk of postoperative 
coagulation dysfunction in patients with TBI, this pre-
dictive model can identify patients with poor prognosis 
at early stages and allows timely clinical intervention, 
thus improving patient prognosis. We empirically define 
patient who gets a score in our model over 0.5 as high 
risk man and effective measures should been taken to 
prevent the intracranial PHI after surgery.

Our predictive model predicted the risk of postop-
erative intracranial PHI in TBI, which can facilitate early 
clinical interventions. There are two main measures to 
been taken to intervene the disorder of blood coagu-
lation. The first one is component blood transfusion, 
including fresh frozen plasma, prothrombin complex 
concentrate, concentrated blood platelets, fibrinogen 
and reprogramming factors VII, which could supply the 
absence materials of blood and address the severe coag-
ulopathy [22]. Another way is drug intervention. Many 
studies have suggested that TXA, desmopressin and 
other drugs can be used to improve coagulation dysfunc-
tion in patients with TBI [23, 24].

This study had some limitations. First, as till date, not 
enough TBI cases have been tested by TEG at our insti-
tution, there was no external validation of the model to 
examine its portability and generalizability. External 
validation can preclude the possibility of overfitting dur-
ing modelling [25]. Therefore, a multicentre prospec-
tive clinical trial to validate or optimise this predictive 

Table 2  Logistic regression analysis of clinical candidate 
predictors in the training set

APTT activated partial thromboplastin time, FIB fibrinogen, K kinetics time, PLT 
platelet, PT prothrombin time, R reaction time

Variable OR (95% CI) p-value

Age 1.020 (0.986–1.054) 0.250

S-pressure 1.041 (1.012–1.071) 0.005

D-pressure 0.971 (0.927–1.018) 0.224

Pulse 0.966 (0.937–0.996) 0.028

Temperature 2.407 (1.120–5.172) 0.024

R 1.109 (0.867–1.418) 0.412

K 0.375 (0.214–0.658) 0.001

PLT 0.989 (0.980–0.998) 0.013

PT 1.904 (1.361–2.664) < 0.001

APTT 1.046 (0.979–1.117) 0.184

FIB 0.756 (0.524–1.091) 0.135

Fig. 4  Nomogram developed for the prediction of postoperative intracranial progressive haemorrhagic injury in cases of traumatic brain injury
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Fig. 5  A Receiver operating characteristic curves of the nomogram. B Calibration curves of the nomogram. Illustration of the agreement between 
the predicted risk of postoperative intracranial PHI(progressive haemorrhagic injury) and the observed outcomes of postoperative PHI in patients 
with traumatic brain injury
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model is warranted. Second, the retrospective nature of 
the study limited access to clinical data such as Abbre-
viated Injury Scale and illness severity scoring findings, 
which are used to comprehensively assess the severity of 
multiple injuries in the body that have an impact on the 
severity craniocerebral trauma. Third, the TBI patients 
included in this study were only treated with trepanation 
and drainage, which meant that patients with complex 
TBI requiring craniectomy were missing from this sam-
ple. Therefore, clinical data related to these patients were 
not included among the predictive variables in this study, 
which may limit the application of this model to complex 
TBI. Fourth, our conclusion is different with some pub-
lished studies results that K-value and alpha angle were 
significant predictors,which is associated with severity of 
TBI [26, 27]. Finally, in this study, preoperative data on 
coagulation function status of patients were lacking and 
most of the patients underwent TEG only once after sur-
gery, which may have led to individual differences having 
a negative impact on the development of our model.

Conclusion
Our prediction model included a developmental set of 
244 patients and achieved good performance in internal 
validation. As the predictor items, which have been previ-
ously identified as powerful prognostic indicators, in this 

prediction model are readily available at hospital admis-
sion, our model has potential for timely intervention.
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