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Abstract 

Background:  Study the cognitive profile of individuals with Friedreich ataxia (FRDA) and seek evidence for correla-
tions between clinical, genetic and imaging characteristics and neuropsychological impairments.

Methods:  Based on PRISMA guidelines, a meta-analysis was realized using the Pubmed and Scopus databases to 
identify studies (1950–2021) reporting neuropsychological test results in genetically confirmed FRDA and control par-
ticipants in at least one of the following cognitive domains: attention/executive, language, memory and visuo-spatial 
functions as well as emotion. Studies using identical outcomes in a minimum of two studies were pooled. Pooled 
effect sizes were calculated with Cohen’s d.

Results:  Eighteen studies were included. Individuals with FRDA displayed significantly lower performance than indi-
viduals without FRDA in most language, attention, executive function, memory visuospatial function, emotion regula-
tion and social cognitive tasks. Among the included studies, thirteen studies examined the relationship between neu-
ropsychological test results and clinical parameters and reported significant association with disease severity and six 
studies reviewed the relationship between neuroimaging measures and cognitive performance and mainly reported 
links between reduced cognitive performance and changes in cerebellar structure.

Conclusions:  Individuals with FRDA display significantly lower performances in many cognitive domains compared 
to control participants. The spectrum of the cognitive profile alterations in FRDA and its correlation with disease 
severity and cerebellar structural parameters suggest a cerebellar role in the pathophysiology of FRDA cognitive 
impairments.
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Background
Friedreich ataxia (FRDA) is the most common autosomal 
recessive ataxia [1]. Most patients are homozygous for an 
increased expansion of an intronic GAA triplet repeat 
in the FXNgene [2], which represses frataxin expres-
sion via an epigenetic mechanism [3]. In these patients, 
most residual frataxin expression comes from the shorter 
GAA repeat expansion (GAA1), whose length explains 

30–50% of the variability in age of symptoms onset and 
is a determinant of disease severity [4, 5]. FRDA is char-
acterized by early atrophy of the posterior columns of 
the spinal cord, followed by progressive degeneration of 
the cerebellar dentate nuclei and their efferent fibers in 
the superior cerebellar pedunculi [6]. Clinically, affected 
individuals become overtly symptomatic only when cer-
ebellar signs appear. Then, variable alterations in cer-
ebellar, pyramidal, visual, auditory and cognitive systems 
contribute over time to the progression of neurologi-
cal impaiment [7–9]. Cognition in FRDA is less studied 
than motor, sensory and gait disorders and awareness 
of potential cognitive impairment is low in both indi-
viduals with FRDA and caregivers. Recent investigations 
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unveiled a prominent role of the cerebellum and its effer-
ent tracts, emerging from the cerebellum dentate nuclei 
(DN), in perception, higher cortical functions and affect 
modulation [10, 11]. Thus, FRDA cerebellar pathology 
could be associated with cognitive impairment. Seminal 
investigations disclosed lower, but within normal limits, 
intellectual properties in individuals with FRDA com-
pared to controls [12–14] and contemporary studies dis-
closed normal mini-mental state examination (MMSE) 
[15–20] or slightly abnormal MOntreal Cognitive Assess-
ment (MOCA) [21, 22] scores leading to the belief that 
cognitive disorders in FRDA are relatively subtle and may 
not cause obvious functional impairment [7].

However, even if missed by classic screening tools, cog-
nitive and affective impairments in FRDA may influence 
the ability of individuals with FRDA to study, work and 
develop intellectually and socially. This is why it is impor-
tant to characterize the cognitive behavioural profile 
associated with FRDA to ensure that people with FRDA 
are able to maximize their potential in terms of cognitive 
function. Determining the extent and the longitudinal 
evolution of cognitive disorders in FRDA is in that con-
text of paramount importance. The aim of this review 
and meta-analysis was to review (i) the studies that 
evaluated cognition domains in FRDA, (ii) explore pos-
sible relationships between clinical, genetic and imaging 
(structural and functional) characteristics and neuropsy-
chological assessment, as well as (iii) the longitudinal 
evolution of cognitive change in FRDA.

Methods
Study selection
PRISMA guidelines were used in conducting this meta-
analysis [23]. A literature search was performed using the 
databases Pubmed and Scopus to identify the relevant 
studies (January 1950–February 2021) using the combi-
nation of keywords as follows: Friedreich ataxia and cog-
nition; Friedreich ataxia and attention; Friedreich ataxia 
and executive; Friedreich ataxia and language; Friedreich 
ataxia and memory; Friedreich ataxia and spatial; Frie-
dreich ataxia and emotions; Friedreich ataxia and neu-
ropsychologic. Reference lists of published reports were 
also reviewed for additional studies.

Inclusion criteria were genetically confirmed FRDA, 
controlled studies that used standardized neuropsycho-
logical tests and reported data from both individuals with 
FRDA and control participants as well as statistical tests 
results for outcomes measures (Mean, standard deviation 
(SD), number of subjects (n)).

Statistical analysis
Mean and SD from studies using identical outcomes 
identified in at least two studies were pooled for the 

purpose of analysis [24, 25]. In addition, pooled effect 
sizes were calculated separately for neuropsychological 
tests reported in at least two studies with Cohen’s d [26, 
27]. A random-effects model was chosen to obtain an 
average weighted effect size across the studies for each 
pooled domain. Pooled d-value, weighted for the sample 
sizes of the individual studies, was calculated for neu-
ropsychological outcomes with a 95% confidence interval 
[26, 27]. Effect sizes were interpreted as small, medium 
and large for values of 0.2, 0.5 and 0.8 respectively based 
on convention [28]. Effect sizes were considered signifi-
cant when the confidence interval (CI) did not contain 
zero.

Data sharing agreement
Data can be shared upon reasonable request

Results (Fig.1)
Neuro‑psychological evaluation (Table 1 summarizes 
the studies and the outcome measures included 
in the quantitative meta‑analysis)
On meta-analysis, eighteen studies evaluated, with stand-
ardized tests, the different cognitive domains in indi-
viduals with genetically confirmed FRDA compared to 
control participants devoid of neurological or psychiat-
ric diseases. These studies, summarized in Table  1were 
included in the quantitative meta-analysis. Six studies 
were included for qualitative review despite the lack of 
controls due to large sample size of FRDA patients [29, 
30], longitudinal follow-up [15, 19], practical composite 
outcome measure test [31] or structural correlation [32].

While standardized, the neuro-psychological test bat-
tery varied across the different studies but allowed data 
pooling, from at least two studies, for most outcome 
measures. Significant differences were found in all cog-
nitive domains for individuals with FRDA compared to 
control participants. (Table  2, summarizes the pooled 
analysis)

Cognitive screening
Cognitive screening was realized in thirteen out of the 
eighteen studies. Three studies used the MOCA [22, 33, 
34], three studies used the MMSE [16, 18, 20], two stud-
ies used the Symbol Digit Modality Test (SDMT) [35, 36], 
two studies evaluated IQ [37, 38] and one study assessed 
verbal IQ [14]. Only results from MOCA and MMSE 
could be pooled as one study corrected SDMT score for 
ataxic and dysarthric impairments using patients’ PATA 
rate test and nine hole pegboard test score [36] and IQ 
scores were not evaluated using the same method in the 
three studies. On pooled analysis, FRDA patients dis-
played lower MOCA and MMSE scores with large effect 
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Table 1  Summary of the studies included in the quantitative meta-analysis in alphabetical order. In Bold, tests that were significatively 
different between FRDA patients and healthy controls. MMSE: mini-mental state examination; MOCA: MOntreal Cognitive Assessment; 
SMDT: Symbol Digit Modality Test; HSCT: Hayling sentence completion task; TMT: trail making test; TMTR: Reitan version of the TMT [41]; 
StroopG: Golden version of the Stroop test [44]; DS: digital span; DSF: DS forward; DSB: DS backward; WAIS: Wechsler adult intelligence 
scale. III third version, R revised; RCPM Raven Colored Progressive Matrice. SPART 10/36 Spatial recall test. RAVLT, Rey Auditory Verbal 
Learning Test. SLD segment length discrimination task. Hayling sentence completion test HSCT. California verbal learning test, CVLT. 
PASAT, Paced Auditory Serial Addition Test. Wisconsin card sorting test WCST; C: test corrected by patients’ PATA rate test and nine hole 
pegboard test score using the methods described in Sacca et al. [35]

Patients/
Controls

General Verbal 
fluencies

Language Attention/
Executive

Attention 
and working 
memory

Memory and 
learning

Visuo-
spatial

Emotion

Akhlagi [45] 12/14 Simon Task
Cocozza [33] 24/24 MOCA

SDMTC
PhonemicC

SemanticC

Naming 
nouns
Pointing 
names

TMTC,R

StroopG

Attentive 
matrices test

DS SPART​
RAVLT

RCPM
SLD
Mental rota‑
tion

Cocozza [36] 19/20 SDMTC TMTC,R SPART​ SLD
Corben [20] 15/15 MMSE TMTR

StroopG

Corben [42] 10/10 TMTR

StroopG

Corben [43] 13/14 Simon
TMTR

StroopG

Corben [39] 43/42 HSCT TMTR

StroopG

Costabile [22] 20/20 MOCA PhonemicC

SemanticC
Stroop 
test time 
interference 
index
TMTR,C

DSFWAIS-III SPART​
RAVLT

Genova 
emotion 
recognition 
test

De nobrega 
[16]

20/20 MMSE Phonemic
Semantic
Action 
verbal

Dogan [34] 22/22 MOCA Phonemic120

Semantic120
Multiple 
choice 
vocabulary 
test

StroopG DSF/DSB
PASAT

CVLT Faux pas test

Georgiou [66] 13/14 Simon
Klopper [46] 10/10 Every day 

attention 
test

Mantovan 
[37]

13/13 IQWAIS-R Verbal fluen‑
cies

Boston nam‑
ing test

TMTR

Stroop
Attentive 
matrices 
test
Tower of 
London

DSF/DSB‑
WAIS-R

Nachbauer 
[14]

29/28 Verbal IQ Phonemic
Semantic

Tower of 
London
Stroop

DSF/DSBWAIS-R Verbal 
learning and 
retention 
memory test

Incomplete 
letters
Position dis-
crimination

Nieto [18] 26/31 MMSE Phonemic
Semantic
Action 
verbal

WCST DSF/DSBWAIS-

III
CVLT
SPART​
Logical 
memory 
test

Judgement 
line orienta-
tion test
Block design

Facial recog‑
nition test
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Table 1  (continued)

Patients/
Controls

General Verbal 
fluencies

Language Attention/
Executive

Attention 
and working 
memory

Memory and 
learning

Visuo-
spatial

Emotion

Sacca [35] 24/61 SDMT Phonemic
Semantic

Attentional 
Matrices
TMTR

Shishegar 
[40]

21/28 HSCT TMTC,R

StroopG
DSF/DSB‑
WAIS-III

Vavla [67] 21/18 IQWAIS

Table 2  Pooled results of the studies included in the quantitative meta-analysis. MMSE: mini-mental state examination; MOCA: 
MOntreal Cognitive Assessment; TMT: trail making test; DSF: digital span forward; DSB: digital span backward; WAIS Wechler adult 
intelligence scale, III: third version, R: revised; CVLT: California verbal learning test; SPART: 10/36 Spatial recall test; RAVLT, Rey Auditory 
Verbal Learning Test; SLD: segment length discrimination task; *: Test corrected by patients’ PATA rate test and nine hole pegboard test 
score using the methods described in Sacca et al. [35] d : Cohen’s d; CI: confidence interval

Neuropsychological tests Pooled test results p Pooled effect size (d,CI) Number of 
studies

Number 
of 
patients

SCREENING
MMSE 28,6±1,4 vs 29,3±0,98 0.0005 1.4 (1-1.8) 3 71

MOCA 23.9±3.4 vs 26.9±2 <0.0001 1.2 (0.8/1.5) 3 66

VERBAL FLUENCIES
Phonemic Fluency 10,3±4,1 vs 14,4±4,3 <0.0001 1 (0.6-1.4) 2 49

Semantic verbal fluency 19,6±5,3 vs 24,2±4,8 <0.0001 1.13(0.8-1.4) 4 99

Semantic fluency, corrected* 18,9±5,8 vs 23,7±5 0.0001 1(0.6-1.4) 2 44

F-A-S 26,7±9,8 vs 41,9±5,6 <0.0001 2.2 (1.7-2.6) 2 60

F-A-S, corrected* 28,2±11,5 vs 41,5±9,1 <0.0001 1.3 (0.8-1.7) 2 44

Action verbal fluency 12,8±5 vs 18,8±5,8 <0.0001 1.3 (0.9-1.7) 2 56

LANGAGE
Hayling sentence completion task 5,9±1,1 vs 6,4±0,7 0.00026 1.4 (1.1-1.8) 2 64

ATTENTION/EXECUTIVE
Stroop interference score 54±9,4 vs 50,2 6,9 0.0003 0.5(0.3/0.7) 6 130

TMT (B-A) 44,4±30,8 vs 26,4±15 <0.0001 0.8 (0.4-1.1) 3 68

TMT A 137±143 vs 31,5±12 <0.0001 1.3 (0.8-1.7) 2 37

TMT B 213 ±162 vs 78 ± 31 <0.0001 1.4 (1-1.8) 2 37

Simon incongruent reaction time 861±219 vs 585 ± 131 <0.0001 1.6 (0.9-2.2) 2 25

TMT(B-A), corrected* 56,2±19,6 vs 33,9±10,6 <0.0001 1.4 (0.9-1.9) 2 41

Attentive Matrice test 44,9±10,2 vs 55,4±4,1 <0.0001 1.4(0.9-2) 2 37

ATTENTION AND WORKING MEMORY
DSFWAIS-III 7,5±2,6 vs 8,3±0,9 0.0067 0.7 (0.4-1) 3 89

DSBWAIS-III 5,3 ±0,9 vs 6,4 ±1 <0.0001 1.4 (1-1.8) 2 59

DSFWAIS-R 6,9±1,3 vs 7,6±1,3 0.015 1(0.5-1.5) 2 42

DSBWAIS-R 5,5±1,2 vs 5,5±1,6 1 0 (-0.4-0.4) 2 42

MEMORY AND LEARNING
CVLT 12,4±0,9 vs 12,9±0,6 0.2 0 2 48

SPART​ 18,9±6,2 vs 23,2 ± 3,5 <0.0001 1 (0.7-1.4) 3 64

VISUO-SPATIAL
RAVLT 41,6±12,9 vs 47,6±9,3 0.014 0.5(0.2-0.9) 2 44

SLD 26,8±2 vs 28,7±2 1,6 <0.0001 1.3(0.8-1.7) 2 44
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size (23.9±3.4 vs 26.9±2, p<0.0001, d: 1.2 and 28.6±1.4 
vs 29.3±0.98, p=0.0005, d: 1.4 respectively).

Verbal fluencies
Seven studies assessed phonemic and semantic flu-
encies [14, 16, 18, 22, 33–35], of which two [22, 33] 
corrected the results using patients’ PATA rate test 

and nine hole pegboard test score using the meth-
ods described in Sacca et al. [35] The raw values from 
Sacca et  al, [35] were pooled with the uncorrected 
studies. Two studies assessed action verbal fluencies 
[16, 18] and one used a distinct verbal fluency from 
the aforementioned studies [37]. Verbal fluencies in all 
modalities were significatively poorer in FRDA patients 
compared to healthy controls with large effect size that 

Fig.1  PRISMA 2009 Flow Diagram. Mesh used: Friedreich ataxia and cognition; Friedreich ataxia and Attention; Friedreich ataxia and executive; 
Friedreich ataxia and langage; Friedreich ataxia and memory; Friedreich ataxia and spatial; Friedreich ataxia and emotions; Friedreich ataxia and 
neuropsychologic
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were only marginally reduced by correction by PATA 
rate and nine hole pegboard test scores.

Language
Language was evaluated in four studies. The Hayling sen-
tence completion task was used in two studies [39, 40], 
the Boston naming test in one [37] and a Multiple choice 
vocabulary test task in another [34]. Only in the Multiple 
choice vocabulary test task did individuals with FRDA 
performed similarly to controls [34].

Attention/executive
Sixteen studies assessed attention and/or executive func-
tions. Eight studies used the Reitan’s [41] Trail making 
Test (TMT) [20, 22, 33, 36, 39, 40, 42, 43], with patients’ 
PATA rate test and nine hole pegboard test scores correc-
tion in three 22,33,36]. Six studies used the method devel-
oped by Golden [44] to calculate the Stroop interference 
score [20, 33, 34, 39, 40, 43], three studies used distinct 
and different declination of the Stroop test [14, 22, 37]. 
Simon’s task incongruent reaction time was reported in 
two studies [43, 45]. Attentive matrices test was used in 
two studies [33, 37], as was the Tower of London test [14, 
37]. Wisconsin card sorting [18] and every day attention 
tests [46] were evaluated in two distinct studies. Pooled 
analysis disclosed lower performances in the TMT asso-
ciated to a large effect size that grew larger after correc-
tion for ataxic symptoms. Individuals with FRDA showed 
pooled impaired performance on the Stroop interference 
score with a medium effect size.

Attention and working memory
Seven studies relied on the digital span to assess attention 
and working memory. Three studies used the digital span 
task included in the Wechsler adult intelligence scale, 
third version (WAIS-III) that starts with a sequence of 
two digits and ends with a sequence of nine digits [18, 
22, 40], two studies used the task included in the revised 
Wechsler adult intelligence scale (WAIS-R) that starts 
with a sequence of three digits and ends with a sequence 
of eight digits [14, 37], and two did not specify the ver-
sion used [33, 34]. One study used the Paced Auditory 
Serial Addition Task (PASAT) [34]. Pooled analysis dis-
closed significant differences in digital span forward 
(DSF) in both WAIS versions and backward (DSB) only 
in WAIS-III version. There, individuals with FRDA dis-
played lower performance compared to controls, associ-
ated to a medium (DSF) or high effect size (DSB).

Memory and learning
Six studies assessed memory and learning skills. The eval-
uation included the 10/36 Spatial recall test (SPART) in 
four studies [18, 22, 33, 36], the California verbal learning 

test (CVLT) in two [18, 34], the Verbal learning and 
retention memory test in one [14] and the logical mem-
ory test in one study [18]. Only SPART performances 
were lower in individuals with FRDA on pooled analysis 
but with a large effect size.

Visuospatial
Four studies included visuospatial skill tests. Those tests 
consisted in the Rey Auditory Verbal Learning Test 
(RAVLT) in two studies [22, 33], segment length dis-
crimination (SLD) in two studies [33, 36], Raven Colored 
Progressive Matrice and mental rotation in one study 
[33], Incomplete letters and position discrimination tests 
in one [14], and Judgement line orientation, Facial rec-
ognition test and Block design in one study [18]. FRDA 
patients performed worse than controls with large size 
effect for the SLD and medium size effect for the RAVLT.

Emotion recognition and social cognitive abilities
Emotion recognition and social cognitive abilities were 
evaluated in three studies using different outcome 
measures including the Social Cognitive and Emotional 
Assessment and Ekman facial expression recognition 
Test [30]; the Faux-pas test (n=22) [34] and the Geneva 
Emotion Recognition Test (n=20) [47]. Individuals with 
FRDA compared to control participants, were less effi-
cient in the Faux-pas test (n=22) [34] and Geneva emo-
tion recognition test (n=20) [47].

Correlations between cognitive function and clinical 
parameters
Data from thirteen studies were identified as appropriate 
to include in potential correlations between neuropsy-
chological test results and clinical parameters such as 
GAA1 (allele with smaller GAA repeat size), age of symp-
tom onset (ASO), disease duration (DD) and clinical 
scales (Friedreich Ataxia Rating Scale (FARS), Scale for 
the Assessment and Rating of Ataxia (SARA)).

Ciancarelli et  al. found no correlation between mem-
ory and phonemic verbal fluency test results and disease 
duration (n=24) [19]. Corben et al. reported a significant 
negative correlation between ASO and the incongruency 
effect in a Simon task in two consecutive studies from 
their group (n=13; n= 12) but no other significant cor-
relations with GAA1, DD and the FARS score [43, 48]. 
In addition a later work did not identify a correlation 
between ASO, DD, GAA1 or the FARS score with TMT 
and Stroop inferences scores (n=43) [39]. Dogan et  al. 
found a significant correlation between impaired phone-
mic fluency performance and longer DD but no correla-
tion between tests of memory, attention, executive and 
social cognition and clinical parameters (n=22) [21]. Sim-
ilarly in a large European cohort (n=592), a correlation 
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between DD and phonemic fluency was identified [49]. 
Klopper et al. disclosed significant correlations between 
subtests of every day attention and GAA1 and the FARS 
score but not with DD nor ASO (n=16) [46]. Mantovan 
et al. described poorer Stroop and Tower of London per-
formances in individuals with longer DD, however did 
not find similar correlations with memory, language and 
calculation tests. Moreover, GAA1 was not correlated to 
any neuropsychological measure while clinical scores like 
the FARS or SARA were not reported (n=13) [37]. Sayah 
et al., found correlations between measures of attention 
and the SARA, DD and GAA1 (n=46) [30].

Two longitudinal studies looked at the evolution of 
neuropsychological test results over time. Shishegar et al. 
found worsening performances for TMT (B-A) in indi-
viduals with FRDA over 24 months, but no degradation 
in working memory or executive function. In addition no 
correlation between clinical parameters and neuropsy-
chological test results were identified (n=21) [40]. In the 
EFACTS cohort, over a two-year follow-up, no significant 
decline was found in verbal fluency [50]. Yet, with longer 
follow-up, in a study where individuals with FRDA were 
assessed on average with an eight year separation, Her-
nandez-Torres et  al. (n=39) found worse performances 
for the Stroop interference task, phonemic fluency tests 
and processing speed, while memory or visuospatial skills 
remained stable (n=29) [15].

Finally, two studies correlated composite scores based 
on combined neuropsychological test results. Nach-
bauer et al. found correlation with an executive score that 
included attention, executive, verbal fluency and visuos-
patial items and GAA1, ASO and the SARA score (n=29) 
[14]. Naeije et  al. described a tight correlation between 
the cerebellar cognitive affective syndrome (CCAS) scale 
score and the SARA score (n=19) [31].

Correlations between cognitive performances and structural 
parameters
Six studies sought correlations between imaging meas-
ures and cognitive performances.

Ahklagi et  al. (n=12), in a magnetic resonance imag-
ing (MRI) and tractography study exploring reaction 
time and Simon (incongruence) effect in individuals with 
FRDA and controls found that, the mean and radial dif-
fusivity of the dentato-rubral tract was positively corre-
lated with choice reaction time, congruent reaction time, 
incongruent reaction time and Simon effect reaction time 
and negatively with the larger GAA1 [48]. Cocozza et al. 
(n=19), in a voxel‐based morphometry and volumetric 
MRI study, found a direct correlation between cerebellar 
Lobule IX volume and impaired visuo-spatial functions 
but no correlations between structural parameters and 
executive and memory test results [36]. A former study 

by the same authors found no significant correlation 
between functional MRI (fMRI) resting state connectiv-
ity (rsFC) study (n=24) and language, memory, executive 
and visuospatial tests [33].

Dogan et  al. (n=22), in a fMRI and diffusion tensor 
imaging study combining language, memory, attention, 
executive and social cognition tests only showed in, 
post hoc correlations, a significant negative association 
between right cerebellar Crus I and left Brodmann area 
44 and left insula functional activities for phonemic flu-
ency execution in individuals with FRDA [34]. Harding 
et al. (n=29), using a verbal n-back working memory task 
in fMRI, disclosed that task-related activation in the right 
dentate nucleus was significantly associated with a com-
posite clinical index score based on ASO, the FARS score, 
DD and GAA1. This effect was most pronounced with 
respect to the FARS score and GAA1 [32]. In the longi-
tudinal assessment of the same cohort, Shishegar et  al. 
(n=21), found no significant correlations between longi-
tudinal change in neurocognitive measures and change in 
brain activation over time [40].

Discussion
This meta-analysis confirmed that individuals with FRDA 
show significantly lower performances than control par-
ticipants in the cognitive domains of language, attention, 
executive, memory, visuospatial perception, emotion rec-
ognition and social cognitive abilities.

Despite these results, awareness of potential cognitive 
disorders in individuals with FRDA appears low. Several 
reasons may explain why cognitive disorders in FRDA are 
so often overlooked. A possible interpretation relates to 
the fact that cognitive disorders are considered relatively 
subtle and do not cause obvious functional impairment 
[7]. Indeed, the deficits described do not generally pre-
clude a person with FRDA from participating in educa-
tion at school and college/university, gaining meaningful 
and at times cognitively demanding employment, part-
nering and raising a family [51]. Another explanation 
might be the a priori fear of affective, social and pro-
fessional negative repercussions that may develop with 
increased awareness of cognitive disorders in FRDA. This 
is an even more sensitive issue if we are to consider that 
cognitive impairments may progress significantly along 
disease course which could prevent potential employers 
or partners to engage in the long run with individuals 
with FRDA. Yet, even if missed by classic screening tools, 
cognitive and affective impairments in FRDA may impact 
the ability to study, work and develop both intellectually 
and socially, in potentially large numbers of individuals 
with FRDA. Therefore, cognitive impairment should be 
considered when difficulties arise in any of those fields. 
Prompt recognition of cognitive difficulties related to 
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FRDA pathology, in those circumstances, could provide 
an objective explanation to the problem encountered by 
the affected individual providing opportunity for dedi-
cated follow-up and care.

The widespread impairment of cognitive function in 
individuals with FRDA suggests a cerebellar component 
in the pathophysiological mechanism of the cognitive 
impairments or in their modulation for several reasons. 
First, the combination of relatively mild but global higher 
neocortical dysfunction is characteristic of the Cerebellar 
Cognitive and Affective Syndrome (CCAS). The CCAS, 
first described over two decades ago, comprises a form of 
thought dysmetria that hampers language, emotional regu-
lation, memory, attention, visuospatial and executive func-
tion [52, 53]. Interestingly, a CCAS screening and follow-up 
scale was designed in 2018 based on the neuropsychologi-
cal tests that could most efficiently single out individuals 
with cerebellar pathology from healthy individuals [52]. 
The selected tests for that CCAS Scale bear a striking simi-
larity to tests that proved to have the largest size effect in 
this meta-analysis, underlining a probable similar origin 
for CCAS and FRDA cognitive profile [52]. Verbal fluen-
cies were among the tests that displayed the largest effect 
size in our meta-analysis paralleling the impairment of 
verbal fluency in the large uncontrolled EFACTS cohort 
[50]. Verbal fluency represent three of the ten items that 
constitute the CCAS scale as well as half the points of its 
raw score highlighting the difficulties that individuals with 
cerebellar disorders have with verbal fluencies. Whether 
verbal fluencies reflects mostly impaired language per-
formances [52, 54], altered executive functions [55, 56] or 
both is still debated [57]. In cerebellar impairment either 
language and/or executive function could be responsible. 
The cerebellum is involved in language processing tasks 
[58, 59] and patients with acute or degenerative disorders 
involving posterior cerebellar lobes display various lan-
guage deficits [60–62]. Similarly, executive functions are 
also known to be impaired in cerebellar disorders [63]. In 
our pooled analysis, the TMT and the Stroop interference 
score showed lower effect size than verbal fluencies tasks, 
reflecting the fact that significant impairments in FRDA 
patients were inconsistently found and probably less salient 
than language dysfunction. Thus, in FRDA, verbal fluencies 
alterations probably reflects more language than executive 
dysfunctions. Yet future studies, using purer language tasks 
like the Peabody Picture Vocabulary Test, that assess recep-
tive vocabulary, could help disentangle the respective con-
tribution of executive and language roles in FRDA impaired 
verbal fluencies [64].

The neuropathology of FRDA , is hallmarked by pro-
gressive DN atrophy with relative sparing of cerebral hem-
ispheres [6]. The cerebellum through cerebello-cortical 
loops is known to regulate most components of cognition, 

and impairments of cerebellar posterior lobes or dentato-
thalamic pathways are associated with the CCAS [60, 
63]. Thus, DN pathology in FRDA is a likely candidate 
in the genesis of cognitive impairment in FRDA. Cor-
relations between neuropsychological impairments in 
FRDA and central nervous system structures alterations, 
where significant despite limited sampling size, and were 
specifically related to the DN, dentato-rubral tracts and 
posterior cerebellar lobes [58, 60]. Finally, exploration of 
correlations between clinical parameters and cognitive 
performances confirmed that the increment in cognitive 
impairment over time paralleled ataxia severity. Taken 
together these findings suggest that progressive DN atro-
phy and efferent tracts impairment in FRDA are probably 
responsible for a progressive cognitive pattern pertaining 
to the CCAS, whose severity parallels rating on cerebellar 
ataxia severity scales. Yet, direct evidence for a cerebellar 
role in FRDA cognitive impairments are still missing. A 
potential way to confirm this hypothesis could be through 
resting state connectivity (rsFC) in FRDA patients. 
Indeed, ctDCS has been found recently to improve cogni-
tive performances in a population of patients (one FRDA) 
with cerebellar ataxia of mixed origins [65], supporting 
the role of the cerebellum in their modulation.

This analysis provides, only limited evidence on poten-
tial progression of cognitive impairments in individuals 
with FRDA and the relationship to cerebral and cerebel-
lar structure and function. Dedicated longitudinal stud-
ies are crucially needed in order to better understand the 
cognitive profile of FRDA. Further research in this area, 
using either the CCAS‐scale [31, 52] or a combination of 
the tests with the highest effect size as highlighted in this 
meta-analysis, could provide an opportunity to confirm 
previous findings, particularly regarding the relation-
ship between structural/functional imaging and cog-
nitive impairment as well as the onset and longitudinal 
evolution of cognitive symptoms. This would allow bet-
ter evaluation of cognitive disorder in FRDA and help 
design appropriate interventions to mitigate the impact 
of cognitive impairment on functional capacity. Indeed, 
understanding the neurobehavioral profile associated 
with FRDA is fundamental for intervention aimed at 
improving independence, school, academic and voca-
tional capacity and thus quality of life.

Conclusions
Individuals with FRDA display significantly lower per-
formances in many cognitive domains compared to 
control participants. The spectrum of the cognitive pro-
file alterations in FRDA and its correlation with disease 
severity and cerebellar structural parameters suggest a 
cerebellar role in the pathophysiology of FRDA cognitive 
impairments.
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