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Abstract 

Background:  Glioblastoma multiforme (GBM) is the most common aggressive malignant brain tumor. However, the 
molecular mechanism of glioblastoma formation is still poorly understood. To identify candidate genes that may be 
connected to glioma growth and development, weighted gene co-expression network analysis (WGCNA) was per-
formed to construct a gene co-expression network between gene sets and clinical characteristics. We also explored 
the function of the key candidate gene.

Methods:  Two GBM datasets were selected from GEO Datasets. The R language was used to identify differentially 
expressed genes. WGCNA was performed to construct a gene co-expression network in the GEO glioblastoma sam-
ples. A custom Venn diagram website was used to find the intersecting genes. The GEPIA website was applied for sur-
vival analysis to determine the significant gene, FUBP3. OS, DSS, and PFI analyses, based on the UCSC Cancer Genom-
ics Browser, were performed to verify the significance of FUBP3. Immunohistochemistry was performed to evaluate 
the expression of FUBP3 in glioblastoma and adjacent normal tissue. KEGG and GO enrichment analyses were used to 
reveal possible functions of FUBP3. Microenvironment analysis was used to explore the relationship between FUBP3 
and immune infiltration. Immunohistochemistry was performed to verify the results of the microenvironment analysis.

Results:  GSE70231 and GSE108474 were selected from GEO Datasets, then 715 and 694 differentially expressed 
genes (DEGs) from GSE70231 and GSE108474, respectively, were identified. We then performed weighted gene 
co-expression network analysis (WGCNA) and identified the most downregulated gene modules of GSE70231 and 
GSE108474, and 659 and 3915 module genes from GSE70231 and GSE108474, respectively, were selected. Five 
intersection genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were calculated by Venn diagram. FUBP3 was then identi-
fied as the only significant gene by survival analysis using the GEPIA website. OS, DSS, and PFI analyses verified the 
significance of FUBP3. Immunohistochemical analysis revealed FUBP3 expression in GBM and adjacent normal tissue. 
KEGG and GO analyses uncovered the possible function of FUBP3 in GBM. Tumor microenvironment analysis showed 
that FUBP3 may be connected to immune infiltration, and immunohistochemistry identified a positive correlation 
between immune cells (CD4 + T cells, CD8 + T cells, and macrophages) and FUBP3.
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Introduction
Glioblastoma multiforme (GBM) is the most aggressive 
type of brain tumor, arising from the astrocytes, the neu-
roepithelial tissue group of the brain. GBM, also known 
as grade IV astrocytoma, is the most dangerous type of 
astrocytoma [1, 2]. The survival time for GBM patients is 
no more than 15 months [3]. Although surgery is gener-
ally used for GBM therapy [4], the cancer often relapses 
because of the lack of an effective prevention for GBM 
[5]. Effective biomarkers play a vital role in tumor treat-
ment. Although there are many biomarkers closely 
related to GBM, including insulin-like growth factor 1 
(IGF-1), vascular endothelial growth factor (VEGF), isoc-
itrate dehydrogenase 1 (IDH1), and epidermal growth 
factor receptor (EGFR), no effective tumor markers have 
been discovered [6, 7]. Therefore, it is crucial to uncover 
appropriate and effective biomarkers to predict the prog-
nosis for glioblastoma patients.

Over the last decade, gene set analysis has become the 
first choice for gaining insights into underlying complex 
biology of diseases through gene expression and gene 
association studies. It also reduces the complexity of 
statistical analysis and enhances the explanatory power 
of the obtained results [8]. In recent years, high-quality 
microarray techniques and high-throughput sequenc-
ing have been widely applied in clinical medicine and 
have created a new generation of molecular diagnostics 
based on DNA sequencing, RNA sequencing, and epi-
genetics [9]. Gene profiles can be obtained from public 
datasets such as Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA), and the limitations 
between the combinations of different sample sizes and 
microarray platforms can be overcome by integrated bio-
informatics methods. In order to find out the relationship 
among the selected genes, identification of key genes and 
gene modules responsible for a particular stress/condi-
tion, analysis of gene co-expression networks need to 
be carried out. Weighted Gene Co-expression Network 
Analysis (WGCNA) is a latest and popular technique 
used to decipher co-expression patterns among genes. 
The WGCNA approach typically deals with the iden-
tification of gene modules by using the gene expression 
levels that are highly correlated across samples [10]. And 
WGCNA has been successfully applied in many fields to 
identify candidate biomarkers and therapeutic targets 
[11].

In this study, we performed WGCNA for two RNA-Seq 
datasets derived from GEO and reconstructed gene co-
expression networks, then we separately identified the 
most downregulated gene modules of the two datasets. 
A Venn diagram and GEPIA were used to find the inter-
secting genes of the two modules and further identify 
significant genes by survival analysis, and the significance 
of FUBP3 was verified by Overall Survival (OS), Disease-
Specific Survival (DSS), and Progression-Free Interval 
(PFI) analyses. We evaluated the expression of FUBP3 
in GBM tissues and normal tissue adjacent to tumors 
by immunohistochemistry. We then considered the pos-
sible mechanism of action of FUBP3 in GBM by KEGG 
and GO analyses and tumor microenvironment analysis 
based on TCGA tumor datasets, and immunohistochem-
istry identified a positive correlation between immune 
cells and FUBP3.

Materials and methods
WGCNA analysis of GEO
RNA sequence data from human glioblastoma samples 
were obtained from GEO datasets (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/). A microarray platform data table was used, 
annotating a series of matrix files with official gene sym-
bols, and a gene expression matrix file was obtained for 
DEG analysis. The key search words were (glioma) AND 
“Homo sapiens”[porgn:__txid9606]. Finally, two data-
sets from the search results were included in our study, 
GSE70231 and GSE108474. These datasets contain glio-
blastoma and normal brain samples (GSE70231: GBM, 
n = 21; controls, n = 6, and GSE108474: GBM, n = 221; 
controls, n = 28) and were used to perform differential 
analysis. A series of matrix files and data sheets for the 
microarray platform were downloaded from the GEO 
website. The “limma” R package was used for DEG analy-
sis. The DEG threshold was set as |log2FC|> 1, P < 0.05. 
The DEG sets for GSE70231 and GSE108474 were then 
selected (GEO70231_diff and GEO108474_diff).

The “WGCNA” R package was used to construct a co-
expression network for all genes in the GBM and normal 
samples. Samples were used to construct Pearson’s corre-
lation matrices, then the formula a mn = |c mn|   β (where 
amn is adjacency between gene m and gene n, cmn is 
Pearson’s correlation, and β is the soft-power threshold) 
was used to construct a weighted adjacency matrix. This 
was then transformed into a TOM (topological overlap 

Conclusion:  FUBP3 is associated with immune surveillance in GBM, indicating that it has a great impact on GBM 
development and progression. Therefore, interventions involving FUBP3 and its regulatory pathway may be a new 
approach for GBM treatment.
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measure) matrix to evaluate the network connectivity, 
and a clustering dendrogram of the TOM matrix was 
constructed by average connected hierarchical cluster-
ing [12]. The threshold was set to 0.9 in GSE70231 and 
0.95 in GSE108474. Then the P-values of the module 
eigengenes constructed by each sample and module gene 
were calculated by the WGCNA algorithm. The Pearson’s 
correlation coefficient was used to identify the connec-
tion between clinical traits and different modules, and 
the module with the highest Pearson’s correlation coeffi-
cient was selected for subsequent analysis. For our study, 
the most downregulated gene modules (GSE70231_tur-
quoise and GSE108474_turquoise) in the GBM samples 
compared with healthy controls were selected.

Key gene screening
A custom Venn diagram website (http://​bioin​forma​tics.​
psb.​ugent.​be/​webto​ols/​Venn/) was used to find the inter-
secting genes between GSE70231_diff, GSE108474_diff, 
GSE70231_turquoise, and GSE108474_turquoise.

Verifying intersecting genes using GEPIA
The GEPIA website (http://​gepia.​cancer-​pku.​cn/) is a 
newly developed interactive web server for analyzing the 
RNA sequencing expression data of 9,736 tumors and 
8,587 normal samples from the TCGA and GTEx pro-
jects, using a standard processing pipeline. In our study, 
GEPIA was used for survival analysis of the intersecting 
genes and to identify the significant key gene, FUPB3. 
First, we set the intersection gene used for normaliz-
ing in the “Gene” field, then we selected the OS survival 
method, chose GBM in the “Dataset Selection” field, and 
clicked “add” to build a dataset list in the “Datasets” field.

Revalidating the key gene
The UCSC Cancer Genomics Browser (https://​genome-​
cancer.​ucsc.​edu) offers interactive visualization and 
exploration of TCGA genomic, phenotypic, and clinical 
data, as produced by The Cancer Genome Atlas Research 
Network. The survival and survminer packages of R were 
used for overall survival(OS) analysis of FUBP3 in GBM. 
The limma, survivor, and survminer R packages were 
used for the other survival analyses (DSS and PFI). The 
gene expression and clinical datasets were downloaded 
for 33 common types of cancer from UCSC based on 
TCGA datasets. Then FUBP3 was used for three sur-
vival analyses, OS, DSS, and PFI, to revalidate the results 
found by the GEPIA website.

Pathway analysis
The “pathway analysis” has been widely used in many 
ways including the analysis of Gene Ontology (GO) terms 
(also referred to as a “gene set”), physical interaction 

networks (e.g., protein–protein interactions), kinetic sim-
ulation of pathways, steady-state pathway analysis (e.g., 
flux-balance analysis), and in the inference of pathways 
from expression and sequence data. And in our study, we 
focused on methods that exploit pathway knowledge in 
public repositories such as gene ontology (GO) or Kyoto 
Encyclopedia of Genes and Genomes (KEGG) to identify 
pathways that may be affected in a condition by correlat-
ing information in at least one pathway knowledge base 
with gene expression patterns for the condition [13]. In 
recent years, the effective clustering of functional genes, 
mainly based on GO and KEGG, has been applied widely 
in DNA- and protein-related research [14]. The KEGG 
and GO databases can be downloaded from GSEA’s offi-
cial website (https://​www.​gsea-​msigdb.​org/​gsea/​regis​ter.​
jsp). In our study, GO and KEGG analyses were used to 
reveal the possible function of FUBP3 in GBM. The DEG 
functional analyses were performed using the clusterPro-
filer, org.Hs.eg.db, enrich-plot, and ggplot2 R packages, 
with P < 0.05 considered statistically significant.

Microenvironment analysis
TIMER webserver (https://​cistr​ome.​shiny​apps.​io/​timer/) 
is a comprehensive resource for systematic analysis of 
immune infiltrates across diverse cancer types. The abun-
dances of six immune infiltrates (B cells, CD4 + T cells, 
CD8 + T cells, neutrophils, macrophages, and dendritic 
cells) were estimated by TIMER algorithm, and the gene 
module was selected to explore the correlation between 
FUBP3 expression and the abundance of immune 
infiltrates.

Immunohistochemical analysis
The human anti-FUBP3 monoclonal antibody came 
from Affinity Biosciences (Victoria, Australia), and the 
secondary antibodies, DAB color detection, enzyme-
labeled goat anti-mouse/rabbit IgG polymer, mouse 
mAb assisted/induced T cell (CD4) antibody, rabbit mAb 
inhibitory/cytotoxic T cell (CD8) antibody, and mouse 
macrophage cell (CD68) antibody, were produced by Bei-
jing Zhongshan Jinqiao Biotechnology. All the samples 
were selected from the Department of Pathology of the 
Affiliated Hospital of Binzhou Medical University and 
were double-blind rediagnosed by two senior patholo-
gists. We selected 41 samples of human brain tissue 
from glioblastoma patients, from wax blocks that were 
serially sectioned, commonly dewaxed, rehydrated, and 
EDTA repaired. After intervention, we added H2O2 to the 
slices, after water jet and PBS washes. After serum block-
ing, human anti-FUBP3 monoclonal antibody (1:150), 
mouse mAb assisted/induced T cell (CD4) antibody, rab-
bit mAb inhibitory/cytotoxic T cell (CD8) antibody, and 
macrophage cell (CD68) antibody were added to both 
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the glioblastoma tissue and normal tissue adjacent to the 
cancer, and incubated overnight at 4  °C. After water jet 
and PBS rinses the next day, the secondary antibody was 
added, then the slices were incubated for 30 min at 37 °C, 
and color developing agent was added to the glioblastoma 
tissue and the tissue adjacent to the cancer. Then, the tis-
sue was stained restained with hematoxylin and differ-
entiated by hydrochloric acid. Finally, they were washed 
with alcohol and left to dry. Cells expressing FUBP3 in 
the nucleus could be identified as the nucleus stained 
yellow or brownish-yellow, and CD68, CD4, and CD8 
were expressed in the cytoplasm of microglia and T cells 
and appeared as brownish-yellow or light yellow colored 
granules. Ten independent fields of view images (400 ×) 
for each section were randomly chosen for image acqui-
sition, and the five highest densities of FUBP3-expressed 
cells and immune cells were selected. The average value 
of the number of FUBP3-expressed cells and immune 
cells (CD4 + T cells, CD8 + T cells, and CD68 + mac-
rophages) in each of the five fields were calculated. Sam-
ples with higher counts than average were classified as 
strong immune invasion, and samples with lower counts 
than average were classified as weak immune invasion. 
For the staining intensity, a score of 0 was given for cells 
without staining, 1 for light yellow, 2 for yellow–brown, 
and 3 for brown. For the number of positive cells, a score 
of 0 was given for ≤ 5%, 1 for 6%–25%, 2 for 26%–50%, 3 
for 51%–75%, and 4 for > 75%. Then the two scores were 
multiplied, and a final score ≥ 4 was considered positive.

Statistical analysis
SPSS 25.0 statistical software and R software (v 3.6.3) 
were used for statistical analysis. A statistical signifcance 
was identified between multiple groups by one-way 

ANOVA analysis of variance with the Tukey HSD test 
based on data in this study. The correlation analysis of 
protein expression was performed by spearman correla-
tion analysis, and P < 0.05 was considered stastistically 
significant.

Results
Pre‑processing of GSM RNA sequencing data
Glioblastoma RNA-Seq data from GSE70231 and 
GSE108474 were downloaded from GEO datasets. 
Then we obtained a gene expression matrix file for 
DEG analysis (GBM patients compared with controls). 
The “limma” R package was used for the DEG analysis. 
The DEG threshold was set as |log2FC|> 1, P < 0.05. The 
GSE70231_diff dataset included 715 DEGs, consisting 
of 322 downregulated genes and 393 upregulated genes, 
while GSE108474_diff included 694 DEGs, consisting of 
417 downregulated genes and 277 upregulated genes. 
These are shown in two volcano diagrams(Fig. 1: A, E).

Weighted gene co‑expression network analysis 
and module preservation
WGCNA was used to construct two gene co-expression 
networks for the glioblastoma and control samples of 
GSE70231 and GSE108474. The gene dendrogram con-
structed by dynamic tree was then identified, where 
each color represents one gene module. Then the mod-
ule–trait relationships were determined. Finally, the most 
downregulated gene modules (GSE70231_turquoise and 
GSE108474_turquoise) from GSE70231 and GSE108474 
were selected (Fig. 1: B-D, F–H).

Fig.1  A-D Analysis of GSE70231 database: (A) The volcanic map of the genes that differ from the normal sample. B Determination of soft threshold 
(β) for weighted gene co-expression network analysis. C Gene cluster dendrogram. D Heat map of correlation between module features and clinical 
features. E–H Analysis of GSE108474 database: (The figures type are the same as database GSE70231)
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Screening co‑expressed genes
A custom Venn diagram website was used to calculate 
the intersection of the lists of elements in our study. We 
entered files (in plain text format) from four elements: 
GSE70231_diff, GSE108474_diff, GSE70231_turquoise, 
and GSE108474_turquoise, where GSE70231_diff contain 
715 DEGs from GSE70231, GSE108474_diff contain 694 
DEGs from GSE108474, GSE70231_turquoise contain 
the most downregulated gene module from GSE70231 
and GSE108474_turquoise contain the most downregu-
lated gene module from GSE108471 respectively based 
on WGCNA. Finally, five intersecting downregulated 
genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were 
found in common between the four datasets (Fig. 2: A).

Verifying intersecting genes using GEPIA
The GEPIA website performs overall survival (OS), dis-
ease-free survival (DFS, also called relapse-free survival 
or RFS) analyses based on gene expression. This analysis 
selected FUBP3 as the significant gene for OS (P < 0.05)
(Fig. 2: B-F).

Revalidating FUBP3 based on the UCSC Cancer Genomics 
Browser
The results showed that when the overall survival 
was restricted to a particular level, the higher the 
FUBP3 levels, the longer the GBM patients survived 
(P = 0.008). When the disease-specific survival was 
restricted to the same level, the higher the FUBP3 

Fig. 2  Venn: (A) DEGs were co expressed by four databases (GEO108474_diff,GEO70231_diff,GEO108474_turquoise,GEO70231_turquoise). B-F: 
The survival curves of continuous variables of 5 intersection genes (FUBP3,DAD1,CLIC1,ABR,DNM1). G-I: Three survival curves (OS, DSS, PFI) of 
continuous variables of FUBP3 in GBM
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levels, the longer the GBM patients survived (P = 0.02). 
When the progression-free interval was restricted to 
the same level, the higher the FUBP3 levels, the longer 
the GBM patients survived (P = 0.002) (Fig. 2: G-I).

Exploring the possible function of FUBP3 in GBM based 
on KEGG and GO analyses
GO analysis showed that FUBP3 may be mainly 
involved in chemokine receptor binding, the FC recep-
tor signaling pathway, immunoglobulin complex cir-
culating, immunoglobulin receptor binding, and 
regulation of leukocyte mediated immunity. KEGG 
analysis showed that FUBP3 may be significantly asso-
ciated with the chemokine signaling pathway, cytokine 
receptor interaction, leishmania infection, the ribo-
some, and systemic lupus erythematosus (Fig. 3: A-B).

Tumor microenvironment analysis based on TIMER
The results showed that as the expression of FUBP3 
increased, the number of CD8 + T cells (cor = 0.148, 
P < 0.05), CD4 + T cells (cor = 0.171, P < 0.05), mac-
rophages (cor = 0.213, P < 0.05), and neutrophils 

(cor = 0.259, P < 0.05) all increased. The relationships 
between FUBP3 and B cells and dendritic cells were 
insignificant (both P < 0.05) (Fig. 3: C).

Immunohistochemical verification of FUBP3 
and immune‑related cell expression
FUBP3 expression was identified by immunohistochem-
istry. FUBP3 was mainly expressed in the nucleus of the 
cell. In our study, FUBP3 was expressed in the normal 
tissue adjacent to the cancer and in the GBM samples 
to varying degrees. Through one-way analysis of vari-
ance comparison, compared with controls, the number 
of glioblastoma cells expressing FUBP3 was greater, but 
the color of the cell nuclei was lighter, meaning that the 
expression of FUBP3 in the cell nucleus of GBM tissues 
decreased (P < 0.05) (Fig. 4: A-B) (Table 1). The 41 GBM 
samples were divided into a high FUBP3 expression 
group and a low FUBP3 expression group based on the 
immunochemical assessment of the intensity of invasion. 
The infiltration intensities of CD4 + T cells, CD8 + T 
cells, and CD68 + macrophages in the FUBP3 high 
expression group were significantly stronger than those 
in the FUBP3 low expression group (P < 0.05) (Fig.  4: 
C-H) (Table 2).

Fig. 3  A Possible fuction of FUBP3 in GBM based on GO analysis. B Possible function of FUBP3 in GBM based on KEGG analysis. C Correlation 
between FUBP3 and immune cells
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Discussion
Glioblastoma (GBM) is the most common primary malig-
nant brain tumor, accounting for 16% of all primary brain 
and central nervous system neoplasms [15]. Currently, 

the standard therapy for GBM includes surgical resec-
tion followed by timozolomide (TMZ) [16], but it is diffi-
cult to remove the tumor completely, so the surrounding 
brain tissue remains with tumor infiltration, leading to 
tumor progression or relapse [17]. Despite great effort, 
little progress has been made towards prolonged survival 
of GBM. Therefore, it is important to identify significant 
prognostic biomarkers, such as mutations in isocitrate 
dehydrogenase (IDH) and O6-methylguanine-methyl-
transferase (MGMT) promoter methylation, to improve 
the prognosis for GBM patients.

In this study, bioinformatics methods and clinical 
experiments were used to analyze the DEGs between 
GBM and normal samples to explore the key candidate 
genes. After pre-processing of the RNA sequencing 

Fig. 4  A The expression of FUBP3 in normal tissues adjacent to cancer. B The expression of FUBP3 in GBM tissues. C The expression of CD4 + T 
cell in GBM tissues. D The expression of CD4 + T cell in normal tissues adjacent to cancer. E The expression of CD8 + T cell in GBM tissues. F The 
expression of CD8 + T cell in normal tissues adjacent to cancer. G The expression of CD68 + macrophages in GBM tissues. H The expression of 
CD68 + macrophages in normal tissues adjacent to cancer

Table 1  Expression of FUBP3 in GBM and normal tissue ajacent 
to cancer

Notes: *P < 0.05

Abbreviation: FUBP3: expression of FUBP3 in GBM and normal tissue ajacent to 
cancer

n FUBP3 P

 +  -

Normal 41 41 0  < 0.001*

Tumor 41  15 26

Table 2  Correlation between the expression of FUBP3 and immune cells of GBM tissues

Notes: *P < 0.05

Abbreviation: Correlation between the expression of FUBP3 and immune cells(CD4 + , CD8 + , CD68 +) of GBM tissues

GBM n FUBP3 r P

 +  –

CD4 +   +  16 13 3 0.742  < 0.001*

– 25 2 23

CD8 +   +  20 14 6 0.677  < 0.001*

– 21 1 20

CD68 +   +  17 13 4 0.697  < 0.001*

– 24 2 22
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data, 715 DEGs from GSE70231 were included, consist-
ing of 322 downregulated and 393 upregulated genes, 
and 694 DEGs from GSE108474 were included, consist-
ing of 417 downregulated and 277 upregulated genes. 
Then, WGCNA was performed to determine the mod-
ules of the most downregulated genes (GSE70231_tur-
quoise and GSE108474_turquoise) from GSE70231 and 
GSE108474, to reveal the key candidate genes. A custom 
Venn diagram website was used to find the intersecting 
genes (FUBP3, DAD1, CLIC1, ABR, and DNM1). FUBP3 
was selected as the significant gene for OS (overall sur-
vival) by the GEPIA website. Then immunohistochemis-
try was used to identify the expression of FUBP3 in GBM 
and normal samples. The results showed that the expres-
sion of FUBP3 in the cell nuclei of GBM tissue decreased 
compared with that of the normal tissue adjacent to the 
tumor. The survival analyses (OS, DFS, and PFI) showed 
that when the survival rate was restricted at the same 
level, the higher the FUBP3 levels, the longer the GBM 
patients survived (P < 0.05). Then the possible function of 
FUBP3 based on GO and KEGG analyses were evaluated. 
GO analysis showed that FUBP3 may be mainly involved 
in chemokine receptor binding, the FC receptor signaling 
pathway, immunoglobulin complex circulating, immu-
noglobulin receptor binding, and regulation of leukocyte 
mediated immunity. KEGG analysis showed that FUBP3 
may be significantly associated with the chemokine sign-
aling pathway, cytokine receptor interaction, leishmania 
infection, the ribosome, and systemic lupus erythema-
tosus. Tumor microenvironment analysis showed that 
FUBP3 expression was positively correlated with the 
expression of CD8+ T cells, CD4+ T cells, and mac-
rophages (P < 0.05). We further verified the expression of 
FUBP3 and immune cells by immunohistochemistry.

FBP3 (encoded by FUBP3) is a member of a mamma-
lian three gene family of single-strand nucleic acid bind-
ing proteins, also including FBP2 (encoded by KHSRP) 
and FBP (encoded by FUBP1). The structure of the pro-
tein consists of four regular K homologous motifs that 
can recognize single-stranded RNA or DNA sequences 
[18]. The MYC transcription factor plays an important 
role in cell differentiation, growth, and senescence. Sin-
gle-stranded DNA of the far upstream element (FUSE), 
1.7 kb upstream of the major P2 promoter of the human 
MYC gene, is bound by FBP (FUSE binding protein) [19–
21] , and the specific area p89/XPB/ERCC3 30 to 50 heli-
case/translocase of transcription factor II H (TFIIH) is 
stimulated [22–24]. As transcription increases, FIR(FUBP 
interference inhibitor) is recruited through DNA–protein 
and protein–protein interactions, and then FIR reduces 
TFIIH activity to a basic level to suppress transcription, 
maintaining the balance of the levels of MYC [25–28]. 
FUBP3 is closely related to many cancers. For instance, 

the FUBP3–c-Myc axis is activated to promote colorectal 
cancer progression [29], and FUBP3 is more frequently 
expressed in prostate and bladder cancer than in renal 
cancer. A positive relationship between the expression of 
FUBP3 and c-Myc is detectable [30]. Some studies have 
shown that increased expression of FUBP1 is a predictor 
of poor survival in human glioma [31]. Different mem-
bers of the FUBP family have different functions in differ-
ent cancers, and FUBP3 plays different roles in different 
tumors. Through intersection analysis of the general 
prognostic factors for FUBP3, we found that there was 
a positive correlation between FUBP3 and the amount 
of infiltration of CD4+ T cells, CD8+ T cells, and mac-
rophages in the GBM microenvironment. Therefore, we 
carried out further verification and found that the expres-
sion level of FUBP3 was lower in GBM samples than in 
normal tissue adjacent to the tumor, and the higher the 
expression level of FUBP3, the longer the GBM patients 
survived. The expression of FUBP3 was positively cor-
related with the expression of CD8+ T cells, CD4+ T 
cells, and macrophages in tumor tissue, based on immu-
nohistochemistry. Cancer immunosurveillance has been 
recognized as a component of the general process of 
cancer immunoediting, which could be responsible for 
eliminating tumors [32]. However, the central nervous 
system (CNS) is thought to be exempt from the effects 
of the immune system. The brain has physical barriers 
for protection, and cells in the nervous system respond 
to inflammation and injury in unique ways [33]. CD8+ T 
cells constitute an important branch of adaptive immu-
nity, contributing to the clearance of intracellular patho-
gens and providing long-term protection [34]. CD4+ 
T cell subsets have the ability to “dedifferentiate” given 
appropriate environmental signals, allowing individuals 
to respond to environmental stimuli in a context-depend-
ent manner. A balance of CD4+ T cell subsets is critical 
to mount responses against pathogen challenges to pre-
vent inappropriate activation, maintain tolerance, and 
participate in antitumor immune responses [35]. Tumor-
associated macrophages (TAMs) represent the most 
abundant immune cells within the tumor microenviron-
ment and have been associated with adverse outcomes 
in patients with different types of cancer [36]. There are 
two main macrophage phenotypes, M1 and M2. Classi-
cally activated M1 macrophages promote the antitumor 
immune response by modulating antigen presentation 
and secreting proinflammatory cytokines, while activated 
M2 macrophages play an immunosuppressive role [37]. 
The TAM phenotypes can be determined by antibodies 
against TAM-associated biomarkers, such as CD68 (mac-
rophage marker), iNOS (M1 marker), and CD163 (M2 
marker). Therefore, due to the blood-brain barrier the 
central nevrous system(CNS) has been recognized as an 
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immune-free zone [38]. We speculated that FUBP3 was 
highly expressed in normal brain tissue to maintain the 
balance of immune cells. Cancer cells with mutated genes 
can produce mutated proteins that would not normally 
be produced, and these protiens can be recognized as 
foreign by the immune system, allowing macrophages to 
discover cancer cells [39]. In the FUBP3(+) GBM group, 
the expression could enhance the antigen presentation of 
CD68+ macrophages through specific molecular path-
ways (chemokine receptor binding and the FC receptor 
signaling pathway), stimulating the immune effects of 
CD4+ and CD8+ T cells to enhance the killing effect on 
tumor cells. Conversely, the immune monitoring effect is 
weakened and tumor prognosis is poor for the FUBP3-
lacking GBM group.

Collectively, our results suggest that FUBP3 in GBM 
is a potential predictor for the malignancy of the tumor. 
However, this result needs to be studied further in a 
larger group.

Conclusion
In summary, the purpose of this study was to identify a 
key gene that may be relevant to the prediction and prog-
nosis of GBM patients. A WGCNA approach with GBM 
RNA-Seq data was performed to find intersecting genes, 
and survival analysis was used to determine the signifi-
cant key gene, FUBP3. We speculated that FUBP3 could 
accelerate the death of glioblastoma cells and increase 
the survival rate of patients by activating immune cells 
(CD4+ T cells, CD8+ T cells, and CD68+ macrophages). 
We found that FUBP3 is a potential biomarker for the 
prediction, prognosis, and treatment of GBM. However, 
the function and specific pathway requires further study.
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