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Abstract 

Background:  Glioma is the most common brain tumor in adults and is characterized by a short survival time and 
high resistance to chemotherapy. It is imperative to determine the prognosis and therapy-related targets for glioma. 
Endoplasmic reticulum stress (ERS), as an adaptive protective mechanism, indicates the unfolded protein response 
(UPR) to determine cell survival and affects chemotherapy sensitivity, which is related to the prognosis of glioma.

Methods:  Our research used the TCGA database as the training group and the CGGA database as the testing group. 
Lasso regression and Cox analysis were performed to construct an ERS signature-based risk score model in glioma. 
Three methods (time-dependent receiver operating characteristic analysis and multivariate and univariate Cox regres-
sion analysis) were applied to assess the independent prognostic effect of texture parameters. Consensus clustering 
was used to classify the two clusters. In addition, functional and immune analyses were performed to assess the 
malignant process and immune microenvironment. Immunotherapy and anticancer drug response prediction were 
adopted to evaluate immune checkpoint and chemotherapy sensitivity.

Results:  The results revealed that the 7-gene signature strongly predicts glioma prognosis. The two clusters have 
markedly distinct molecular and prognostic features. The validation group result revealed that the signature has 
exceptional repeatability and certainty. Functional analysis showed that the ERS-related gene signature was closely 
associated with the malignant process and prognosis of tumors. Immune analysis indicated that the ERS-related 
gene signature is strongly related to immune infiltration. Immunotherapy and anticancer drug response prediction 
indicated that the ERS-related gene signature is positively correlated with immune checkpoint and chemotherapy 
sensitivity.

Conclusions:  Collectively, the ERS-related risk model can provide a novel signature to predict glioma prognosis and 
treatment.
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Introduction
Malignant glioma is the most common primary brain 
tumor in humans and is histologically classified as diffuse 
astrocytoma (grade II), anaplastic astrocytoma (grade 
III), and glioblastomas (grade IV) [1, 2]. Gliomas are clas-
sified into circumscribed gliomas (WHO grade I) and dif-
fusely infiltrating gliomas (WHO grades II-IV) according 
to their pattern of growth and the presence or absence of 
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the IDH mutation [3]. Current treatment approaches for 
glioma mainly include surgery, chemotherapy, and radio-
therapy [4]. Immunotherapy has also shown excellent 
prospects in preclinical studies [5–7]. Although signifi-
cant advances have been made in the surgery of malig-
nant gliomas, complete resection is impractical [8]. With 
its multichemotherapy resistance and limited clinical 
application of immunotherapy, recurrence is almost una-
voidable, and the median survival time of glioma is only 
12–15 months.

Recent studies reported that endoplasmic reticulum 
stress (ERS) could affect the prognosis and treatment 
of glioma [9, 10]. As an adaptive protective mechanism, 
endoplasmic reticulum stress has been reported in many 
studies to play a critical role in the prognosis of glioma 
[11–14]. ER stress can trigger cells to activate a series of 
adaptive responses called the unfolded protein response 
(UPR), which involves a series of protein signaling path-
ways triggered by different perturbations in the general 
response of the endoplasmic reticulum (ER) that direct 
the upregulation of a series of gene functions, such as 
protein folding, quality control, and secretion. The UPR 
has evolved to establish a complex network of intercon-
nected signaling pathways, and three distinct types of sig-
nal transducers have been defined in the UPR, including 
inositol-requiring protein-1 (IRE1), activating transcrip-
tion factor-6 (ATF6), and protein kinase RNA (PKR)-like 
ER kinase (PERK) signaling pathways [15]. Generally, the 
UPR alleviates ER stress by arresting general translation, 
degrading misfolded proteins, and upregulating chap-
erones and folding enzymes. However, under intense or 
constant endoplasmic reticulum stress, the UPR not only 
induces cell apoptosis [16–18] and regulates chemothera-
peutic sensitivity [19–22] but also modulates the immune 
microenvironment and elicits immunogenic cancer cell 
death(ICD) [23, 24]. Therefore, identifying ERS-related 
genes, establishing related prognostic signatures, and 
evaluating the immune microenvironment and check-
points will improve the prognosis and treatments of gli-
oma patients.

Recently, the comprehensive mutational landscape 
for the major glioma types was shown by genome-wide 
molecular profiling analyses [25–27]. Molecular charac-
teristics can extend the prognosis of glioma patients and 
allow for the exploration of more precision treatments [27]. 
Based on this, our study used The Cancer Genome Atlas 
(TCGA) database as the training dataset and the Chinese 
Glioma Genome Atlas (CGGA) database as the testing 
dataset to search the clinical value of the ERS-related gene 
signature. First, Cox regression and Lasso regression were 
performed to identify whether the ERS-related gene signa-
ture was correlated with significant overall survival (OS) of 
glioma patients. We also applied the Kaplan–Meier (KM) 

estimator and the receiver operating characteristic (ROC) 
algorithm to validate the accuracy of the signature. Then, 
we used consensus clustering analysis to evaluate differ-
ences in molecular characteristics. Furthermore, Gene Set 
Enrichment Analysis (GSEA), Gene Ontology (GO), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way functional annotation methods were performed to fur-
ther explore the role of the ERS-related gene signature in 
glioma. In addition, we evaluated the immune microenvi-
ronment of patients and predicted the immune checkpoint 
and chemotherapy sensitivity to explore the therapeutic 
response. Taken together, our results indicated that the 
ERS-related gene signature will be better for evaluating 
glioma prognosis and predicting novel targets in glioma 
treatment.

Materials and methods
Source of data
Endoplasmic reticulum stress gene expression profiles and 
689 glioma corresponding samples’ clinical data, such as 
age, sex, cancer type, and survival time, were obtained from 
the TCGA database (https://​xena.​ucsc.​edu), 1136 normal 
samples were obtained in GTEx, and 1018 glioma clinical 
samples were obtained from the CGGA database (http://​
www.​cgga.​org.​cn/​index.​jsp). All of the data with incom-
plete clinical information were filtered. A total of 169 endo-
plasmic reticulum stress-related genes were quoted from 
classic literature reviews. Then, the difference analysis of 
genes was performed by the R program (http://​cran.r-​proje​
ct.​org) to screen the intersecting genes. We identified these 
differentially expressed genes between glioma and normal 
samples, set logFC value <− 1 or > 1, p value< 0.001, and 16 
significant ERS-related genes were ultimately selected. The 
study’s workflow is shown in Fig. 1.

Bioinformatics analysis
Next, we applied univariate Cox regression in the TCGA 
dataset and selected P < 0.01 to screen 13 significant genes. 
Consistent univariate Cox regression in the CGGA data-
set selected P < 0.01 to screen 10 significant genes. Then, 7 
ERS-related genes were used as candidates for the prognos-
tic signature by the Lasso regression algorithm. HR < 1 was 
considered a protective factor, whereas HR > 1 was consid-
ered a risk factor. To calculate the risk score of each glioma 
patient, multivariate regression analysis was performed to 
evaluate the relative contribution of candidate genes of the 
prognostic signature. The formula was as follows:

Coef(i) and X(i) represent ERS-related gene expression 
values and regression coefficients. The Lasso regression 
algorithm by R programming language was performed to 

Risk score =

∑n

x=1
Coef x ∗ YX

https://xena.ucsc.edu
http://www.cgga.org.cn/index.jsp
http://www.cgga.org.cn/index.jsp
http://cran.r-project.org
http://cran.r-project.org
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calculate the risk score. The regression coefficient calcu-
lated by the linear combination of multiple genes divided 
subjects into high-risk and low-risk subtypes by median 
risk score. Kaplan–Meier analyses evaluated the relation-
ship between different subtypes and survival rates. To 
evaluate the predictive prognosis accuracy of the 7-gene 
signature, ROC curves were adopted to assess the sensi-
tivity and specificity using the “survival ROC” package.

Consensus clustering and survival analysis
The R program package “Consensus Cluster Plus” was 
used for stratification. We performed a consensus matrix 
and cumulative distribution function (CDF) to assess the 
optimal cluster amounts. Then, we utilized the Kaplan–
Meier curve to calculate the survival curve drawn by the 
R packages Survival and Survminer. This relationship was 
validated using a log-rank test, and the results revealed 
the correlation between the different genes and overall 
patient survival.

Functional analysis
We performed the correlation algorithm from the func-
tion “cor. Test” with R to identify the genes with a Spear 
correlation value < 0.4 or > 0.4, p < 0.001. The hallmark 
datasets were obtained from the Molecular Model Data-
base (MMDB). We adopted gene set enrichment analy-
sis (GSEA) to determine the signaling pathways, and 
the seven-ERS-related gene signature calculated the 

results by running GSEA software (4.1.1). In addition, we 
adopted the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) algorithm [28] and Gene Ontology (GO) algo-
rithm by the R package “clusterprofiler” [29] with the R 
language program to assess the cell functions related 
to risk factors for signature-based on TCGA database. 
The packages “ggplot2” and “pheatmap” were used for 
visualization.

Immune analysis
We adopted the R language “ESTIMATE” package to 
assess the immune-stromal component of each sample 
in the TME, and it is presented as three scores: immune, 
stromal, and estimate scores. According to these results, 
tumor purity was calculated, and the interaction between 
them and the expression of ERS-related genes was calcu-
lated. The RNA sequencing data and published enrich-
ment of immune cell metagenes were used as input and 
then scored by single-sample gene set enrichment analy-
sis (ssGSEA) [30] to calculate the infiltration degree of 24 
immune cells in all samples [31]. The “GSVA” R package 
was implemented to estimate the z scores of a gene set 
over the samples [32]. After deconvolution, we mapped 
the estimated proportions to actual cell types in the mix-
tures. Then, we adopted Pearson’s test to evaluate the 
correlations between immune cell abundance and ERS-
related gene expression, and “heatmap” and “vioplot” 
were used to visualize the results by R language.

Fig. 1  | The total workflow and sixteen ERS-related genes differentiated from the TCGA database. (A) The wrkflow of this study: data collection, 
analysis, and validation. (B) The heatmap shows 16 ERS-related genes that were obviously different between the tumor and normal groups. 
**P < 0.01; ***P < 0.001
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Prediction of chemotherapeutic and immunotherapeutic 
responses
We performed subclass mapping [33] and tumor immune 
dysfunction and exclusion (TIDE) algorithms in the 
TCGA dataset to assess the clinical immune checkpoint 
response between the high-risk subtype and the low-
risk subtype. We used the Pharmaceutical Sensitivity 
Genomics in Cancer (GDSC) dataset (https://​www.​cance​
rrxge​ne.​org/) to assess each sample’s chemotherapeutic 
response. Based on the GDSC data, we adopted the half-
maximal inhibitory concentration (IC50) to estimate the 
drug response. The forecasting program was assumed 
by the package “pRRophetic” in R, which was applied for 
10-fold cross-validation and other parameters by default 
[34].

Analysis of data
We used the GraphPad Prism 8 program for statistical 
analysis and graphing. The RStutio program performed 
multivariate and univariate Cox regression analyses. ROC 
and Kaplan–Meier curves were generated to verify the 
reliability of the risk model. The chi-square test was used 
to determine clinical feature differences among samples 
classified by median risk score. We also used Student’s 
t-test, and we assessed correlations by using Pearson’s 
correlation analysis. A 2-tailed p value< 0.05 was defined 
as statistically significant.

Results
The total workflow and identification of ERS‑related genes
We downloaded all gene expression, clinical and patho-
logical data of glioma patients from the TCGA dataset. 
All of the clinical data and acquired expression data were 
examined to determine acceptability, and 670 glioma 
patients reported relevant prognostic information. A set 
of pretreatments was applied to the acquired expression 
data of relative genes from all the glioma samples. These 
methods include searching for various gene expressions 
associated with ERS, supplementing missing informa-
tion, and deleting cases with incomplete data. The genes 
associated with endoplasmic reticulum stress (ERS) path-
ways were obtained from the classic literature. Then, we 
established the ERS-related gene signature, evaluated the 
survival and prognosis of patients, performed multivari-
ate analysis, and verified functional analysis and predic-
tion for chemo/immunotherapy based on it (Fig. 1A).

Next, differential analysis was performed to analyze dif-
ferentially expressed genes between the tumor and nor-
mal sets. With the filter conditions of p value< 0.001 and 
correlation coefficients> 1 or < − 1, Pearson’s correlation 
analysis was performed between the 169 gene expres-
sion levels in samples to acquire ERS-related genes. 

Then, we carried out a differential analysis between 
normal and tumor samples by the R program (http://​
cran.r-​proje​ct.​org). Sixteen ERS-related genes, includ-
ing CXCL2, ERN1, IRS1, HCP5, CASP8, CCL2, TLR4, 
TRIB3, PDIA5, CXCR4, HMOX1, ITPR2, CYBB, PDIA2, 
BCL2L11, and TP53, showed significant differences 
between the two clusters. Among them, fifteen were 
highly expressed in tumor tissues (TRIB3, ERN1, IRS1, 
CXCL2, TLR4, ITPR2, BCL2L11, TP53, CCL2, HMOX1, 
PDIA5, CXCR4, CYBB, HCP5, CASP8), and one was 
highly expressed in normal tissues (PDIA2) (Fig. 1B and 
Table 1).

Establishment of the ERS‑related gene signature
We utilized the TCGA dataset as the training group to 
calculate the prediction value of the risk score model. 
To construct the ERS-related gene signature, we first 
adopted univariate Cox regression analysis to screen 
genes in the training cohorts and testing cohorts, and 
10 genes were chosen as risk coefficients because these 
10 genes had a significant p value in the TCGA set and 
CGGA set (Fig.  2A-B). Then, we identified seven genes 
as meaningful covariates to gauge the prognosis rate 
(Fig. 2C). Next, we utilized the gene expression and cor-
relation coefficients to calculate the patients’ risk scores. 
According to the median risk score, the training dataset 
was segmented into a high-risk subtype and a low-risk 
subtype to assess the accuracy of the risk score, which 
served as a factor to evaluate characteristic genes. There 
were significant differences in clinical and molecular fea-
tures between the high- and low-risk sets (Table 2). The 

Table 1  Full names and p-value of the 16 genes associated with 
ERS

Gene Full Name p-value

CXCL2 C-X-C motif chemokine ligand 2 6.81E-25

ERN1 endoplasmic reticulum to nucleus signaling 1 1.47E-56

IRS1 insulin receptor substrate 1 8.32E-57

HCP5 HLA complex P5 1.54E-74

CASP8 caspase 8 1.22E-78

CCL2 C-C motif chemokine ligand 2 5.73E-119

TLR4 toll like receptor 4 3.54E-120

TRIB3 tribbles pseudokinase 3 4.32E-129

PDIA5 protein disulfide isomerase family A member 5 9.68E-131

CXCR4 C-X-C motif chemokine receptor 4 1.15E-141

HMOX1 heme oxygenase 1 1.80E-184

ITPR2 inositol 1,4,5-trisphosphate receptor type 2 4.68E-189

CYBB cytochrome b-245 beta chain 6.05E-198

PDIA2 protein disulfide isomerase family A member 2 6.05E-228

BCL2L11 BCL2 like 11 2.37E-243

TP53 tumor protein p53 2.33E-267

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://cran.r-project.org
http://cran.r-project.org
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high-risk set was related to age, survival state, and glioma 
grade (Fig. 2D).

In the CGGA dataset, we calculated the risk score for 
each sample to determine whether the characteristics of 
the ERS-related gene risk model had the same applica-
bility. Similarly, the high-risk group had more malignant 
clinical characteristics, including IDH mutation, WHO 
grade, age, fustat, 1p19q noncodel, and recurrence, than 
the low-risk group (Fig. S1A-G).

The 7‑gene signature has exceptional predictive power
The Kaplan–Meier curve shows that low-risk subtype 
patients have a remarkably longer overall survival rate 
(Fig. 3A). Additionally, we used the ROC curve to evalu-
ate the sensitivity and precision of the risk score by ana-
lyzing areas under the curve of the AUCs. The AUC value 
was 0.831, which indicated its strong predictive power 
(Fig.  3B). Next, the 7-gene risk model was applied to 
assess glioma sample survival status and survival time. 
The results showed the distribution of risk scores and 
survival states of the 7-gene risk model (Fig. 3C-D). We 
performed multivariate Cox regression and univariate 
Cox regression methods to determine whether the risk 
coefficient for glioma prognosis can be a significant prog-
nostic element. The risk score was not associated with 

sex but was strongly associated with the patient’s age, 
grade, and risk score, which could be a significant prog-
nostic element (Fig. 3E-F). In univariate Cox regression, 
the hazard ratio (HR) along with the 95% CI was 1.059 
(1.051–1.067) (P < 0.001) (Fig.  3E) and 1.025 (1.013–
1.037) (P < 0.05) in multivariate Cox regression analyses 
(Fig. 3F).

Consistent results were shown in the validation set. The 
overall survival (OS) results revealed that low-risk sub-
type patients also had a higher overall survival rate (Fig. 
S1H). The ROC curve exhibited great sensitivity and pre-
cision for survival predictions, and the AUC value was 
0.74 (Fig. S1I). Multivariate and univariate Cox regres-
sion analyses were adopted to prove that the risk score 
can be a significant prognostic element (Fig. S1 J-K). The 
hazard ratio (HR) of the risk score and 95% CI were 1.865 
(1.663–2.093) (P < 0.001) in univariate Cox regression 
analyses (Fig. S1J) and 1.437 (1.262–1.636) (P < 0.05) in 
multivariate Cox regression analyses (Fig. S1K).

Consensus clustering of the ERS‑related signature
According to the 7-gene signature, a consensus cluster of 
689 samples classified two clusters based on the TCGA 
cohort. The stability of the cluster increased from k = 2 to 
9 (Fig. 4A-C). Cluster 1 was significantly related to longer 

Fig. 2  Construction of the 7-gene risk model by the Lasso regression algorithm. (A) The p values and hazard ratios of 16 ERS-related genes in the 
TCGA set. (B) p values and hazard ratios of 13 ERS-related genes in the CGGA set. (C) Coefficient values of 7 screened genes. (D) Heatmap showing 
the correlation of clinicopathological features and risk scores. ***P < 0.001
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overall survival (OS) (Fig.  4D). In addition, the results 
indicated that the two clusters had significantly different 
molecular and clinical features. For the training set, clus-
ter 1 was correlated with age, grade, and survival state 
(p < 0.001) (Fig. 4E). Consistently, the result was validated 
in the testing cohort (Fig. S2A-G). The CGGA testing 
set demonstrated a similar distinction between the two 
subtypes (Fig. S2F). The above results revealed that the 
ERS-related gene signature is related to the survival rate 
of patients with glioma.

Functional analysis of the 7‑gene signature
To assess 7-gene signature characteristics of functional 
changes, we adopted gene set enrichment analysis 
(GSEA) between high-risk and low-risk sets. We found 

that the high-risk set had a strong relation to apopto-
sis, the p53 pathway, the unfolded protein response, and 
hypoxia compared with the low-risk set (Fig.  5A-D). In 
addition, we used the GO algorithm to assess the rel-
evance among different functional pathways in the high-
risk and low-risk sets. Consistently, it was found that 
the signature was mainly enhanced in NF-kappaB sign-
aling, endoplasmic reticulum lumen, and integrin bind-
ing (Fig. 5E). Furthermore, the KEGG algorithm revealed 
that the high-risk set was correlated with cell adhesion 
molecules (CAMs), the TNF signaling pathway, and 
apoptosis-related processes (Fig.  5F), all of which are 
closely associated with tumor angiogenesis, malignant 
processes and the development of the immune microen-
vironment. The gene signature was correlated with the 
above processes, resulting in a worse prognosis for gli-
oma patients.

ERS‑related gene signature correlates with tumor 
immunity in glioma
Previous studies have revealed that tumor-infiltrating 
immune cells (TIICs) are broadly dispersed in the 
tumor microenvironment (TME) and affect the dispa-
rate phase of tumor evolution. The stromal score and 
immune score in the TME represent the different pro-
portions of stromal and immune cells [35]. High-risk 
and low-risk groups were divided based on the median 
value of the risk score in the TCGA profiles. According 
to the ssGSEA algorithm, we established 24 immune 
cell subtypes to assess the glioma samples’ immune 
and stromal microenvironment and evaluated the 
interaction among them and the ERS-related gene sig-
nature. The analysis revealed that the ERS-related gene 
signature was significantly associated with the immune 
score, stromal score, and estimate score but was neg-
atively related to tumor purity (Fig.  6A-D) because 
immune cells comprised the bulk of nontumor ingre-
dients in the microenvironment. Generally, the results 
mentioned above revealed that the ERS-related gene 
signature was positively related to the immune scores 
of glioma cells. In addition, we assumed the abundance 
of TIICs to evaluate the relationship of the immune 
microenvironment and gene signature. The propor-
tion of the immune cell fraction is shown in Fig.  6E. 
We observed that the ERS-related gene signature was 
related to a high percentage of aDC cells, eosinophil 
cells, iDC macrophages cells, neutrophils cells, NK 
cells, Th17 cells, T cells, and Th2 cells (P < 0.001); 
among them, aDC cells showed the strongest correla-
tion. Conversely, B cells, CD8 T cells, NK CD56 cells, 
pDC cells, Tcm cells, Tem cells, and TFH cells were 
related to lower expression of the ERS-related gene 
signature (P < 0.001); among them, pDC cells had the 

Table 2  Glioma samples’ relevance among 7-gene-based 
risk-score and clinicopathological elements in two databases. 
The training and testing RNA-seq set come from the TCGA and 
CGGA database. Ns: no significance; Bold type statistics show a 
significant difference (P < 0.05)

Training set RNA-seq cohort (n = 661)

Low-risk score High- risk score

Features n = 333 n = 332 P- value

Age

   ≤ 65 316 259 < 0.0001

  >65 16 70

Gender

  Male 180 202 ns

  Female 152 127

Grader

  LGG 328 175 < 0.0001

  GBM 4 154

Vital status

  Alive 48 171 < 0.0001

  Dead 284 158

Testing set RNA-seq cohort(n = 465)

Low-risk score High- risk score

Features n = 165 n = 115 P- value

Age

   ≤ 65 189 255 < 0.05

  >65 3 18

Gender

  Male 102 164 ns

  Female 90 109

Grader

  LGG 164 135 < 0.0001

  GBM 28 138

Vital status

  Alive 125 76 < 0.0001

  Dead 67 197
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strongest relationship (Fig.  6E-F). Collectively, these 
results indicated that the ERS-related gene signature 
has a strong relation to immune infiltration, directs 
various tumor immune microenvironment types, and 
may play a role in the glioma malignant process.

Prediction for immunotherapy and anticancer drug 
response
By measuring 38 immune checkpoints and calculating 
the survival rates, we found that the high-risk subtype 
showed a greater response and shorter survival time to 

Fig. 3  Prediction of the 7-gene signature of glioma patients in the TCGA and CGGA datasets. (A) Kaplan–Meier algorithm among the high-risk 
group and low-risk group from the TCGA dataset. (B) The ROC algorithm indicates the specificity and sensitivity to predict survival based on the 
ERS-related signature from the TCGA database. (C) The risk curve represents the risk score and distribution of 665 cases from the TCGA database. 
(D) The survival status graph shows the difference in survival time of 665 cases from the TCGA database (each point represents a sample, C-D). (E) 
Univariate Cox regression algorithm of clinical and pathological features for survival rate from the TCGA dataset. (F) Multivariate Cox regression 
algorithm of clinical and pathological features for survival rate from the TCGA dataset. **P < 0.01; ***P < 0.001
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PDCD1 (PD-1) and CTLA4 checkpoints (Fig.  7A-C). 
Then, we performed subclass mapping analysis to assess 
the immunotherapy response from the TCGA glioma 
dataset. Although immune checkpoint-targeted medi-
cine did not show common benefits to glioma, the results 

indicated that compared to the low-risk set, the high-risk 
set responded better to immunotherapy (P = 3.606e-
14) (Fig.  7D-E). We adopted subclass mapping for the 
TIDE algorithm to correlate the ERS-related gene signa-
ture expression files with an announced dataset with 47 

Fig. 4  The ERS-related gene signature could identify the molecular and clinical features based on glioma patients. (A) The relative changes in the 
area under the CDF curve (k = 2 to 9). (B) Consensus clustering matrix for k = 2. (C) Consensus clustering matrix for k = 2 of 689 glioma samples from 
the TCGA database. (D) The cluster 1 and cluster 2 patients for survival curve based on TCGA clinical data. (E) Heatmap of ERS-related genes among 
the two clusters based on the TCGA dataset. CDF, cumulative distribution function; ***P < 0.001



Page 9 of 16Li et al. BMC Neurology          (2022) 22:192 	

Fig. 5  Functional analysis based on the 7-gene signature. (A-D) GSEA showed that the signature was enriched in 4 pathways in hallmarks. (E) GO 
analysis based on 4400 genes was strongly related to the 7-gene signature. (F) KEGG analysis was related to the risk score

Fig. 6  Correlation between the risk of glioma and the immune infiltration of glioma patients. (A-D) Immune score, ESTIMATE score, stromal score, 
and tumor purity were compared between the high-risk group and the low-risk group. The p value was calculated with the two-sided Wilcoxon 
rank-sum test. (E) Heatmap of the tumor infiltration proportions in the glioma immune microenvironment cells quantified by ImmuCellAI. (F) The 
relative percentage of TIICs for the high-risk subtype and low-risk subtype in glioma. ***P < 0.001
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Fig. 7  Differential putative chemotherapeutic and immunotherapeutic response. (A) The response of 38 immune checkpoints among the 
high- and low-risk sets in glioma. (B) Survival curve of PDCD1 (PD1) among high- and low-risk subtypes. (C) Survival curve of CTLA4 between 
high- and low-risk subtypes. (D-E) The TIDE value and response results to immunotherapy of patients with glioma. (F) The Submap algorithm 
showed that the high-risk set was more sensitive to CTAL-4 and anti-PD-1 therapy (Bonferroni-corrected P < 0.05). (G) Estimated IC50 shows the 
efficiency of chemotherapy to the high- and low-risk sets by cisplatin, erlotinib, dasatinib, lapatinib, and etoposide; ***P < 0.001
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melanoma patients who reacted to the immunotherapeu-
tic response. The analysis showed that the high-risk set 
had the most encouraging response to PD1 treatments 
(Bonferroni correction P < 0.05) (Fig. 7F).

Chemotherapy is the most traditional remedy for 
glioma. We assessed the reaction of two clusters. The 
prediction signature of the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) cell line database was trained by 
ridge regression. We used 10-fold cross-validation for 
the TCGA set to assess satisfactory prediction preci-
sion. In the TCGA dataset, each sample’s IC50 was ana-
lyzed by the predictive signature of chemo-drugs. There 
was a significant difference against the low-risk group of 
estimated IC50 for several drugs. The high-risk set that 
adopted chemotherapy seemed to express more sensitiv-
ity (cisplatin, erlotinib, dasatinib, lapatinib, and etopo-
side, P < 0.05) (Fig. 7G).

Prognostic potential of seven genes in glioma patients
We analyzed the gene expression data from the nor-
mal and tumor groups in different databases, and it was 
revealed that 7 genes were significantly different except 
for ERN1. Then, we analyzed the seven genes’ disease-
free survival and overall survival time among the two 
expression sets based on the TCGA database, and high 
expression set patients were related to a poor prognosis 
(Fig. 8 and Fig. S3).

Discussion
Although surgery and chemotherapy have exact effects, 
recurrence is a considerable challenge in glioma treat-
ment. It is critical to identify the prognosis and thera-
peutic-related targets of glioma. Recently, the TCGA 
glioma database has been used beyond targets of onco-
genesis and has potential prognostic value. Addition-
ally, immune-related genes have been proven to evaluate 
glioma prognosis [36–38]. Because the UPR not only 
induces cell apoptosis [16–18] and regulates chemothera-
peutic sensitivity [19–22] but also modulates the immune 
microenvironment and elicits immunogenic cancer cell 
death(ICD) [23, 24], we assumed that detecting ERS-
related genes is incredibly significant to evaluate prog-
nosis and the immune microenvironment, contributes 

to finding prognostic targets and develops more effective 
therapy sites for glioma. Therefore, we identified 7 genes 
associated with ERS in gliomas, each of which has inde-
pendent functions associated with ERS to affect glioma 
prognosis [39–47]. In addition, integrating multiple gene 
biomarkers into a single signature was adopted because 
the prediction accuracy of the signature can be enhanced 
compared to a single biomarker [48]. Previous studies 
have reported that this biomarker signature of gliomas, 
such as the autophagy-related signature [49, 50], ferrop-
tosis-related signature [51], and mesenchymal-related 
signature [52], has shown strong prognostic power. In 
addition, although an ERS-related signature has been 
reported, it is entirely different from ours, and too many 
genes to make up the signature results inconvenient and 
impractical in clinical application. We quoted 169 ERS-
related genes from classic literature and screened 7 genes 
to construct the signature, which demonstrated excellent 
advantages for the accuracy and efficiency of prediction.

Therefore, we examined the gene profiles from TCGA 
and CGGA glioma databases [53]. Then, Lasso regres-
sion and Cox analysis [54] were performed to construct 
an ERS signature-based risk score model for glioma. 
The 7-gene signature could divide glioma patients 
into high- and low-risk subtypes. There were notice-
able clinical differences between the high- and low-
risk subtypes, such as survival, age, and WHO grade. 
Three methods (time-dependent receiver operating 
characteristic analysis and multivariate and univariate 
Cox regression analysis) [55] were adopted to evaluate 
the independent prognostic effect of texture param-
eters. Low-risk patients had a longer survival time than 
high-risk patients, regardless of the training set or the 
validation set, and the AUC value was 0.7 or more. The 
7-gene gene signature has strong predictive power for 
glioma prognosis. In addition, the consensus cluster-
ing algorithm was used to classify two clusters, and 
the results showed that the two clusters had significant 
molecular and prognostic features, as reported previ-
ously [56]. Next, in the validation set, we demonstrated 
the prognostic value of the signature, similar to the 
training set, and the results showed that the signature 
had excellent repeatability and precision. Collectively, 

Fig. 8  TP53, HMOX1, CCL2, and CYBB were selected from the seven-ERS-related gene signature. (A) Differences in TP53 expression between the 
tumor and normal groups from the GTEX and TCGA databases. (B-C) Kaplan–Meier overall survival and disease-free survival curves showed the 
correlation between TP53 expression and survival rate based on the TCGA dataset. (D) Differences in HMOX1 expression between the tumor and 
normal groups from the GTEX and TCGA databases. (E-F) Kaplan–Meier overall survival and disease-free survival curves showed the correlation 
between HMOX1 expression and survival rate based on the TCGA dataset. (G) Differences in CCL2 expression between the tumor and normal 
groups from the GTEX and TCGA databases. (H-I) Kaplan–Meier overall survival and disease-free survival curves showed the correlation between 
CCL2 expression and survival rate based on the TCGA dataset. (J) Differences in CYBB expression between the tumor and normal groups from the 
GTEX and TCGA databases. (K-L) Kaplan–Meier overall survival and disease-free survival curves showed the correlation between CYBB expression 
and survival rate based on the TCGA dataset. ***P < 0.001

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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the ERS-related risk model can provide a novel signa-
ture to evaluate the prognosis and treatment of glioma.

Our results indicated that the signature in GSEA 
showed more enrichment in the biological pathways 
of unfolded protein response, apoptosis, P53 pathway, 
hypoxia, and PI3K AKT mTOR signaling. The UPR alle-
viates ER stress by arresting general translation, degrad-
ing misfolded proteins, and upregulating chaperones and 
folding enzymes. However, when there is intense or con-
stant ER stress, the UPR induces apoptosis, resulting in 
cell death [16]. On the one hand, the TP53 tumor sup-
pressor gene arrests cells in G0/1 or triggers apoptosis 
in response to genotoxic stress [56]; on the other hand, 
the P53 signaling pathway significantly upregulates the 
progression of glioma [57]. Through the activation of 
transcription factors, hypoxia induces either direct or 
indirect changes in the biology of glioma and its micro-
environment, leading to increased aggressiveness and gli-
oma resistance to therapy [58]. Hypoxia-induced PLOD2 
promotes glioma cell migration and invasion via modula-
tion of the PI3K/AKT signaling pathway and promotion 
of EMT [59]. In addition, the results revealed that the 
ERS-related gene signature in the GO and KEGG analy-
ses was closely related to antigen processing and presen-
tation, T-cell activation, integrin binding, cell adhesion 
molecules (CAMs), endoplasmic reticulum lumen, and 
apoptosis-related processes. Many strategies associ-
ated with T-cell activation are in clinical development: 
anticancer vaccines aiming at using glioma antigens to 
induce tumor-specific effector T cells and memory T 
cells are able to reduce the ability to control tumor mass 
[60]. Experimental research shows interesting adoptive 
antigen-specific T-cell therapy results for glioma [61]. 
ERS can trigger apoptosis when high levels of unfolded 
proteins are persistent [62–64], including three apop-
totic pathways: (1) activation of CHOP, (2) c-Jun N-ter-
minal kinase (JNK)-mediated apoptosis activation and 
(3) activation of ER-associated caspases. Integrins are a 
family of cell surface molecules of the cell–cell and cell-
extracellular matrix, which are involved in essential cel-
lular processes such as adhesion, migration, invasion, and 
angiogenesis [65]. The above processes are strongly asso-
ciated with malignant cancer processes, including tumor 
angiogenesis and progression of the tumor immune 
microenvironment [65, 66]. Collectively, the ERS-related 
gene signature is related to poor prognosis and a higher 
degree of malignancy in gliomas.

Immune ingredient quantification can be enhanced 
by the immune score in tumors, significantly affecting 
patient prognosis. In the tumor immune microenviron-
ment, tumor purity is associated with the proportion of 
tumor cells [67]. Based on the risk score, glioma patients 
were divided into high- and low-risk subtypes. The 

high-risk set had a higher degree of immune infiltrate 
and lower tumor purity than the low-risk set. Patients 
with high-risk subtypes have a poor prognosis. We spec-
ulate that higher frequency mutations and higher density 
mutations in core pathways lead to high-risk and low-risk 
patient survival differences. Moreover, for immune infil-
trating cells, the high-risk subtype was significantly dis-
tinct from the low-risk subtype. Performing the ssGSEA 
algorithm on the immune cell fraction of glioma cell 
subtypes, we discovered a high percentage of aDC cells, 
eosinophil cells, iDC macrophage cells, neutrophil cells, 
Th2 cells, NK cells, Th17 cells, and T cells in the high-risk 
subtype. NK cells had the highest proportion of infiltrat-
ing glioma lymphocytes, which is correlated with breast 
cancer and melanoma, indicating a prominent role for NK 
cells in glioma surveillance [68]. T cells are identified as a 
distinct functional state based on cytotoxicity or cytokine 
secretion responses and tissue tropisms to kill multiple 
brain tumor cells [53]. B cells and NK cells can be used 
as targets for immunotherapy [60, 69, 70]. In addition, 
we measured 38 immune checkpoints, and the results 
indicated a significant difference in most of the immune 
checkpoints between the high- and low-risk groups, such 
as PDCD1 (PD-1), CTLA4, and other checkpoints. The 
high-risk subtype may benefit more from immunother-
apy with these checkpoints and prolong survival time. 
Concerning the above results, TIDE is a newly computed 
algorithm [71], which is believed to strongly assess the 
accuracy of immune checkpoint inhibitors. Our research 
evaluated the results from two sides of immunotherapy 
of high- and low-risk samples. According to calculating 
TIDE scores, we concluded that high-risk samples might 
have a better response to immune checkpoints (PD-1, 
CTLA4), which confirms the results above. Although 
immunotherapy performed some benefits on clinical gli-
oma cancer patients, the other patients did not perform 
the same effects and had to adopt classical chemotherapy 
to cure their disease. Etoposide is a DNA damaging agent 
that has been used clinically both as a single agent and 
as a constituent of combination chemotherapy regimens 
for malignant brain tumor treatment [72]. We concluded 
that both of the groups were sensitive to five chemother-
apeutic drugs (etoposide, cisplatin, erlotinib, dasatinib, 
lapatinib) based on the database analysis and determined 
that high-risk group patients had a better response to 
chemotherapy, which would provide a vivid view to 
investigators to consider searching and developing new 
drugs because of positive therapeutic efficacy. The above 
discussion implies that the heterogeneity of the tumor 
immune microenvironment generates different responses 
to immunotherapy or anticancer drugs. The ERS-related 
gene signature is associated with immunotherapy and 
chemotherapy.
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In conclusion, our research identified ERS-related 
genes that have significant molecular and clinical char-
acteristics of glioma. The 7-ERS-related genes can be 
potential prognostic and treatment biomarker sites 
for glioma patients. In addition, a seven-ERS-related 
risk model could better evaluate survival for glioma. In 
addition, our signature could analyze glioma patients’ 
immune checkpoint inhibitor response and indicate 
chemotherapeutic sensitivity, as well as explore new 
clinical therapies for glioma patients. Nonetheless, 
the concrete mechanism between ERS-related genes 
and the prognosis and immune response of glioma 
is unclear, and we need more experiments to explore 
ERS-related mechanisms in glioma.
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