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Abstract 

Backgrounds:  We aimed to develop and validate machine learning (ML) models for 30-day stroke mortality for mor-
tality risk stratification and as benchmarking models for quality improvement in stroke care.

Methods:  Data from the UK Sentinel Stroke National Audit Program between 2013 to 2019 were used. Models were 
developed using XGBoost, Logistic Regression (LR), LR with elastic net with/without interaction terms using 80% ran-
domly selected admissions from 2013 to 2018, validated on the 20% remaining admissions, and temporally validated 
on 2019 admissions. The models were developed with 30 variables. A reference model was developed using LR and 4 
variables. Performances of all models was evaluated in terms of discrimination, calibration, reclassification, Brier scores 
and Decision-curves.

Results:  In total, 488,497 stroke patients with a 12.3% 30-day mortality rate were included in the analysis. In 2019 
temporal validation set, XGBoost model obtained the lowest Brier score (0.069 (95% CI: 0.068–0.071)) and the highest 
area under the ROC curve (AUC) (0.895 (95% CI: 0.891–0.900)) which outperformed LR reference model by 0.04 AUC 
(p < 0.001) and LR with elastic net and interaction term model by 0.003 AUC (p < 0.001). All models were perfectly 
calibrated for low (< 5%) and moderate risk groups (5–15%) and ≈1% underestimation for high-risk groups (> 15%). 
The XGBoost model reclassified 1648 (8.1%) low-risk cases by the LR reference model as being moderate or high-risk 
and gained the most net benefit in decision curve analysis.

Conclusions:  All models with 30 variables are potentially useful as benchmarking models in stroke-care quality 
improvement with ML slightly outperforming others.
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improvement
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Introduction
Predicting outcome after stroke can be used at an insti-
tutional level to identify whether clinical services are 
performing below, at or above predicted levels of efficacy 
[1] which enables remedial action to be taken to support 
improvement of poorly performing services and to recog-
nise and replicate systems that are delivering better than 
predicted care.
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The complexity of stroke potentially lends itself well 
to the use of machine learning (ML) algorithms which 
are able to incorporate large amount of variables and 
observations into one predictive model [2]. It has been 
suggested that ML might outperform clinical predic-
tion models based on regression because they make 
fewer assumptions and can learn complex relationships 
between predictors and outcomes [3]. However, previ-
ous literature has not consistently shown that ML models 
generate more accurate predictions of stroke outcomes 
than regression based models, and improvements in 
methodology and reporting are needed for studies that 
compare modeling algorithms [4]. Many of the practical 
machine learning applications are still in their infancy 
and need to be explored and developed better [5].

There have been numerous ML prediction models 
developed previously for stroke outcomes [6] but all had 
some flaws in model building which limited their util-
ity. From a systematic review on predicting outcomes of 
stroke using machine learning methods, few studies met 
basic reporting standards for clinical prediction tools and 
none made their models available in a way which could 
be used or evaluated [6]. Major improvements in ML 
study conduct and reporting are needed before it can 
meaningfully be considered for practice.

This study aimed to use ML and a large, nationally 
representative dataset containing real-world clinical 
variables with high potential for practical application to 
understand if carefully built and reported ML models can 
provide more accurate predictions of post-stroke mortal-
ity than existing methods. The findings of the research 
are intended to inform the design of predictive analytics 
used for mortality risk stratification and to support qual-
ity improvement in stroke care and benchmark stroke 
care services.

Methods
This study is reported according to the TRIPOD guide-
lines: transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis [7].

Data source
Data were from Sentinel Stroke National Audit Pro-
gramme (SSNAP), the national registry of stroke care 
in England, Wales and Northern Ireland. SSNAP is a 
Healthcare Quality Improvement Partnership (HQIP) 
register for stroke care quality improvement. Data were 
collected prospectively, validated by clinical teams and 
entered into the SSNAP database via a secure web inter-
face. SSNAP is estimated to include an estimated 95% of 
all adults admitted to hospital with acute stroke (ischae-
mic or primary intracerebral haemorrhage) in England, 
Wales and Northern Ireland.

Study population
The original dataset was collected from 333 teams 
across England, Wales and Northern Ireland between 
April 1, 2013 to June 30, 2019. For the generalisation of 
the model to the population, all patients were included 
and no specific exclusion criteria for stroke patients.

Study outcome
The predicted outcome was all-cause 30-day in-hospital 
mortality post-stroke. All patients had in-hospital sta-
tus due to the collection procedure in SSNAP. Out-hos-
pital deaths were not available for analysis.

Variables
In total, 65 variables (Supplementary Table A) were 
obtained from SSNAP. According to expert advice and 
literature review, 30 variables collected at arrival and 
24 hours were used to build prediction models, including 
age (band by 5), sex, ethnicity, inpatient at time of stroke, 
hour of admission, day of week of admission, congestive 
heart failure, atrial fibrillation (AF), diabetes, hyperten-
sion, previous stroke/transient ischaemic attack (TIA), 
prior anticoagulation if AF, pre-stroke modified Rankin 
Scale (mRS), National Institutes of Health Stroke Scale 
(NIHSS) and its 15 components, and type of stroke. Age 
was obtained from SSNAP as banded by 5 and no con-
tinuous age was available for analysis.

Missing values
Missing data were handled using different methods 
according to assumptions of missing mechanism after 
consulting SSNAP team and clinicians. Variables with 
more than 80% missing were discarded due to high level 
of missingness. For categorical variables with missing by 
design/not applicable assumption, missing values were 
added as a new category. Missing indicator was used for 
missing by design/not applicable continuous variables. 
After these, Multiple Imputation with Chained Equa-
tions (MICE) [8] was used to impute variables with miss-
ing at random assumption for the development dataset. 
All available variables except for the discarded ones were 
used in MICE. Five datasets were imputed using MICE 
and aggregated into one using median. Details for han-
dling missing data were presented in Supplementary 
Table B. To simulate the future use of the prediction 
model (i.e. predicting outcomes of individual patients), 
the validation set and temporal validation set were 
imputed with the median/mean of each variable.

Analysis methods
Ordinal categorical variables were coded as integers. 
Categorical variables that were not ordinal were coded 
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using one hot encoding. Continuous variables remained 
continuous. Details of coding of variables were pre-
sented in Supplementary Table B.

Models were developed/trained using 80% randomly 
selected data from 2013 to 2018, validated on the remain-
ing 20% data from 2013 to 2018, and temporally validated 
on data from 2019.

Descriptive statistics were used to compare the charac-
teristic of death/alive at 30-day across the entire datasets, 
and also used to compare patients’ characteristics for 
development set, validation set and temporal validation 
set.

Logistic regression (LR), LR with elastic net [9] with/
without interaction terms, and XGBoost [10] were used 
to build models with the 30 variables. A reference model 
was developed using the same approach as SSNAP 
30-day mortality model [11]: LR with 4 variables (age, 
NIHSS, previously diagnosed AF, and type of stroke). To 
make the models comparable, the outcome of LR refer-
ence model was in-hospital 30-day mortality.

Best hyperparameters (a parameter that is predefined 
by the user to control the learning process) were selected 
on the development set with grid search or random 
search and cross-validation (CV). Detailed hyperparam-
eter tuning strategy was presented in a repos​itory​ on 
Github that was built for this study (https://​github.​com/​
SSNAP-​Machi​ne-​Learn​ing-​Proje​ct/​Post-​Stroke_​30-​day_​
Morta​lity_​Predi​ction).

Brier score [12] was used as an overall summative 
measure of predictive performance. Discrimination was 
measured by AUC. Calibration was visually assessed with 
calibration plots [13], and numerically by calibration-
in-the-large [13] and calibration slopes [13]. R functions 
for calculating these measurements were presented in 
the Github repository. Comparisons of Brier scores and 
AUCs were conducted with one-way repeated measure 
Analysis of Variance (ANOVA) [14] on the 500 boot-
strap samples. If an overall significant difference had 
been achieved (significance threshold of p-value is 0.05) 
in one-way repeated measure ANOVA test, post-hoc 
test [15] was conducted further for pairwise comparison 
which depicts where exactly the differences occurred. 
Further, we used DeLong test as an addition method to 
test the difference between any two methods.

As stroke type is a critical factor for outcomes of stroke 
patients, we performed a subgroup analysis to investigate 
the performance of the developed models for patients 
with different stroke type i.e. infarction and haemorrhage.

Calibration was also evaluated by shift tables, in which 
we classified patients in the temporal validation set into 
prespecified categories of low (< 5%), moderate (5–15%), 
or high risk (> 15%) of 30-day mortality based on two 
models, creating a 9-way matrix of patients that included 

risk profiles assigned by the 2 models (low-low, low-
moderate, and so on). We then calculated the actual rate 
of events in these groups and compared them against 
the observed rates of mortality focusing on discordant 
categories.

Clinical utility was assessed with decision curve analy-
sis [15] which shows graphically the net benefit obtained 
by applying the strategy of treating an individual if and 
only if predicted risk is larger than a threshold in func-
tion of the threshold probability. Threshold equals to 0 
means treating all since all predicted risk will be larger 
than 0. Threshold equals to 1 means treating none since 
all predicted risk will be smaller than 1. All analyses were 
conducted using R 3.6.2 and occurred between October 
2019 to May 2020.

Results
Participants
The dataset included information on 488,947 patients 
(Table 1), of whom 60,362 (12.35%) patients died within 
30 days in hospital. The average age group for patients 
who were dead within 30 days (75–80 year band) was 
older than the average age group for patients alive (70–
75 year band). Patients who died within 30 days had 
higher prevalence of congestive heart failure (9.4% ver-
sus 4.8%), AF (33.0% versus 17.8%), previous stroke/TIA 
(28.3% versus 26.2%), and a higher proportion of patients 
with functional impairment pre-stroke (modified Rankin 
Scale (mRS) mean (SD) 1.78 (1.61) versus 0.95 (1.34)). 
Patients who died within 30 days were more likely to have 
intracranial haemorrhage (27.2% versus 9.3%) and have a 
higher NIHSS (mean (SD) 17.81 (9.34) versus 6.08 (6.14)). 
Data for all the patients and stratifications by 30-day 
mortality status were presented in Table 1 with a full list 
of variables in Supplementary Table C.

Model specification and performance
In predicting 30-day mortality, 358,588 patients in 2013 
to 2018 with 30-day mortality rate of 12.4% were used for 
developing the model, 89,649 patients in 2013 to 2018 
with 30-day mortality rate of 12.2% were used for model 
validation, and 40,711 patients in 2019 with 30-day mor-
tality rate of 12.3% were used for temporal validation. 
General characteristics for the development, validation 
and temporal validation set on all candidate variables are 
presented in Supplementary Table D. Specifications of 
the trained models and explanations on how to use them 
can be found in the repos​itory​ on Github.

XGBoost obtained the lowest Brier score of 0.069 (95% 
CI: 0.068 to 0.071) and the highest AUC of 0.895 (95% CI: 
0.891 to 0.900) on 2019 temporal validation set (Table 2). 
The difference between XGBoost and other models were 
all significant (repeated measure ANOVA and post-hoc 

https://github.com/SSNAP-Machine-Learning-Project/Post-Stroke_30-day_Mortality_Prediction
https://github.com/SSNAP-Machine-Learning-Project/Post-Stroke_30-day_Mortality_Prediction
https://github.com/SSNAP-Machine-Learning-Project/Post-Stroke_30-day_Mortality_Prediction
https://github.com/SSNAP-Machine-Learning-Project/Post-Stroke_30-day_Mortality_Prediction
https://github.com/SSNAP-Machine-Learning-Project/Post-Stroke_30-day_Mortality_Prediction
https://github.com/SSNAP-Machine-Learning-Project/Post-Stroke_30-day_Mortality_Prediction
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test) even though small. On 2019 temporal validation 
set, XGBoost model performed slightly better than LR 
with elastic net and interaction terms (AUC difference 
0.003, p < 0.001) and better than LR and LR with elastic 
net (AUC difference 0.009, p < 0.001). Both Brier score 
and AUC were improved when adding interaction terms 
in LR with elastic net and AUC was improved by 0.006 
(p < 0.001).

Models with 30 variables outperformed LR reference 
model with 4 variables (Table  2) with both Brier score 
and AUC. With 30 variables, the prediction accuracy was 
improved by 0.041 AUC (p < 0.001) for 2019 temporal 
validation. Results for validation were presented in Sup-
plementary Table E.

Calibration-in-the-large (Table 2) were slightly higher 
than 0 for all models indicating underestimated average 
predicted risk except for LR reference model. LR ref-
erence model had a calibration slope (Table 2) smaller 
than 1 suggesting that the estimated risks were too 
extreme whilst calibration slope for other models was 
slightly larger than 1 suggesting that the estimated risks 

were too moderate. All calibration curves (Fig.  1 on 
2019 validation set and Supplementary Fig. A on vali-
dation set) were close to the diagonal for low (< 5%) and 
moderate (5–15%) risk groups but slightly above the 
diagonal line (≈1%) for high-risk (> 15%) groups which 
indicated underestimation [16].

Notably, 1648 (8.1%) low-risk cases by LR reference 
model were more appropriately reclassified as being 
moderate or high risk by XGBoost (Table 3), similarly, 
1328 (6.3%) cases by LR model, 1429 (6.7%) by LR with 
elastic net, 1379 (6.4%) by LR with elastic net and inter-
action terms (Supplementary Table F).

Compared to LR model (Table 3), LR with elastic net 
and interaction terms more appropriately reclassified 
705 (3.1%) low-risk cases by LR model to be at moder-
ate-risk. 1286 (13.3%) moderate-risk cases by LR model 
were appropriately reclassified as at low-risk by LR 
with elastic net and interaction terms. LR with elastic 
net and LR had very small difference in the risk groups 
(Supplementary Table G).

Table 1  General statistics of cohort with stratification of status at 30 days after hospital admission

Abbreviation: mRS modified Rankin Scale

Overall Alive at 30 days Dead at 30 days

N 488,947 428,585 (87.65%) 60,362 (12.35%)

Age Groups (%)

  15–60 76,941 (15.7) 74,238 (17.3) 2703 (4.5)

  61–70 84,484 (17.3) 79,109 (18.5) 5375 (8.9)

  71–80 136,728 (28.0) 122,393 (28.6) 14,335 (23.7)

  81+ 190,794 (39.0) 152,845 (35.7) 37,949 (62.9)

Male (%) 249,291 (51.0) 223,849 (52.2) 25,442 (42.1)

Congestive heart failure (%) 26,317 (5.4) 20,656 (4.8) 5661 (9.4)

Hypertension (%) 264,806 (54.2) 232,505 (54.2) 32,301 (53.5)

Atrial fibrillation (%) 96,354 (19.7) 76,417 (17.8) 19,937 (33.0)

Diabetes (%) 102,324 (20.9) 90,104 (21.0) 12,220 (20.2)

Previous stroke or TIA (%) 129,462 (26.5) 112,358 (26.2) 17,104 (28.3)

NIHSS (mean (SD)) (12.9% missing) 7.31 (7.47) 6.08 (6.14) 17.81 (9.34)

Functional impairment pre-stroke (mRS) (mean (SD)) 1.05 (1.40) 0.95 (1.34) 1.78 (1.61)

Type of stroke = Haemorrhage (0.7% missing) 55,758 (11.5) 39,472 (9.3) 16,286 (27.2)

Table 2  Brier score, AUC, calibration-in-the-large and calibration slope with 95% Confidence Interval (CI) for 2019 temporal validation

Model Brier score (95% CI) AUC (95% CI) Calibration-in-the-large 
(95% CI)

Calibration slope (95% CI)

LR reference model 0.078 (0.076 to 0.079) 0.854 (0.848–0.860) 0.017 (− 0.033–0.066) 0.977 (0.952–0.998)

LR 0.073 (0.071–0.074) 0.886 (0.881–0.891) 0.200 (0.145–0.257) 1.055 (1.028–1.081)

LR with elastic net 0.073 (0.071–0.074) 0.886 (0.882–0.891) 0.212 (0.158–0.265) 1.075 (1.050–1.098)

LR with elastic net and 
interaction terms

0.071 (0.069–0.073) 0.892 (0.887–0.897) 0.305 (0.252–0.356) 1.116 (1.090–1.144)

XGBoost 0.069 (0.068–0.071) 0.895 (0.891–0.900) 0.142 (0.090–0.190) 1.077 (1.050–1.102)
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Fig. 1  Calibration plots of all models on 2019 temporal validation set

Table 3  Shift table of reclassification with different models on 2019 temporal validation set

Low risk (< 5%) Moderate risk (5–15%) High risk (> 15%) All

Number (% in 
Low risk)

observed 
mortality 
(%)

Number (% 
in Moderate 
risk)

observed 
mortality 
(%)

Number 
(% in High 
risk)

observed 
mortality 
(%)

Number (% in All) observed 
mortality 
(%)

LR reference model (4 variables)
XGBoost

  Number in Low 
risk

19,664 (92.3) 1.45 3549 (32.4) 3.07 6 (0.07) 33.33 23,219 (57.0) 1.71

  Number in 
Moderate risk

1351 (6.7) 8.66 5942 (54.3) 8.16 1007 (11.9) 10.43 8300 (20.4) 8.52

  Number in High 
risk

297 (1.4) 51.52 1455 (12.3) 28.73 7440 (88.0) 44.96 9192 (22.6) 42.60

  All 21,312 (100) 2.61 10,946 (100) 9.25 8453 (100) 40.84 40,711 (100) 12.33

LR
LR with elastic net and interaction terms

  Number in Low 
risk

22,269 (96.9) 1.75 1286 (13.3) 3.65 0 (0) 0 23,555 (57.9) 1.85

  Number in 
Moderate risk

705 (3.1) 6.38 7727 (79.8) 9.63 309 (3.8) 10.36 8741 (21.5) 9.39

  Number in High 
risk

0 (0) 0 669 (6.9) 24.51 7746 (96.2) 46.46 8415 (20.7) 44.72

  All 22,974 (100) 1.18 9682 (100) 9.50 22,974 (100) 44.85 40,711 (100) 12.33

LR with elastic net and interaction terms
XGBoost

  Number in Low 
risk

22,707 (96.4) 1.65 512 (5.9) 4.49 0 (0) 0 23,219 (57.0) 1.71

  Number in 
Moderate risk

846 (3.6) 7.33 7359 (84.2) 8.59 95 (1.1) 13.68 8300 (20.4) 8.52

  Number in High 
risk

2 (0) 0 870 (10) 19.08 8320 (98.9) 45.07 9192 (22.6) 42.60

  All 23,555 (100) 1.85 8741 (100) 9.39 8415 (100) 44.72 40,711 (100) 12.33
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Compared to LR with elastic net and interaction terms 
(Table  3), XGBoost more appropriately reclassified 846 
(3.6%) low-risk cases by LR with elastic net and interac-
tion terms to be at moderate risk. 512 (5.9%) moderate 
risk by LR with elastic net and interaction terms were 
more appropriately reclassified to be at low risk. 870 
(10%) moderate-risk cases by LR with elastic net and 
interaction terms were more appropriately reclassified to 
be at high risk.

From the decision curves on 2019 temporal validation 
set (Fig.  2), all models gained net benefits [17] with the 
risk threshold between 5 to 90% compared to treating 
all and treating none whilst among all models, Xgboost 
performed the best. When the threshold was between 5 

to 10%, the decision curve overlapped between XGBoost 
and LR related models whilst they were all better than LR 
reference model. Decision curves on validation set are in 
Supplementary Fig. B which had similar results.

For different stroke types, XGBoost and other LR mod-
els performed slightly better on patients with haemor-
rhage (AUC 0.900 [95% CI: 0.890–0.909] for XGBoost) 
than infarction (AUC: 0.833 [95% CI: 0.878–0.889]) but 
LR reference model with 4 variables performed better 
for patients with infarction (AUC: 0.845 [95% CI: 0.837–
0.851]) rather than patients with haemorrhage (AUC: 
0.817 [95% CI: 0.803–0.831]) (Figs. 3 and 4). Calibration 
curves showed that all models in the 2019 temporal vali-
dation set had almost perfect calibration for haemorrhage 

Fig. 2  Decision curves of all models on 2019 temporal validation set

Fig. 3  AUC-ROC for infarction patients in 2019 temporal validation set
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patients (Supplementary Fig. C) but XGBoost underesti-
mated the risk for very high risk of infarction (Supple-
mentary Fig. D). Decision curves showed that for both 
stroke types XGBoost had the highest net benefit on 2019 
temporal validation set (Supplementary Fig. E and F).

According to the feature importance calculated from 
XGBoost model, NIHSS at arrival, level of consciousness, 
age, type of stroke and pre-sroke mRS were the most 
important features in making the predictions (see the 
first 20 most important features in Supplementary Fig. 
G). Compared to the four variables used in LR reference 
model, AF was less important than presroke mRS at pre-
dicting the 30-day mortality.

Discussion
In this study we explored the performance of XGBoost 
and LR related models for predicting risk of 30-day mor-
tality after stroke. Our findings showed that the improve-
ment of XGBoost was modest compared to LR with 
elastic net and interaction terms (AUC difference 0.003, 
p < 0.001) and larger compared to LR and LR with elas-
tic net (AUC difference 0.009, p < 0.001). There has been 
mixed signals about whether ML outperforms LR mod-
els [6]. In our case, with nearly a half million patients, 
the gain of ML was small compared to LR with elastic 
net and interaction terms even though significant due to 
the large dataset. Also, previous studies used simpler LR 
models (e.g. LR or least absolute shrinkage and selection 
operator (LASSO)) with no interactions which constrains 
the models to learn only linear relationships whilst ML 
models are capable of learning very complicated relation-
ships. XGBoost and LR with elastic net and interaction 
terms performed better than LR showed that there is an 

opportunity to improve the accuracy by incorporating 
interactions between risk predictors.

When including more variables in the model, AUCs 
were improved by 0.041 (p < 0.001) for both LR related 
models and XGBoost which showed the potential of 
improving the accuracy by using more variables combin-
ing data-driven variable selection (i.e. LR with elastic net 
achieves variable selection by shrinking the coefficients 
of the variables and XGBoost by calculating variable 
importance).

A variety of models have been developed previously to 
predict post-stroke mortality, including ML models [6], 
LR models and scores [18]. The model developed by Bray 
et al. [11] has been externally validated twice [19, 20] with 
different population. Our reference model was developed 
with the same approach but with more patients enrolled 
between 2013 and 2019 compared to Bray et  al. model 
[11] which used patients from 2013. The AUC with LR 
reference model was slightly lower (0.854 (0.848–0.860) 
versus 0.86 (0.85–0.88)) with the Bray et al. model [11]. 
Our model with 30 variables using XGBoost had a higher 
AUC of 0.896 (0.891–0.900).

Existing scores for 30-day mortality prediction are 
PLAN [21] and IScore [22]. PLAN was externally vali-
dated with AUC (0.87 (0.85–0.90)) [23] and IScore with 
AUC (0.88 (0.86–0.91)) which were higher compared 
to the original studies (PLAN: AUC 0.79, IScore: AUC 
0.79–0.85). Due to lack of certain variables (PLAN score: 
cancer, Iscore: Cancer, renal dialysis, stroke scale score, 
non-lacunar, and abnormal glucose level), we could not 
externally validate these scores.

The subgroup analysis with types of stroke showed that 
the models with 30 variables predicted better at haemor-
rhage patients than infarction patients. The reasons for 

Fig. 4  AUC-ROC for haemorrhage patients in 2019 temporal validation set
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this are not clear, but might relate to the proportionally 
higher number of mortality events in the patients with 
haemorrhagic stroke. The feature importance of the vari-
ables in the XGBoost model were consistent with previ-
ous literature about prognostic factors after stroke, with 
NIHSS, age, stroke type and prestroke mRS being the 
most important predictors. Notably, many individual 
components of the NIHSS score also contributed to the 
predictions in addition to the overall NIHSS, indicating 
that there is value in using all components of the NIHSS 
as part of prognostic models.

ML models have been notably performing well with 
non-structured data such as text mining and imaging. 
However, in terms of structured data, the advantages 
of LR models in interpretability outweigh the small 
improvement of the prediction accuracy by ML models. 
Furthermore, even though the use of ML for predicting 
stroke outcomes is increasing, few met basic reporting 
standards for clinical prediction tools and none made 
their models available in a way which could be used or 
evaluated [6]. Major issues found in the ML studies are 
small dataset size, lack of calibration and external vali-
dation, lack of details in hyperparameter tuning, lack of 
decision curve analysis, and the non-availability of the 
final model [6]. None of the ML model were externally 
validated due to the low quality of reporting and lack of 
final model. From the low reporting quality, few exter-
nal validation of ML models, and lack of guidelines on 
developing and reporting, ML still has a long way to go 
in being accepted by clinicians and implemented in real-
world setting.

Strengths and limitations
This is by far the largest stroke dataset used for develop-
ing prediction of post-stroke mortality model using ML 
(around 0.5 million versus < 1000 in previous ML post-
stroke mortality prognosis studies [6] and 77,653 as the 
largest, to the best of our knowledge, for LR model/
score-based approach [24]). The participants in the study 
are presentative for the nation and complete in terms of 
a nearly complete national population of hospitalised 
stroke and richness of available data and data quality.

The models were built with robust approaches and 
reported according to the TRIPOD reporting guidelines 
with several terms adjusted for ML studies such as hyper-
parameter turning and final model presentation. For 
missing data, we explored the missing mechanism which 
was not explored in previous studies before imputing or 
fitting the model [18]. Hyperparameter selection was well 
reported in our study but not in previous ML studies [6]. 
Temporal validation was performed to make sure that the 
models can apply to data collected after the model was 
developed. Finally, a repository on Github was built to 

share the pre-trained models for other studies to exter-
nally validate.

The main limitations are that we were restricted to 
using variables available in SSNAP and there may be 
other variables (e.g. imaging) that might improve the 
accuracy of prediction. We used 30 variables that were 
collected within SSNAP, which might not be available 
in other databases. However, the variables are generally 
available in stroke registries which can benefit from the 
models developed in this study. The validation was lim-
ited to temporal validation and ideally the model should 
be validated in external data from other data sources. 
Finally, death outcomes were limited to inpatient mortal-
ity and it was not possible to ascertain deaths occurring 
outside hospital within 30 days.

Conclusions
The potential gain for machine learning versus carefully 
developed statistical models to produce more accurate 
predictive analytics using stroke registries is likely to be 
modest. Compared to the reference model with 4 varia-
bles, all models with 30 variables are potentially useful as 
benchmarking models in quality improvement of stroke 
care with ML slightly outperforming others. These find-
ings emphasise the usefulness of collecting more detailed 
clinical data to support predictive analytics for quality 
improvement in stroke care.
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