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Abstract 

Background:  Early infratentorial and focal spinal cord lesions on magnetic resonance imaging (MRI) are associated 
with a higher risk of long-term disability in patients with multiple sclerosis (MS). The role of diffuse spinal cord lesions 
remains less understood. The purpose of this study was to evaluate focal and especially diffuse spinal cord lesions 
in patients with early relapsing-remitting MS and their association with intracranial lesion topography, global and 
regional brain volume, and spinal cord volume.

Methods:  We investigated 58 MS patients with short disease duration (< 5 years) from a large academic MS center 
and 58 healthy controls matched for age and sex. Brain, spinal cord, and intracranial lesion volumes were compared 
among patients with- and without diffuse spinal cord lesions and controls. Binary logistic regression models were 
used to analyse the association between the volume and topology of intracranial lesions and the presence of focal 
and diffuse spinal cord lesions.

Results:  We found spinal cord involvement in 75% of the patients (43/58), including diffuse changes in 41.4% (24/58). 
Patients with diffuse spinal cord changes exhibited higher volumes of  brainstem lesion volume (p = 0.008). The pres-
ence of at least one brainstem lesion was associated with a higher probability of the presence of diffuse spinal cord 
lesions (odds ratio 47.1; 95% confidence interval 6.9–321.6 p < 0.001) as opposed to focal spinal cord lesions (odds 
ratio 0.22; p = 0.320). Patients with diffuse spinal cord lesions had a lower thalamus volume compared to patients 
without diffuse spinal cord lesions (p = 0.007) or healthy controls (p = 0.002).

Conclusions:  Diffuse spinal cord lesions are associated with the presence of brainstem lesions and with a lower 
volume of the thalamus. This association was not found in patients with focal spinal cord lesions. If confirmed, tha-
lamic atrophy in patients with diffuse lesions could increase our knowledge on the worse prognosis in patients with 
infratentorial and SC lesions.
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Background
Multiple sclerosis (MS) is the most common chronic 
disabling autoimmune and neurodegenerative neurologi-
cal disease in young adults characterized by accumula-
tion of focal demyelinating lesions, widespread chronic 
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neuroinflammation and neuronal loss in the brain and 
spinal cord (SC). The wide heterogeneity of clinical char-
acteristics, genetics, pathogenesis, and response to treat-
ments observed within MS population calls for reliable 
early prognostic markers to personalize treatment and 
improve the design and analysis of therapeutic trials 
and observational studies. Magnetic resonance imag-
ing (MRI) of the brain and SC plays a crucial role both 
in the diagnosis and in the monitoring of disease activ-
ity. The clinical and prognostic relevance of infratento-
rial (brainstem and cerebellum) and SC lesions related 
to their strategic anatomical functional localization has 
been recognized early on [1, 2]. Subsequent studies have 
confirmed a higher risk of conversion to clinically defi-
nite MS, more aggressive disease, disability progression 
and developing secondary progressive disease associated 
with infratentorial and SC lesions [3–7]. Two different 
types of SC lesions that differ histopathologically by their 
degree of myelination, gliosis, and by the involvement 
of gray matter (GM) and white matter (WM) have been 
described in MS. Firstly, sharply demarcated focal lesions 
(FL) that are rather small, covering less than two SC seg-
ments and usually less than half of the cord area [8, 9], 
and secondly, diffuse areas of abnormal signal intensity 
lacking a well-demarcated border [10]. Okuda’s group 
defined diffuse SC lesions (DL) as areas or the coalescing 
appearance of multifocal lesions on sagittal view [11]. DL 
are associated with higher disability [12] and SC atrophy 
[13–15], however, they are not incorporated into current 
MS diagnostic criteria [16] as their assessment is consid-
ered to be not reliable and unspecific. SC atrophy is pre-
sent predominantly in the cervical SC, occurs early in the 
disease course [17] and shows a significant correlation 
with the subsequent progression of physical disability 
[18, 19]. Therefore, the need arises to find and under-
stand DL and other early biomarkers associated with 
future SC atrophy. The current study aimed to evaluate 
SC involvement in early MS and to assess the association 
of FL and DL with the volume and topography of intrac-
ranial lesions and the regional and global brain volumes 
and spinal cord volume. Our hypotheses were twofold: 
(i) patients with DL have a higher volume and/or a dif-
ferent distribution of intracranial white matter lesions 
than patients with FL or normal appearing SC  and (ii) 
patients with DL have a lower SC volume and/or lower 
global and regional brain volumes than patients with only 
FL or normal appearing SC.

Methods
Subjects
We included 58 patients with early relapsing-remitting 
MS diagnosed according to McDonald criteria with a 
disease duration < 5 years. Patients with MS underwent 

their routine annual brain and SC MRI examination 
and a complete neurological examination including 
the EDSS (Expanded Disability Status Scale). From 102 
healthy controls (HC) who were recruited as a control 
group for MS research, we selected 58 HC  matched 
for sex and age. HC underwent brain and SC MRI on 
the same scanner using the same imaging protocol as 
patients with MS. The study was conducted in accord-
ance with the Good Clinical Practice Guidelines. MRI 
and clinical examinations were performed as part of 
standard care and monitoring within our MS Center. 
The local Ethics Committee approved the examina-
tion of both MS patients and HC. Each participant 
involved in this study provided informed consent before 
individual data were collected, stored, and analysed. 
Demographic and clinical characteristics (EDSS and its 
functional system scores and initial symptoms) of the 58 
patients and the HC matched for sex and age are shown 
in Supplementary Table 1.

Magnetic resonance acquisition
All patients and HC were scanned at 3 T (MAGNETOM 
Skyra, Siemens Healthcare, Erlangen, Germany) using 
the same protocol. This included a 3D-T2W sequence in 
the transversal plane for SC volume measurement, and a 
sagittal T2WI-Fat-Sat and PDW sequences for the assess-
ment of FL and DL. The SC was assessed between the 
cervicomedullary junction (C1 level) and the Th4 level. 
Intracranial lesions were segmented on a 3D fluid attenu-
ated inversion recovery (FLAIR) sequence and magnet-
ization-prepared rapid acquisition with gradient echo 
(MPRAGE) was used to assess global and regional brain 
volumes. The parameters of the sequences are summa-
rized in Table 1.

Spinal cord volume measurement and detection of spinal 
cord involvement
The volume of SC was quantified by measuring the 
MUCCA (mean upper cervical cord cross-sectional 
area) by using a semi-automatic edge finding tool 
implemented in ScanView.cz [20], as described pre-
viously [15]. Sagittal T2W fat-sat and proton density 
(PDW) sequences were used to assess the number and 
localisation of FL and/or DL. The classification of SC 
abnormalities was based on the work of Lycklama á 
Nijeholt et al. [21, 22]. An experienced neuroradiolo-
gist with over 20 years of experience in MS imaging 
(M.V.) and a neurologist (M.A.) manually assessed the 
absence or presence of FL and/or DL. FL were defined 
as sharply demarcated T2/PDW-hyperintense areas 
and DL were defined as homogenously increased sig-
nal in multiple SC segments in the T2/PDW sequence. 
Subsequently, the patients were classified into four 
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groups (SC ‘phenotypes’): 1. Patients with normal 
appearing SC; 2. Patients with only FL; 3. Patients 
with both FL and DL and 4. Patients with only DL. 
In case of disagreement, the case was reviewed and 
a decision was reached by consensus. As DL can be 
ambiguous, two additional neurologists with experi-
ence in MS (D.H. and D.S.) independently assessed 
SC lesions in all patients to assess inter-rater agree-
ment. Examples of focal and diffuse lesions are shown 
in Fig. 1.

Volume‑based morphometry of the brain 
and segmentation of the intracranial lesions
Regional brain volume calculations were estimated by 
using MorphoBox prototype software (Siemens Health-
care, Erlangen, Germany) [23]. MorphoBox splits the seg-
mentation of anatomical structures into two sequential 
steps: 1) classification of total intracranial volume (TIV) 
voxels in brain tissue - cerebrospinal fluid (CSF), GM, 
WM, and 2) brain structure segmentation by combining 
tissue probability maps obtained in the previous step with 

Table 1  Details of the MRI protocol. MRI System: MAGNETOM Skyra; Siemens Healthcare, Erlangen, Germany

Sequence Purpose

T2W SPACE
axial

Spinal cord volume measurement
(ScanvView.cz)

Voxel size (mm3) 0,6 × 0,6 × 1

TR/TE (ms) 1500/133

Flip Angle(°) 150

Field of view (mm) 200

T2WI-Fat-Sat
sagittal

Spinal cord focal lesions and diffuse changes assessment Voxel size (mm3) 0,6 × 0,6 × 1

TR/TE (ms) 2800/84

Flip Angle(°) 160

Field of view (mm) 220

PDWI
sagittal

Spinal cord focal lesions and diffuse changes assessment Voxel size (mm3) 0,7 × 0,7 × 2

TR/TE (ms) 2500/7.6

Flip Angle(°) 160

Field of view (mm) 220

3D FLAIR Intracranial lesion segmentation
(LeMan-PV Prototype)

Voxel size (mm3) 1x1x1

TR/TE/TI (ms) 5000/397/1800

Flip Angle(°) 120

Field of view (mm) 256

3D MPRAGE Global and regional brain volumes segmentation
(Morphobox Prototype)

Voxel size (mm3) 1x1x1

TR/TE/TI (ms) 2300/2.26/900

Flip Angle(°) 9

Field of view (mm) 256

Fig. 1  Examples of focal and diffuse spinal cord lesions (left PD sequence and right T2W sequence) on diagnostic MRI of the cervical and upper 
thoracal spinal cord in two patients with MS. A: focal lesion without diffuse lesions in a 24-year-old patient (EDSS 2.0) B: diffusely abnormal signal 
without clearly demarcated focal lesions in a 40-year-old patient (EDSS 3.5)
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anatomical masks derived from a single-subject template 
via non-rigid registration. Global and regional brain 
volumes were normalized using the TIV (proportional 
method). Intracranial lesion volumes were estimated on 
FLAIR images using an automated and quantitative MS 
lesion segmentation method (LeManPV prototype soft-
ware, Siemens Healthcare, Erlangen, Germany), which 
has been previously developed and tested in patients in 
early stages of MS disease and low disability and allows 
for a classification of lesions based on their topography, 
including also brainstem and cerebellar lesions [24]. The 
lesion masks were visually inspected by a neurologist 
(M.A.) and when necessary, manually corrected.

Statistical analysis
SPSS software (Version 20, Chicago, IL, USA) was used 
for case-control matching and statistical analyzes. Case-
control matching was used to create pairs of sex and age-
matched HC and patients (tolerance for age difference 
was established at 2 years). The inter-rater reliability 
was calculated using Cohen’s kappa. To assess the nor-
mality of the distributions, we used visual inspection of 
histograms and Q-Q plots and the Shapiro–Wilk test. 
Due to the limited number of patients in the four SC 
phenotypes mentioned above and due to the absence of 
differences between the groups with respect to age, dis-
ease duration, or EDSS, the patients were dichotomized 
according to the presence/absence of DL for statisti-
cal comparisons. Intracranial lesion volumes between 
patients with and without DL were compared using the 
Mann-Whitney U test. Differences in global and regional 
brain volumes and SC volumes between HC, patients 
with and without DL, were evaluated using the One-way 
ANOVA and Kruskal-Wallis H test. Post hoc pairwise 

comparisons were made using Tukey’s method in the 
case of ANOVA and Bonferroni correction in the case 
of the Kruskal-Wallis H test. The corrected significance 
values are reported. We employed two separate binary 
logistic regression analyses to explore predictive charac-
teristics of the presence of DL and FL, respectively. Inde-
pendent variables were sex, age, disease duration, total 
volume of intracranial lesions, and the presence of brain-
stem and/or cerebellar lesions.

Results
Reliability of the assessment of SC abnormalities
We found a substantial agreement among raters for nor-
mal appearing SC (Cohen’s kappa κ = 0.79), isolated FL 
(κ = 0.71), for a combination of FL and DL (κ = 0.67) and 
for DL in the absence of FL (κ = 0.84).

SC involvement in patients with early MS
Fifteen patients (25.9%) had normal appearing SC. 
SC abnormalities were found in 43 of 58 (74.1%) 
patients with early MS. 19 (32.8%) patients had only 
focal SC lesions. 24 (41.4%) demonstrated DL, 14 
(24.1%) of which had both FL and DL, and 10 (17.2%) 
had only DL.

Intracranial lesion volumes and topography in patients 
with and without diffuse SC abnormalities
The total volume of intracranial lesions and the vol-
umes of the lesions in the frontal, temporal, parietal, 
and occipital lobes did not differ between patients 
with DL and without DL. Patients with DL had a larger 
volume of brainstem lesions (p = 0.008) than patients 
without DL and the volume of cerebellar lesions was 
borderline significant (p = 0.05 after correction for false 

Table 2  Intracranial lesion volume  in particular regions in patients with and without diffuse spinal cord lesions

DL Diffuse lesions, FDR False discovery rate

Patients without DL Patients with DL Statistical comparison
(Mann-Whitney U-test)

n (%) 34 (29.4) 24 (41.3) p-value p-value 
after FDR 
correction

Total intracranial lesion volume (cm3) 6.0 ± 8.1 10.1 ± 11.0 0.024 0.064

Frontal lesion volume (cm3) 1.1 ± 1.7 2.0 ± 2.8 0.165 0.165

Temporal lesion volume (cm3) 0.5 ± 1.1 1.1 ± 1.6 0.122 0.14

Parietal lesion volume (cm3) 1.1 ± 2.0 2.3 ± 3.6 0.065 0.104

Occipital lesion volume (cm3) 0.4 ± 0.4 0.7 ± 0.8 0.067 0.09

Deep hemispheric lesion volume (cm3) 2.8 ± 3.6 3.8 ± 2.7 .018 0.072

Cerebellar lesion volume (cm3) 0.01 ± 0.05 0.05 ± 0.13 0.025 0.05
Brainstem lesion volume (cm3) 0.01 ± 0.03 0.1 ± 0.15 0.001 0.008
n with- / n without infratentorial lesions 17 / 17 20 / 4
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discovery rate) (Table  2). Infratentorial lesions were 
detected in 20 of 24 (83.3%) patients with DL and 10 of 
34 (29.4%) patients without DL. Representative images 
of brainstem and cerebellar lesions are shown in Fig. 2. 
The different types of SC involvement and their asso-
ciation with the presence of infratentorial lesions are 
shown in Fig. 3.

Predicting the occurrence of diffuse and focal SC lesions
In binary logistic regression analysis with the presence of 
DL as a dependent variable and demographic and intrac-
ranial lesions as independent variables, only the presence 
of brainstem lesions was associated with a higher prob-
ability of DL (OR 47.1; 95% CI 6.9–321.61; p < 0.001). 
The volume of supratentorial lesions and the presence of 

Fig. 2  Representative images of brainstem and cerebellar lesions in patients with early MS. Typical lesions in cerebellar peduncles and discrete 
subpial ‘linings’ along the periphery of the brainstem (marked with arrows). A: 40-year-old patient, DD 4 months, EDSS 3.5; B: 44-year-old patient, 
DD 1 month, EDSS 2.0; C: 31-year-old patient, DD 25 months, EDSS 1.5; D1-D4: 51-year-old patient, DD 4 months, EDSS 4.0; E: 45-year-old patient, 
DD 3 months, EDSS 1.0; F: 23-year-old patient, DD 1 month, EDSS 2.0; G: 40-year-old patient, DD 4 months, EDSS 2.0. DD = disease duration, 
EDSS = Expanded Disability Status Scale

Fig. 3  Association between spinal cord involvement and the presence of brainstem and cerebellar lesions
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cerebellar lesions were not associated with DL. The pro-
portion of explained variance in DL expressed by Nagel-
kerke’s R was 55% (Table 3). In the second analysis with 
the presence of FL as a dependent variable and with the 
same independent variables, neither intracranial lesion 
volume nor brainstem or cerebellar lesions were associ-
ated with the presence of FL (OR 0.22; 95% CI 0.01–4.3; 
p = 0.32) (Supplementary Table 2).

Spinal cord and brain volume in patients with early MS 
with and without DL
We have not found any differences in the absolute and 
normalized SC volume expressed as MUCCA (Fig. 4 A) 
and brain volume between HC and patients with and 
without DL. Among intracranial volumes, the thalamus 
was the only regional structure with significantly lower 
volume in patients with DL compared to patients without 
DL (p = 0.007) and HC (p = 0.002) (Fig. 4 B and Table 4).

Discussion
Using conventional MR imaging from routine clini-
cal practice, we observed the involvement of SC in 75% 
of patients with an unexpectedly high occurrence of DL 
(41.4%) in a cohort of patients with relapsing-remitting 
MS with very short disease duration. The proportion of 
DL in our cohort was higher than reported in the work 
of Bot et al. who found DL in only 13% of very early MS 
[25], Lukas et  al. who described DL in only 14.9% of 
patients (11.9% in RRMS, 17.4% in secondary progres-
sive MS (SPMS) and 21.6% in primary progressive MS 
(PPMS)) [14] and Hua et  al. who reported DL in 14.3% 
in the cervical cord and 19.1 in the thoracic cord of MS 
patients [11]. On the other hand, our findings are simi-
lar to those reported in a study by Coret et al. who found 
DL in 12 out of 32 (38%) early MS patients. However, the 

last-mentioned study included only patients with early 
MS and SC symptoms at onset, possibly resulting in an 
overestimation of the involvement of SC compared to 
the general population of MS. We perform diagnostic SC 
imaging in all patients with suspected MS regardless of 
the type of initial clinical presentation and the proportion 
of particular types of initial presentation in our cohort 
correspond to literature [26]. Therefore, we believe that 
the findings are representative for an unselected early MS 
population. Furthermore, the use of 3 T scanners might 
increase the sensitivity for DL compared to 1.5 T MRI 
used in previous studies [14, 25]. Finally, genetic factors 
such as the carriage of the human leukocyte antigen vari-
ant HLA- DRB1*1501 which could be associated with a 
higher prevalence of DL [27] might differ among the pub-
lished cohorts.

We have not confirmed the hypothesis that patients 
with DL have a higher total intracranial lesion load than 
patients without DL. However, we have observed a larger 
volume of brainstem lesions in patients with DL than in 
patients without DL.  The presence of at least one brain-
stem lesion was associated with a substantially higher 
probability of DL, but did not increase the risk of FL. 
These findings might indicate an association of brainstem 
lesions with more severe SC involvement. Although the 
cross-sectional study does not allow for the assessment 
of the possible causal relationship between brainstem 
lesions and DL, there are several conceivable mechanisms 
by which brainstem and spinal cord involvement may be 
related. First, brainstem lesions might have an impact 
on tissue integrity not only at the site of the lesion, but 
also throughout the affected tract, thus connecting focal 
inflammatory activity and neurodegeneration in a more 
distant network, suggesting that axonal damage due to 
Wallerian degeneration (in supratentorial regions) plays 

Table 3  Hierarchical binary logistic regression analysis investigating the relative contributions of covariates in predicting the presence 
of diffuse SC abnormalities

Dependent variable: presence of diffuse spinal cord abnormalities. CI Confidence interval, OR Odds ratio; p = level of significance. Hosmer–Lemeshow statistics 
indicate a poor fit if the significance value is less than 0.05

Model 1 Model 2 Model 3

OR 95% CI p OR 95% CI p OR 95% CI p

Sex (female = reference) 1.76 0.51–6.11 .372 2.05 0.57–7.41 .271 2.12 0.42–10.79 .276

Age 0.96 0.89–1.04 .333 0.96 0.88–1.04 .276 .94 0.85–1.04 .284

Disease duration 1.05 0.67–1.64 .835 1.02 0.65–1.6 .938 1.43 0.78–2.63 .153

Intracranial lesion volume 1.06 0.99–1.13 .103 1.02 0.94–1.11 .606

Presence of brainstem lesions 47.10 6.9–321.61 <.001
Presence of cerebellar lesions 0.29 0.04–2.47 .259

Hosmer and Lemeshow chi2/p 3.07 / 0.93 7.81 / 0.45 3.54 / 0.9

Chi2 /Signif. of the step (model) 1.69 /0.69 (0.64) 4.95 / 0.071 (0.29) 35.01 / 0.001 (0.001)

Nagelkerke R2 for the model 0.04 0.11 0.55
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a role, as was shown by Droby et al. [28]. However, pre-
vious work on the histopathological substrate of DL 
showed that they are mainly determined by demyeli-
nation and do not reflect axonal damage well [29–31]. 

Secondly, there could be a common pathophysiological 
process with predilection for infratentorial involvement 
that might be either genetically predetermined pro-
cess or due to targeting antigens predominantly located 

Fig. 4  Comparison of (A) normalized MUCCA and (B) normalized thalamus volume among healthy controls, patients with and without diffuse 
spinal cord lesions. ** = p < 0.01. Legend: DL = diffuse lesions; MUCCA = mean upper cervical cord cross-sectional area
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infratentorially and in the SC. In fact, HLA-DRB1 alleles 
may play a role in determining the severity and extent of 
SC damage in MS. The association of the carriership of 
HLA-DRB1*1501 with the extent of FL, the presence of 
DL, and greater disability was reported by two independ-
ent studies [27, 32]. An increase in T cell immunoreactiv-
ity against specific myelin antigens and the development 
of lesions in the brainstem and cerebellum was found in 
patients with MS and psoriasis who demonstrated a high 
frequency of carriage of the HLA-DRB1*1501 and HLA-
DRB1*07 alleles [33, 34]. To explore the susceptibility to 
infratentorial and SC involvement further, it will be nec-
essary to combine genotyping, immunology, and noncon-
ventional MRI studies.

Our second hypothesis, that the presence of DL would 
be associated with a lower SC volume, was also not con-
firmed. Previous studies reported an association between 
DL and SC atrophy [13, 15], however patients in these 
studies had a longer disease duration and a higher degree 
of disability. Although SC atrophy is a well-established 
finding in progressive forms of MS, studies on clini-
cally isolated syndrome (CIS) and relapsing-remitting 
MS (RRMS) have yielded inconsistent results [35]. The 
MUCCA may not reveal the presence of atrophy due to 
a combination of multiple pathological features, such 
as edema and gliosis, which can increase tissue volume, 
thereby counterbalancing the effects of demyelination 
and axonal loss [36]. Another potential explanation of 
the preserved SC volume could be that in early MS, there 
could be a ‘spinal cord reserve’ compensating for patho-
logical-inclusive DL before SC atrophy develops. It will 
be necessary to investigate whether the presence of DL 

is a factor associated with (faster) spinal cord atrophy in 
MS in longitudinal studies.

Similarly to SC volume, we did not observe differences 
between patients with and without DL and HC in global 
and regional brain volumes, with the exception of thal-
ami, which were smaller in patients with DL. Previous 
studies reported isolated thalamic atrophy in radiologi-
cally and clinically isolated syndromes and in early MS 
[37–39]. As mentioned above, damage to the SC tracts 
and brainstem might be associated with accelerated atro-
phy of distant brain structures [28]. Disconnection in the 
tracts that project from and to the thalamus could link 
more severe SC damage and loss of thalamic volume. In 
fact, in an experimental autoimmune encephalitis (EAE) 
model, it was demonstrated that inflammation of the spi-
nothalamic tract at the SC level was associated with neu-
ronal loss in the sensory ventral posterolateral nucleus 
of the thalamus [40]. A recent interesting study on MS 
phenotypes based on atrophy patterns described a small 
subgroup of patients characterized by prominent loss of 
thalamic and SC volume [41] that was associated with 
higher baseline MS severity scores, faster disability pro-
gression, and higher mean neurofilament levels, suggest-
ing more prominent neuroaxonal damage and aggressive 
disease course. As thalamic atrophy is itself associated 
with accrual of disability [42, 43], its association with 
DL could increase knowledge of the worse prognosis in 
patients with infratentorial and SC lesions, if confirmed 
in a larger study.

Several limitations of the present study should be men-
tioned. First, despite the good agreement in DL assess-
ment between the raters, the nonquantitative MRI may 

Table 4  Pairwise comparisons between healthy controls, patients with and without DL (with post hoc corrections)

All structures are volumes except MUCCA and corpus callosum, which are mean cross-sectional areas. The data for the structures are shown as volumes normalized 
to total intracranial volume, except MUCCA, which is presented as both raw area and normalized by TIV. All data are reported as means ± standard deviations. 
1 = ANOVA with Tukey post hoc correction; 2 = Kruskal-Wallis test with Bonferroni post hoc correction; DL = diffuse lesions; MUCCA = mean upper cervical cord cross-
sectional area

Healthy controls
(1)

Patients without 
DL
(2)

Patients with DL
(3)

Statistical comparison
Mean difference (corresponding p-value)

Post-hoc 
pairwise 
comparison

n 58 34 24 1 vs. 2 1 vs. 3 2 vs. 3

MUCCA (mm2) 89.3 ± 7.9 88.8 ± 7.62 88.5 ± 11.6 0.4 (.974) 0.8 (0.932) 0.3 (0.988) 1

MUCCA (%) 0.0624 ± 0.006 0.0623 ± 0.007 0.0627 ± 0.008 0.00009 (0.998) − 0.00033 (0.997) −0.00042 (0.968) 1

Brain volume (%) 80.3 ± 2.0 79.0 ± 2.9 79.3 ± 3.3 1.3 (0.062) 1.0 (0.272) − 0.3 (0.897) 2

GM (%) 49.2 ± 2.1 48.6 ± 1.9 48.1 ± 2.4 0.6 (0.383) 1.0 (0.103) 0.4 (0.705) 1

WM (%) 31.2 ± 1.6 3.5 ± 1.9 31.2 ± 3.1 0.7 (0.283) − 0.1 (0.989) − 0.8 (0.362) 1

Lat. ventricles (%) 1.13 ± 0.58 1.35 ± .52 1.31 ± 0.77 − 0.2 (0.228) − 0.2 (0.426) 0.03 (.978) 2

Brainstem (%) 2.2 ± 0.1 2.2 ± 0.1 2.2 ± 0.2 0.02 (0.823) 0.01 (0.923) −0.001 (0.99) 1

Cerebellum (%) 8.8 ± 0.7 9.0 ± 0.5 8.8 ± 0.6 − 0.2 (0.497) − 0.01 (0.998) 0.14 (0.666) 1

Corpus callosum 
(%)

4.1 ± 0.5 3.9 ± 0.4 3.9 ± 0.6 0.2 (0.19) 0.2 (0.367) −0.02 (.981) 1

Thalami (%) 1.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.2 0.002 (0.980) 0.06 (0.002) 0.05 (0.007) 1
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not be sufficiently sensitive to detect all pathological 
changes of the cord, and quantitative MRI measures such 
as diffusion tensor imaging (DTI), magnetization trans-
fer ratio (MTR), T1 relaxometry, or MR spectroscopy 
would be needed to provide quantitative information 
beyond that that can be derived from macroscopically 
visible focal SC lesions and elucidate the microstruc-
tural nature of DL [44, 45]. Besides neuroimaging, the 
difference between the severity of FL and DL could be 
evaluated and objectively assessed by applying electro-
physiological methods such as evoked potentials [46]. 
On the other hand, the consensus reading corresponds 
to the assessment in the clinical setting. Despite no clear 
guidelines for DL detection, we believe that DL indicates 
more severe pathology than focal lesions, that is, analo-
gous to brain confluent lesions. Second, our assessment 
of FL was limited to counting lesion, which does not take 
into account neither the volume of affected tissue nor the 
location of the lesion that have been shown to be asso-
ciated with disability [47]. Another caveat of the study 
is the limited coverage of the lower thoracic and lumbar 
spinal cord. Previous studies have shown a strong associ-
ation between the presence of cervical cord- and thoracic 
cord damage [11], nevertheless, it is conceivable that we 
have underestimated the number of FL. Lastly, the cross-
sectional nature of this study does not allow us to draw 
conclusions about the sequence and causality of the pres-
ence of brainstem and SC lesions and thalamic atrophy.

Conclusions
The association of the diffuse, but not focal spinal cord 
lesions with the presence of brainstem lesions and with 
a lower volume of the thalamus might indicate differ-
ent underlying pathology and/or severity of these two 
types of spinal cord involvement in MS. If confirmed, 
thalamic atrophy in patients with diffuse lesions could 
add to the knowledge of the worse prognosis in patients 
with infratentorial and SC lesions. Our findings further 
underscore the need for quantitative MRI markers to bet-
ter understand different types of spinal cord involvement 
and their different prognostic value in MS.
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