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Abstract 

Background:  The sheer number of measures evaluating mobility and inconsistencies in terminology make it chal-
lenging to extract potential core domains and items. Automating a portion of the data synthesis would allow us to 
cover a much larger volume of studies and databases in a smaller fraction of the time compared to the usual process. 
Thus, the objective of this study was to identify a comprehensive outcome set and develop preliminary banks of items 
of mobility among individuals with acquired brain injury (ABI) using Natural Language Processing (NLP).

Methods:  An umbrella review of 47 reviews evaluating the content of mobility measures among individuals with 
ABI was conducted. A search was performed on 5 databases between 2000 and 2020. Two independent reviewers 
retrieved copies of the measures and extracted mobility domains and items. A pre-trained BERT model (state-of-the-
art model for NLP) provided vector representations for each sentence. Using the International Classification of Func-
tioning, Disability, and Health Framework (ICF) ontology as a guide for clustering, a k-means algorithm was used to 
retrieve clusters of similar sentences from their embeddings. The resulting embedding clusters were evaluated using 
the Silhouette score and fine-tuned according to expert input.

Results:  The study identified 246 mobility measures, including 474 domains and 2109 items. Encoding the clusters 
using the ICF ontology and expert knowledge helped in regrouping the items in a way that is more closely related 
to mobility terminology. Our best results identified banks of items that were used to create a 24 comprehensive 
outcome sets of mobility, including Upper Extremity Mobility, Emotional Function, Balance, Motor Control, Self-care, 
Social Life and Relationships, Cognition, Walking, Postural Transition, Recreation, and Leisure Activities, Activities of 
Daily Living, Physical Functioning, Communication, Work/Study, Climbing, Sensory Functions, General Health, Fatigue, 
Functional Independence, Pain, Alcohol and Drugs Use, Transportation, Sleeping, and Finances.

Conclusion:  The banks of items of mobility domains represent a first step toward establishing a comprehensive 
outcome set and a common language of mobility to develop the ontology. It enables researchers and healthcare 
professionals to begin exposing the content of mobility measures as a way to assess mobility comprehensively.
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Background
Acquired Brain Injury (ABI), including traumatic brain 
injury (TBI) and stroke, is most prevalent cause of dis-
ability globally [1–3]. According to the World Health 
Organization, the global incidence of all-severity TBI 
is estimated at 69 million people, while 15 million peo-
ple suffer a stroke worldwide each year [4–6]. Among 
the 1.5 million Canadians with ABI that go through 
the care continuum annually; over 60% report ongo-
ing restrictions in mobility and participation in societal 
roles [5]. Individuals with ABI can continue to experi-
ence improvements in mobility to improve participa-
tion and well-being when rehabilitation intervention 
can be offered in the community. However, the often 
the accessibility to the rehabilitation pathway is com-
plex and time-consuming [7–9]. Thus, the effect on 
individuals, health care systems, and society suggest a 
greater need to focus attention on the long-term con-
sequences, management, and rehabilitation of people 
with ABI [10].

Mobility is a multidimensional construct defined 
through both theoretical and empirical approaches. 
From a theoretical point of view, mobility has fre-
quently been defined in terms of life-space frameworks 
as the ability to move oneself, including any age, within 
environments that expand from one’s home to the 
neighbourhood and regions beyond [11–18]. Mobility 
is influenced by five vital inter-related determinants, 
including physical, environmental, cognitive, psychoso-
cial and financial influences [14], and this is reflected in 
the International Classification, Functioning, Disabil-
ity, and Health framework (ICF) core set [19]. Empiri-
cal studies have also focused on the effects of the built 
environment including technological parts, such as 
mobility aids, on community mobility [20, 21].

Selection of a suitable outcome measure is critical to 
accurately characterize and monitor changes in mobil-
ity during rehabilitation interventions for adults with 
ABI [22]. However, selection can pose a challenge to 
both researchers and clinicians as the range of outcome 
measures available in the clinical research literature is 
vast, and distinctions between them are often not clear 
[23, 24]. Researchers and clinicians also need to con-
sider the content of measures and whether the domains 
evaluated match research and clinical objectives. Mul-
tifaceted assessments of mobility among individuals 
with ABI can assist in the development of individual-
ized rehabilitation treatment plans that could enhance 

patients’ global health status and allow the evaluation 
of the long-term effectiveness of interventions [25, 26].

Mobility is commonly assessed through perfor-
mance-based measures (e.g., walking tests) or clinician-
reported outcomes (e.g., Disability Rating Scale) [27–29]. 
Although these measures capture some aspects of func-
tional capacity, they are not comprehensive enough to 
evaluate patients’ perspective on their function, nor the 
effects of their limitations on everyday life. In the last 20 
years, advances in measurements have brought to the 
research and clinical practice the assessment of quality 
of life through patient-reported outcome (PRO) meas-
ures [30, 31]. Mainly, the National Institutes of Health’s 
Patient-Reported Outcomes Measurement Information 
System (PROMIS), the Quality of Life in Neurologic 
Disorders (Neuro-QoL) and the Traumatic Brain Injury 
Quality of Life (TBI-QOL) initiatives have pioneered the 
development of PRO measures [30–33]. These initiatives 
have resulted in the development of measures that allow 
comparison across conditions over time, testing of all 
levels of function with one measure, reduce the admin-
istration of irrelevant items to a given individual, and 
minimize testing time by reducing the overall number 
of items administered through short forms [26, 32, 33]. 
Although these initiatives have made great advances in 
general population and neurological population assess-
ment, neither measurement system alone can capture the 
multi-dimensionality of mobility among individuals with 
ABI.

Core Outcome Sets (COS) developed by researchers 
and patients allow interventions to be evaluated by using 
an agreed-upon set of outcomes that can be compared 
across studies, and clinical care programs and settings. 
A COS includes measures, tools, and endpoints to assess 
a minimum list of impacts and demonstrate changes. 
The PROMIS (www.​nihpr​omis.​org, March 16, 2021) is 
charged with developing improved PROs applicable to 
all areas of chronic illness and involving several domains 
such as physical functioning and disability. PROMIS is 
the most ambitious approach yet to these issues [34–36]. 
In simplest terms, PROMIS seeks to employ the best 
items in the best ways [34–36] with a focus on items that 
are most relevant to study endpoints in clinical trials and 
observational studies. Optimal instrument development 
requires item improvement, yet systematic approaches 
to the advancement of improved items need to ensure 
items have full coverage of the construct of interest, and 
adjust item banks; if data supports that a given item is 

http://www.nihpromis.org/
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problematic, it is removed or revised to increase its rel-
evance and clarity.

Compared to traditional manual consensus, utiliz-
ing machine learning (ML) helps researchers to develop 
item banks more efficiently and synthesize literature that 
manually is nearly impossible. ML is a subset of Artifi-
cial Intelligence that enables computers to learn with-
out being explicitly programmed with predefined rules 
[37]. In the rehabilitation sciences, building computer 
programs that can extract and process knowledge from 
text documents at a level that is usable by experts in the 
domain requires several elements that can generally be 
associated with intelligence [37, 38]. This predictive abil-
ity enables ML to handle massive datasets with efficiency 
and accuracy. ML algorithms are categorized into super-
vised learning, unsupervised learning, and reinforcement 
learning [39]. Natural language processing (NLP) is unsu-
pervised ML that focuses particularly on textual data/
info/input [40]. The ultimate objective of NLP is to read, 
decipher, understand, and make sense of the human lan-
guages in a manner that is valuable [40]. For example, a 
key feature of NLP is to generate embeddings for extents 
of text [41]. Text embeddings can be used to ease learn-
ing in downstream tasks and naturally encode similarity 
whether it is on the word-level or sentence-level [42].

Properly classifying content from mobility measures 
is needed to identify relevant texts. Often, this process 
relies on pre-defined static vocabularies that describe 
the mobility domains. To understand knowledge evolu-
tion, the initial system vocabularies should evolve in an 
automatic way in order to correctly reflect and evolve our 
understanding about mobility. Our goals for this work 
were to identify optimal domains by extracting and clas-
sifying items from published research of mobility meas-
ures. We did this using NLP technique to create sentence 
embeddings to inform the mobility ontology. NLP was 
selected as an approach robust enough to develop pre-
liminary banks of items of mobility that used to evaluate 
each domain in a comprehensive outcome set of mobility 
among individuals with ABI.

Objective
While using NLP, we aimed to: (1) identify a comprehen-
sive outcome set of mobility, and (2) develop preliminary 
banks of items of mobility among individuals with ABI.

Methods
Step 1: Item selection process
To develop preliminary banks of items of mobility 
among individuals with ABI, we conducted a compre-
hensive umbrella review of mobility measures among 
individuals with ABI [43] following the 10 steps of the 
Consensus-based Standards for the Selection of Health 

Measurement Instrument (COSMIN) guideline for sys-
tematic reviews [44]. Subsequently, we conducted focus 
group discussions among clinicians and individuals with 
ABI and their caregivers to identify factors limiting or 
enhancing mobility that need to be considered when 
evaluating mobility [45].

	1.1.	 Search strategy: A comprehensive search of the lit-
erature was performed using electronic databases 
of Ovid MEDLINE, CINHAL, Cochrane Library 
and EMBASE from 2000 to March 2020. The search 
was conducted in collaboration with a health sci-
ences librarian to ensure that the review included 
the appropriate and necessary keywords. A combi-
nation of Medical Subject Headings (MeSH) terms, 
subject headings and/or key words was used. Three 
groups of terms were generated describing: (1) the 
population “acquired brain injury” AND; (2) the 
outcome measure “mobility” AND; (3) the psy-
chometric properties. Terms within each group 
were combined with the Boolean operator ‘OR’. 
Because the search included different types of stud-
ies, the search was narrowed by filtering the search 
specifying the type of studies including systematic 
review, review, and meta-analyses. This filter has 
been used to avoid missing important information 
related to mobility measures.

	1.2.	 Select abstracts and full text articles: Inclusion 
of articles was based on the agreement between 
two independent reviewers. Disagreements were 
resolved by discussion and consensus. If required, 
a third reviewer was consulted. The reference list of 
the articles included for the full text screening was 
also hand-searched for additional identification of 
relevant articles. The Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 
flow diagram [46] was used to guide the selection 
process.

	1.3.	 Eligibility criteria: Inclusion criteria for the 
umbrella review were reviews published in peer-
reviewed journals, including individuals with ABI 
(Stroke, traumatic brain injury) over 18 years old. 
They report a clear objective of identifying meas-
ures of mobility. They include either multiple or 
single measure(s) of mobility including different 
sources of information (i.e., clinicians, patients, and 
technology). The exclusion criteria were reviews 
investigating effectiveness of interventions or treat-
ments, monitoring recovery, focusing on diagnostic 
screening or prognosis, clinical commentaries, case 
reports, non-human studies and grey literature. 
Also, systematic reviews not published in English 
or French were excluded.
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	1.4.	 Data extraction: Two independent review-
ers extracted the measures from the reviews, 
retrieved copies of measures from the literature, 
and included the non-covered measures identi-
fied from the focus groups. They extracted meas-
ures’ domains and items manually, to avoid miss-
ing relevant information. Also, they added mobility 
domains (i.e. factors) identified from the focus 
groups.

Step 2: Data cleaning
The data cleaning process ensures that the domains and 
items are consistent and accurate. The following steps 
were applied to the processed terms using Microsoft 
office Excel 2010 (Additional file 1: Appendix 1 presents 
the functionalities that used in this process):

	2.1.	 Export to .CSV file and create a backup copy of the 
original data in a separate spreadsheet.

	2.2.	 Remove duplicate rows: we filtered for unique val-
ues first to confirm that the results were what we 
wanted before removing duplicate rows.

	2.3.	 Correct spelling mistakes: lexical matching 
requires correction of spelling mistakes. For exam-
ple, behaviour becomes behavior; practise becomes 
practice; neighbour becomes neighbor, and so on.

	2.4.	 Changing the case: all the uppercase letters were 
converted to lowercases letters.

	2.5.	 Extend acronyms and abbreviations to their full 
form: because they caused mismatches in the 
string-matching process, acronyms and abbrevia-
tions were removed, such as 6MWT becomes six-
minute walking test, BI becomes brain injury, and 
so on.

	2.6.	 Fixing numbers and number signs.
	2.7.	 Remove white spaces, non-printing characters, 

typos, punctuations from the sentence, and use 
underscore (_) instead of dash (-).

Step 3: The proposed model
Figure 1 presents an overview of the proposed model that 
was used to analyze the data using the NLP technique. 
Python 3.0 Release was used to analyse the data. All the 
process details are described below:

3.1.	 For each mobility item, we first applied a word 
filtering that was hypothesized to remove noise 
from the word groups. The different filters consid-
ered were: the absence of filter; filtering all words 
with fewer than 4 letters; filtering words contained 
in a public stop-words dictionary; and filtering words 

based on their occurrence, where words seen too 
often in the dataset were removed from their group.

3.2.	 Generate database on neural network processing 
of 15 million articles on mobility and ABI using Mesh 
terms from Pubmed to train our Fast-Text embed-
dings.

3.3.	 Using the pre-trained Bidirectional Encoder 
Representations from Transformers (BERT) model 
(state-of-the-art model for NLP) [47], we created 
sentence embeddings, in which the collected sen-
tences (items) were mapped to vectorial representa-
tions, i.e. vectors of real numbers (https://​www.​sbert.​
net/​index.​html, March 16, 2021).

3.4.	 Vectorial representations generated from Sen-
tence-BERT model included 768 dimensions. These 
dimensions are inefficient for distance-based clus-
tering, as the usual distance metrics suffer from the 
curse of dimensionality and sentence clustering 
becomes very difficult [48]. To ease computation, 
we applied a Principal Component Analysis (PCA) 
decomposition [49, 50] from the scikit-learn library 
(https://​scikit-​learn.​org/​stable/​about.​html#​citing-​
scikit-​learn, March 16, 2021) [51] to reduce the sen-
tence embeddings’ dimensions.

3.5.	 The ICF terms, extracted from the ICF ontology 
(https://​biopo​rtal.​bioon​tology.​org/​ontol​ogies/​ICF, 
March 16, 2021), were used to focus the embedding 
clustering on mobility and mobility determinants. 
The ICF terms went through the same pipeline of 
word filtering, Sentence-BERT and dimensionality 
reduction.

3.6.	 The k-means algorithm [52] was applied to all 
collected sentence embeddings to retrieve clusters of 
similar sentences.

3.7.	 To evaluate the quality of the resulting clusters, a 
Silhouette score [53, 54] was used. A Silhouette score 
is a clustering metric ranging between -1 to 1, and 
based on inter- and intra-cluster distances. A high 
Silhouette score means that sentences in a given clus-
ter are similar and that different clusters are distinct. 
A Silhouette score can be used in our case, but evalu-
ating the quality of the model was limited in terms 
of sentence embeddings, as the vectorial distance 
between sentences in one cluster were not well fitted 
to mobility-related proximity. Therefore, we used the 
Silhouette score to filter out promising clusterings 
and relied on expert input to select the final cluster-
ing.

3.8.	 We employ a grid search strategy to generate 
numerous clusterings from a range of key hyperpa-
rameters in our method. Namely, we searched over 
the following hyperparameter values:

1.	 k value in k-means, ranging from 4 to 40;

https://www.sbert.net/index.html
https://www.sbert.net/index.html
https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://bioportal.bioontology.org/ontologies/ICF
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2.	 four (4) word filtering methods, listed in 3.1;
3.	 target dimension after PCA reduction, taking values 

in [5, 10, 25, 50];
4.	 total weight attributed to ICF terms in the k-means 

clustering, taking values in [0.0, 0.1, 0.25, 0.5].

We generate a clustering for every combination 
(n=592) of the above hyperparameter values. We retain 
only the 10 best clusterings according to an automatic 
heuristic, described in section  4. An expert then goes 
over the 10 retained clusterings and selects the most rel-
evant one for further analysis. We argue that this two-
step procedure is required by the intrinsic difficulty of 

the clustering evaluation task. Indeed, while the auto-
matic heuristic filter first eliminates clusterings that only 
weakly correlated, i.e., underfitting, the expert decision 
at the end detects clusterings that have good correlation 
metrics but low relevance with the overall objective, i.e., 
overfitting, Underfitting and overfitting commonly arise 
in unsupervised settings such as ours due to the lack of 
ground-truth labels to assess the true performance of the 
model.

	3.9.	 The above steps resulted in sentence clustering 
that was then analyzed by 4 experts (RA, CA, AL, 
SA), who reviewed the top 30 sentences (items) in 
each cluster following agreed-upon criteria, includ-

Fig. 1  An overview of the proposed model
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ing: remove ambiguous, vague and parallel items; 
clarify items by adding or removing needed words; 
and label each item to an agreed-upon domain. The 
expert annotations were then used to fine-tune the 
Sentence-BERT model towards more meaningful 
mobility-related sentence embeddings. The final 
clustering respected expert annotations of 80 % 
F1-Score [55, 56].

Step 4: Preliminary banks of items selection process
The most critical part of our proposed model is the sen-
tence embedding process. The pre-trained Sentence-
BERT model was used to produce semantically accurate 
embeddings (Fig.  2). To ensure the quality of evidence, 
the following was done:

	4.1.	 First iteration: a small subset of mobility items was 
analyzed by the Sentence-BERT model using the 
ICF terms from the ontology as a guide. At this step, 
the automatic heuristic retained for filtering out the 
clusterings was the Silhouette score, due to the lack 
of automatically applicable human knowledge. The 
analysis yielded sentences that were correctly and 
incorrectly clustered. This information was used by 

the experts to create relations for sentence pairs that 
should or should not be clustered together.

	4.2.	 Second iteration: the relation for sentence pairs that 
were extracted from the first iteration was used as 
a training example to fine-tune the sentence-BERT 
model. The automatic heuristic employed was the 
accuracy metric on the binary classification relations 
identified by the experts at the end of step 4.1. The 
resulted clusters from the second iteration were ana-
lyzed again by the experts who grouped hundreds of 
items by labelling them to an agreed-upon domain.

	4.3.	 Third iteration: final results were obtained by fine-
tuning the sentence-BERT model again with the 
newly expert knowledge. For this step, the auto-
matic heuristic was the accuracy metric on the 
expert-identified binary relations from step 4.1 and 
domain-classification relations from step 4.2. The 
resulting best cluster consisted in 26 unified clus-
ters of items.

Results
Search results
The search strategy yielded a total of 47 reviews 
that met the eligibility criteria and were included 

Fig. 2  The iterative improvement process for preliminary item bank process. The process began with an initial Sentence-BERT model and 
relied heavily on the ICF ontology to produce a good enough first clustering. At each step, a grid search was collected over a wide range of 
hyperparameter values and a best clustering was retained according to automatic heuristics and human evaluation. After each clustering, expert 
annotations were collected to improve the Sentence-BERT model and yield better clusterings. We report the F1 score of each clustering with 
respect to the first and second expert annotations, respectively named E_1 and E_2. Here, E_2 is the most reliable metric, as it associates items 
with adequate labels, while E_1 associates item pairs with whether or not they belong together. By nature, E_1 penalizes having a large number of 
clusters, as can be seen on the third clustering’s score. Also note that both E_1 and E_2 are not exact metrics, as, for instance, the third clustering still 
required heavy finetuning by experts to yield a satisfying Core Outcome Set despite the near-perfect E_2 score.
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[27, 57–102]. 246 copies of mobility measures were 
retrieved, and from these 474 mobility domains and 
2109 mobility items were extracted. Figure  3 presents 
the PRISMA flow diagram, including the selection pro-
cess and the reasons for exclusion.

Identification of mobility outcome set and preliminary 
banks of items
Table  1 shows the hyperparameter values of the retained 
clustering for steps 4.1 to 4.3. Initially, our best grouping 
according to Silhouette score and expert knowledge resulted 

in 26 clusters. The experts reviewed each cluster of items 
and only included relevant and clear items. Duplicates 
(n=267), ambiguous parallel items (n=97), and fewer than 
2 words items (n=134) were removed, resulting in 1611 
out of 2109 items. In addition, among the 1611 items, 245 
(15%) items were considered as outliers, as they did not fit 
well enough within their cluster. Also, seven clusters were 
identified as outliers, as they included items labelled to more 
than one domain. Results from the 26 clusters showed that 
fifteen clusters had no outliers; six clusters contained 5% 
to10% outliers; and ten clusters contained > 10% outliers.

Fig. 3  PRISMA flow diagram
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After extensive discussion, experts decided not to 
eliminate outliers which are not filtered by the algorithm, 
clusters labelled to more than one domain, and to manu-
ally reassign them to the fitted clusters. Additionally, five 
new clusters were generated from outliers not filtered by 
the algorithm. Overall, 602 (37%) of the items were reas-
signed in the fine-tuning process resulting in 24 prelimi-
nary comprehensive outcome set of mobility, namely: 
Upper Extremity Mobility, Emotional Functions, Bal-
ance, Motor Control, Self-care, Social Life and Relation-
ship, Cognition, Walking, Postural Transition, Recreation 
and Leisure Activities, Activities of Daily Living, Physical 
Functioning, Communication, Work/Study, Climbing, 
Sensory Functions, General Health, Fatigue, Functional 
Independence, Pain, Alcohol and Drugs Use, Transporta-
tion, Sleeping, and Finances (Fig. 4 and Table 2). Also, we 
define the comprehensive outcome set of mobility con-
ceptually based on the ICF and Webber’s frameworks in 
Table 3.

Discussion
In this study, we identified a comprehensive outcome set 
of mobility and developed preliminary banks of items of 
mobility, for use in evaluating mobility among individu-
als with ABI, using NLP. We supported that it is possi-
ble to use a variety of existing instruments of mobility to 
build preliminary banks of items with promising proper-
ties using NLP. Although the PROMIS physical function-
ing item bank was found to be unidimensional, Mobility 
was constructed to represent a sub-domain of physical 
functioning to be used among individuals with chronic 
illnesses [30, 31, 103]. This study identified 24 prelimi-
nary banks of items of mobility, which need to be used to 
evaluate each domain in a comprehensive outcome set of 
mobility among individuals with ABI.

Improved outcome measures can substantially enhance 
clinical research and make the research process more 
efficient. Clinical trials may require fewer subjects, and 
greater assurances may be given that the perspectives 
of the patient are included. The goal of this work was to 
construct comprehensive mobility tools. Previous stud-
ies have shown that better items obtained from large item 
banks for relevant and clear items that can be understood 
and are considered important to patients, with less floor 

and ceiling effects, standardised time frames, content, 
and response options to improve item structure and 
wording [26, 32, 33]. The identified banks of items are 
required for researchers and health care professionals to 
compile and compare common mobility outcomes and 
items from centre to centre or client to client, directly 
influencing the identification and implementation of best 
practices [104].

An understanding of the nature and severity of mobil-
ity among individuals with ABI is needed, in order to 
develop effective individualized treatment plans and to 
compare different interventions. This requires a com-
prehensive assessment of impairments, activity limita-
tions, and participation restrictions. The intervention 
plan varies depending on the patients’ personal context, 
goals, and the complex interplay of the factors that influ-
ence mobility [14, 105]. This work provided a preliminary 
comprehensive outcome set of mobility from all possible 
sources, and mapped the constructs measured to the ICF. 
Results of this study will be used in future as part of an 
agreed-upon consensus of mobility COS, and the Del-
phi approach will be administered to achieve [106–108] 
expert consensus (i.e., clinicians and individuals with 
ABI and their caregivers), to examine mobility COS, to 
assess experts’ views on importance, clarity, and rele-
vance of the domains and items of mobility, to unify the 
language of measuring mobility among individuals with 
ABI, and standardise measures used across clinical sites 
and studies.

In the rehabilitation sciences, developing NLP algo-
rithms that can extract and process knowledge from 
text documents at a level that is usable by experts in 
the domain requires several elements that can gener-
ally be associated with intelligence [37, 38]. Throughout 
the experiments, it became clear that expert knowledge 
was the key factor in obtaining more accurate cluster-
ing. In the beginning, no expert knowledge was used 
and the best architecture artificially incorporated expert 
knowledge by requiring adding the ICF terms and to fil-
ter words in a sentence. The resulting clusters were also 
hard to evaluate automatically due to the poor quality of 
the pre-trained sentence-BERT embeddings for mobil-
ity-related tasks. The incorporation of expert knowl-
edge gradually improved the quality of the resulting 

Table 1  Grid search results for each of the three clusterings

a Represent the best K values for Clustering 1, 2 and 3

Clustering Ka Word filtering PCA dimension ICF weight Silhouette 
score

Clustering 1 5 Words present >= 20 times 10 0.5 0.66

Clustering 2 6 None 50 0.5 0.65

Clustering 3 26 None 50 0 0.69
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clusters. At the same time, the more information used 
allowed the sentence-BERT model to be further fine-
tuned, gradually reducing the need to insert artificial 
knowledge in the procedure. Namely, on the final itera-
tion, the best performing architecture did not filter 
words and did not require ICF terms. This shows that 
with iterations and fine-tuning of sentence embeddings, 
models improve in capturing the added expert knowl-
edge. We note that our finetuning approach can be seen 
as an active learning finetuning process of a language 
model, as was already proposed for image caption clas-
sification for instance [109].

Step 2 was important in ensuring an item format that is 
consistent and coherent with the Sentence-BERT model’s 
input requirements. We however note that, while most of 
the tasks were done manually in our study, step 2 could be 
done entirely automatically. Since the nature of the study 
is to leverage NLP to increase the efficiency in generat-
ing outcome set, we believe automating step 2 would be a 
straightforward and important task in future iterations.

The use of item response theory (IRT) and comput-
erised adaptive testing (CAT) is important in our next 
steps to provide item hierarchy and calibrate the items 
on a linear scale, respectively [110, 111]. IRT models 

Fig. 4  Identification of mobility Core Outcome Set and preliminary item banks from the third final Clustering. In the fine-tuning step, items were 
considered outliers when they did not match well enough with the cluster they were in (clustering inaccuracy). Re-assigned items are items that 
changed cluster between the Cleaned Clustering and the Final Product. Re-assigned items include outliers but also items that were part of a large 
cluster that was split to make smaller and more precise clusters
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incorporate both the characteristics of items and char-
acteristics of individuals and calculate the probability 
of a positive response, to classify items for each person 
[35, 112, 113]. CAT is a specific kind of computer-based 
testing that asks questions extracted from larger pools of 
items covering a wider range of items difficulty to provide 
a more precise way to decrease questionnaire burden [35, 
112, 113]. Moreover, IRT can quantitatively estimate the 
properties of each item and eliminate poor items to opti-
mise the matching of items for each patient using CAT 
applications.

Lessons Learned
“Shared language is important in leading adaptive 
change. When people begin to use the same words with the 

same meaning, they communicate more effectively, mini-
mize misunderstandings, and gain the sense of being on 
the same page, even while grappling with significant dif-
ferences on the issues [114]” One of the barriers to imple-
ment a COS of mobility to use among individuals with 
ABI has been the lack of a comprehensive common lan-
guage describing domains of mobility in the healthcare 
professions. This gap of a common language prevented 
the development of a classification system of repre-
sentative knowledge (i.e., ontology) that would allow the 
experts to make decisions related to tailored intervention 
plans among individuals with ABI. We therefore began 
this robust methodology using NLP with the goal of 
establishing preliminary banks of items of mobility that 
could be mapped within the continuum of care.

Table 2  Overview of the final item banks identification from Clustering 3

*All manipulations were done manually by experts to yield the most coherent Core Outcome Set. Clusters who were completely reassigned to other clusters are 
marked Removed and clusters who only contain reassigned items are marked (New).

Name Initial size Outliers removed (%) Outliers reassigned (%) Final size

Upper Extremity Mobility 126 0 (0) 82 (39) 208
Emotional Function 119 37 (31) 93 (53) 175
Balance 125 32 (26) 57 (38) 150
Motor Control 131 31 (24) 10 (9) 110
Self-care 89 5 (6) 24 (22) 108
Social Life and Relationship 91 0 (0) 12 (12) 103
Cognition 55 3 (5) 40 (43) 92
Walking (New) 0 0 (0) 92 (100) 92
Postural Transition 107 32 (30) 15 (17) 90
Recreation and Leisure Activities 85 7 (8) 7 (8) 85
Activities of Daily Living 64 4 (6) 15 (20) 75
Physical Functioning 55 6 (11) 18 (27) 67
Communication 27 0 (0) 25 (48) 52
Work/Study 22 0 (0) 8 (27) 30
Climbing (New) 0 0 (0) 28 (100) 28
Sensory Function (New) 0 0 (0) 22 (100) 22
General Health (New) 0 0 (0) 20 (100) 20
Fatigue 13 0 (0) 19 (59) 32
Functional Independence 19 12 (63) 11 (61) 18
Pain 20 4 (20) 0 (0) 16
Alcohol and Drugs Use 14 0 (0) 0 (0) 14
Transportation 10 0 (0) 3 (23) 13
Sleeping (New) 0 0 (0) 13 (100) 13
Finances 10 0 (0) 1 (9) 11
Removed 127 127 (100) 0 (0) 0
Removed 121 121 (100) 0 (0) 0
Removed 69 69 (100) 0 (0) 0
Removed 34 34 (100) 0 (0) 0
Removed 21 21 (100) 0 (0) 0
Removed 41 41 (100) 0 (0) 0
Removed 16 16 (100) 0 (0) 0
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Lessons learned from this work include: First, NLP 
techniques require human annotations to thrive, as the 
work clearly indicated that expert knowledge was the 
key factor in obtaining more accurate clustering. Second, 
some measures included irrelevant and ambiguous items 
and we were able to examine and eliminate them. Third, 
the provided banks of items of mobility considered other 
item banks not identified in the literature search such 
as PROMIS. Toward that end, final consensus on a COS 
and banks of items of mobility needs to incorporate input 
from all stakeholders. Such item banks will provide a 
solid foundation to develop a commonly used ontology to 
inform selection of mobility outcomes and classification 

of mobility terms in digital health solutions and elec-
tronic medical records.

Limitations
During the process of retrieving copies of measures, we 
faced some challenges related to some of technology-
based and performance/clinicians measures. These 
challenges include: the difficulty of retrieving some 
technology-based measures such as actical, actigraph, 
motionlogger, goniometers, caltrac accelerometer, gyro-
scopes, magnetometer and sensewear pro 3 armband; the 
domains and items for some technology-based measures 
(such as Global Positioning System (GPS)); and for some 

Table 3  The comprehensive Core Outcome Set of mobility defined conceptually based on the International Classification of 
Functioning, Disability, and Health, and Webber’s frameworks

Cluster number and name Definition

1. Upper Extremity Mobility Defined as the ability to reach or rise up an object from one place to another, and perform the coordinated 
actions of handling, picking up, manipulating and releasing objects using one’s hand, fingers and thumb.

2. Emotional Functions Defined as mental functions related to the feeling including depression, anxiety and anger

3.Balance Defined as the ability to maintain the body position within the base of support with minimal postural sway.

4. Motor Functions Defined as functions associated with motor control and coordination of voluntary movements.

5. Self-care Defined as the ability to caring for oneself, washing and drying oneself, dressing, eating and drinking, and looking 
after one’s health.

6. Social life and Relationship Defined as the ability to carrying out the actions and tasks required for basic and complex interactions with 
people in a contextually and socially appropriate manner to engage in organized social life in community, social 
and civic areas of life.

7. Cognition Defined as specific functions of the brain including memory and executive functions.

8. Walking Defined as the ability to move along from point A to point B including, walking short or long distances; walking 
on different surfaces; and walking around and over obstacles.

9. Postural Transition Defined as the ability to move from one surface to another without changing body position such as moving from 
a bed to a chair.

10. Recreation and Leisure Activities Defined as the ability to engage in any form of play such as going to art galleries, museums, or cinemas for 
pleasure.

11. Activities of Daily Living Defined as the ability to carrying out everyday actions and tasks including acquiring a place to live, preparing 
meals, household cleaning and repairing.

12. Physical Functioning Defined as the ability to do various activities that require increasing degrees of strength and endurance.

13. Communication Defined as specific features of communicating by speaking or carrying on conversations, comprehending and 
comprehension.

14. Work/Study Defined as the ability to engage in all aspects of work including seeking employment and getting a job, doing 
the required tasks or studies to get the job.

15. Climbing Defined as the ability to move upwards or downwards over different surfaces such as climbing stairs

16. Sensory Functions Defined as functions of sense including vision, auditory, smell, touch and taste.

17. General Health Defined as the status of complete physical, mental and social well-being.

18. Fatigue Defined as functions related to respiratory and cardiovascular capacity for enduring physical exertion.

19. Functional Independence Defined as the ability to perform an activity with no or little help from others.

20. Pain Defined as an unpleasant feeling that indicates potential or actual damage to some body structure.

21. Alcohol and Drug use Defined as substances that are harmful use for the mental

22. Transportation Defined as using transportation to move around such as being driven in a car.

23. Sleeping Defined as a characteristic physiological change accompanied by general mental functions of intermittent, 
reversible and selective physical and mental disengagement from one’s immediate environment.

24. Finances Defined as products, such as money which serve as an exchange for labour, goods and services.
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performance/clinicians measures (such as gait speed, six 
minute walking test, timed up and go test, and manual 
functional test) were hard to extract.

While our methodology improved overall performance 
of the model, we note the following limitations in relation 
to the automatic NLP evaluation: traditional clustering 
metrics like the Silhouette score are only barely useful 
when comparing two different groupings produced by 
our model due to the difficulty of interpreting sentence 
embeddings produced by neural networks. Also, the Sil-
houette score is not an accurate estimate to calibrate the 
items in the identified banks of items. Thus, the quality of 
our banks of items needs to be validated by expert knowl-
edge to ensure that the emerged list of items covered 
the construct of mobility based on the ICF categories. 
Regarding the items, we have not accounted for the time 
frame and response options while analysing the clusters, 
as we only accounted for the content of the item. Finally, 
we note that, while our procedure was retained for its 
overall simplicity, other alternatives exist for sentence 
clustering. These alternatives are however out of scope 
of the current paper due to the large time consumption 
involved in evaluating another clustering by experts.

Conclusion
The comprehensive banks of items of mobility presented 
in this study has multiple uses: First, it represents a first 
step toward establishing a comprehensive COS and a 
common language of mobility among individuals with 
ABI to develop the ontology. Second, it enables research-
ers and healthcare professionals to begin exposing the 
content of mobility measures as a way to assess mobil-
ity comprehensively among individuals with ABI. Ulti-
mately, using shared assessment items of mobility it may 
be possible to adapt these items across the continuum of 
care. Our banks of items of mobility will soon be used to 
develop the ontology, allowing the stakeholders to make 
decisions about tailored individualized treatment plans. 
Lastly, the promising results obtained in this study pro-
vide a road map for using NLP in other health outcome 
areas and we expect they will motivate future works in 
this direction to leverage alternative NLP techniques.
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