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Abstract 

Background:  Clusterin is a multifunctional protein, which is associated with the pathogenesis and the development 
of Alzheimer’s disease (AD). Compared with normal controls, inconsistent results have yielded in previous studies for 
concentration of cerebrospinal fluid (CSF) clusterin in AD patients. We explored CSF clusterin levels in different patho‑
logical processes of AD.

Methods:  Following the National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria, we employed on 
the levels of CSF Aβ42(A), phosphorylated-Tau (T), and total-tau (N). Based on previously published cutoffs and the 
close correlation between CSF p-tau and t-tau, 276 participants from the publicly available ADNI database with CSF 
biomarkers were divided into four groups: A-(TN)- (normal Aβ42 and normal p-tau and t-tau; n = 50), A+(TN)- (abnor‑
mal Aβ42 and normal p-tau and t-tau; n = 39), A+(TN) + (abnormal Aβ42 and abnormal p-tau or t-tau; n = 147), 
A-(TN) + (normal Aβ42 and abnormal p-tau or t-tau; n = 40). To assess CSF clusterin levels in AD continuum, inter‑
group differences in four groups were compared. Pairwise comparisons were conducted as appropriate followed by 
Bonferroni post hoc analyses. To further study the relationships between CSF clusterin levels and AD core pathological 
biomarkers, we employed multiple linear regression method in subgroups.

Results:  Compared with the A-(TN)- group, CSF clusterin levels were decreased in A+ (TN)- group (P = 0.002 after 
Bonferroni correction), but increased in the A+(TN) + group and the A-(TN) + group (both P <  0.001 after Bonferroni 
correction). Moreover, we found CSF clusterin levels are positively associated with CSF Aβ42 (β = 0.040, P <  0. 001), CSF 
p-tau (β = 0.325, P <  0.001) and CSF t-tau (β = 0.346, P <  0.001).

Conclusions:  Our results indicated that there are differences levels of CSF clusterin in different stages of AD pathol‑
ogy. The CSF clusterin level decreased at the early stage are related to abnormal Aβ pathology; and the increased 
levels are associated with tau pathology and neurodegeneration.
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Background
Alzheimer’s disease (AD) is a devastating neurodegen-
erative disorder affecting in the world widely [1]. At the 
neuropathological level, in a specific temporal-ordered 

manner，the accumulation of AD pathology develops 
[2]. Up till now, the amyloid-β (Aβ) cascade hypothesis 
has been the most important model accounting for the 
pathogenesis of AD. The hypothesis proposed extracel-
lular Aβ deposition occurred AD early pathology, leading 
to the deposition of intracellular phosphorylated tau and 
neurodegeneration [3].

Clusterin (CLU; also known as apolipoprotein J, ApoJ) 
is a multifunction protein widely expressed in  vivo, 
attributing functions obtaining immune modulation, reg-
ulation Aβ metabolism, Aβ clearance in AD [4]. Primary 
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structure of CLU is encoded by CLU gene which contains 
single nucleotide polymorphisms (SNP’s) associated with 
the risk of late-onset Alzheimer’s disease (LOAD) [5–7]. 
Accumulating evidence has indicated that elevated clus-
terin levels contributes to AD early pathogenesis (Desi-
kan et al. 2014; Oh et al. 2019). While, research produced 
inconsistent results on the concentration of CSF clusterin 
in AD patients. Compared with healthy controls, some 
studies showed increased levels of CSF clusterin were in 
the AD patients [8–10].However, decreased levels of CSF 
clusterin were observed in some studies in AD patients 
[11, 12]. Recently, two meta-analyses showed that there 
were no differences in CSF clutserin levels between AD 
patients and normals [13, 14]. We hypothesized the 
inconsistency might be due to CSF clusterin levels were 
different during different AD pathological stages.

Studies have shown clusterin involved in AD pathology. 
Previous studies have shown that clusterin exerts pro-
tective effects in AD, including markedly improving Aβ 
clearance by binding to Aβ across the blood-brain barrier 
(BBB) [15], preventing Aβ aggregation [16, 17], and pro-
moting lysosomes Aβ degradation [15, 18], which suggest 
clusterin was considered as a protector in AD. However, 
a recent study has shown that elevated levels of clus-
terin may accelerate the spreading of tau aggregates in 
AD patients, suggesting that clusterin can speed up AD 
progression [19]. Taken together, these findings imply 
that clusterin serves a complicated influence in the AD 
pathological process. The relationship between clusterin 
and AD may vary at the different stages of AD pathology. 
Therefore, our study aims to study CSF clusterin levels in 
different pathological stages of AD.

We employed the ATN classification system based on 
the CSF levels of amyloid-β (1–42) (A), phosphorylated-
Tau (T), and total-tau (N) [20], which is proposed by the 
2018 National Institute on Aging-Alzheimer’s Associa-
tion (NIA-AA) Research Framework [21]. We dichoto-
mized biomarkers according to use previously published 
cutoffs as normal (negative) or abnormal (positive). As 
previously described [21], eight ATN biomarker profiles 
were originally created. However, our data is relatively 
small for some profiles. To define groups with more sam-
ples that are adequate for analysis, our research divided 
ADNI participants into four groups by four different AD 
pathological stages and merged T and N as TN, given 
CSF p-tau and t-tau are closely related. Thus, four groups 
were obtained, including the normal AD biomarkers 
groups(A-(TN)-), only Aβ-pathology groups (A+(TN)-), 
both Aβ-pathology and its downstream processes of tau 
pathology or neurodegeneration A+(TN)+, and sus-
pected non-AD pathology groups (A-(TN)+). Our study 
firstly aims at exploring the CSF clusterin levels in differ-
ent pathological stages, and secondly investigating the 

correlation of CSF clusterin levels with core pathological 
AD biomarkers in the biomarker normal group and AD 
continuum group.

Methods
ADNI database
This study was based on publicly available data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database. ADNI aims to examine whether clinical, imag-
ing and genetic assessments as well as CSF biomarkers 
can be integrated to detect and track AD as soon as pos-
sible. Any neurological disease patients were excluded 
from the database, except suspected AD. The ages of 
participants are in 55 to 90. On the ADNI website, more 
detailed information about inclusive or exclusive criteria 
can be found. In accordance with the Declaration of Hel-
sinki, written informed consent was acquired from all the 
participants or their representatives. ADNI was approved 
by the institutional review boards of all the participating 
institutions. For latest information, see ADNI website. 
[22, 23].

Participants
We included 285 participants with baseline data on CSF 
clusterin, CSF amyloid-β (1–42) (Aβ42), phosphorylated-
Tau (p-tau), and total-tau (t-tau) levels from the ADNI 
database. Nine participants with values outside the 
mean ± 3 standard deviations (SD) were excluded, leav-
ing 276 participants for further analysis.

Measurements of CSF biomarkers
CSF Aβ42, p-tau, t-tau were all analyzed using the INNO-
BIA Alz-Bio3 immunoassay. These within-batch pre-
cision values were all below 10% (respectively Aβ42: 
5.1 to 7.8%, p-tau: 5.1 to 8.8%, t-tau: 4 to 9.8%). At the 
same time, these CSF core biomarkers were analyzed by 
the fully automated Elecsys immune assay platform® at 
the University of Pennsylvania. More detailed informa-
tion about Elecsys method measuring AD biomarkers 
in ADNI is provided elsewhere [24]. All CSF biomarkers 
assays were repeated and averaged. The quantification 
of CSF clusterin was conducted using liquid chromatog-
raphy-tandem mass spectrometry with multiple reac-
tion monitoring approach (LC/MS-MRM) [25]. The 
whole panel consist of 567 petides representing 221 pro-
teins, and the peptide sequence used for clusterin was 
IDSLLENDR in our research. We obtained data from 
ADNI at http://​adni.​loni.​usc.​edu/.

ATN classification system
Following 2018 NIA-AA criteria, each ADNI partici-
pant was assigned into groups by the ATN framework 
[21]. At present, this classification system serves research 

http://adni.loni.usc.edu/
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purposes rather than clinical purposes. Additionally, 
ATN classification system is useful for observational 
studies since it stresses the predictive value of biomark-
ers [26]. The primary criteria for AD classification are 
dependent on underlying pathophysiological damage 
rather than clinical manifestations. In the ATN classifi-
cation system, “A” refers to aggregated Aβ (CSF Aβ42 or 
amyloid PET); “T” refers to aggregated tau (CSF p-tau 
or tau PET); and “N” refers to neurodegeneration (CSF 
t-tau, FDG-PET or MRI) [21, 27]. In our study, we imple-
mented this classification based on CSF Aβ42 levels (A); 
CSF p-tau levels (T); CSF t-tau (N). To reduce compari-
son groups numbers, the tau pathology group (T) and 
neurodegeneration group (N) were merged, given that 
CSF p-tau and t-tau are closely correlated. ‘(TN)-’ pro-
file was defined as both normal range of CSF p-tau and 
t-tau and ‘(TN)+’ profile was defined as p-tau or t-tau 
with abnormal range. We dichotomized biomarkers 
according to use previously published cutoffs as normal 
(negative) or abnormal (positive). CSF Aβ42 < 976.6 pg/
mL, CSF p-tau > 21.8 pg/mL, CSF t-tau > 245 pg/ml were 
respectively defined as A positive (A+), T positive (T+) 
and N positive (N+) [28]. Then, we obtained four differ-
ent groups, containing A–(TN)–, A+(TN)–, A+(TN)+, 
A-(TN)+. Specifically, participants with normal pathol-
ogy defined as “A–(TN)–”, abnormal amyloid with nor-
mal t-tau and p-tau defined as “A+(TN)–”, abnormal 
amyloid and abnormal levels of t-tau/p-tau defined as 
“A+(TN)+”, and suspected non-AD pathology defined as 
A-(TN)+. In addition, individuals were divided into the 
biomarker normal group (A–(TN)–) and AD continuum 
group (A+(TN)– and A+(TN)+).

Statistical analysis
The data downloaded from the ADNI database showed 
that the concentration of CSF clusterin displayed an 
approximate normal distribution, which was presented 
in the Q-Q plot (Supplementary Fig.  1). CSF Aβ42, CSF 
p-tau and t-tau levels were log-transformed to obtain 
normal distributions. We excluded values outside the 
mean ± 3 standard deviations (SD) to eliminate the influ-
ence of extreme values. Totally, nine individuals were 
excluded in this step. To explore the differences in CSF 
biomarkers and sociodemographic data, we employed 
one-way analyses of variance (ANOVA) for continuous 
variables and chi square for dichotomous variables (such 
as APOE ε4 status and gender). Subsequently, to test 
the levels of CSF clusterin in different ATN groups, we 
employed an analysis of covariance (ANCOVA) followed 
by Bonferroni post hoc analyses. Thus, the threshold P 
values of groups differences for statistical significance 
was set at 0.008 (= 0.05/6). Finally, in the whole cohort, 
the biomarker normal group and the AD continuum 

group, a multiple linear regression was performed to 
study the associations of the concentration of CSF clus-
terin with CSF core pathological biomarkers, adjusting 
for age, diagnosis, gender, education, and APOE ε4 status. 
P <  0.05 was defined as statistical significance the correla-
tion analysis. We used R software version 4.1.0 and IBM 
SPSS Statistics to perform all statistical analyses.

Results
Subjects’ characteristics
The demographics and clinical features of participants 
at baseline are summarized in the Table  1. Our current 
study, 276 participants were included from the publicly 
available ADNI database (A-(TN)-, n = 50; A+(TN)-, 
n = 39; A+(TN)+, n = 147; A-(TN)+, n = 40). The 
study population had a female population of 39.5%, an 
APOE ε4 positive percentage of 47.8%, an average age 
of 75.11 ± 6.86 years, and 15.72 ± 2.99 years of educa-
tion. Four groups showed statistically significant differ-
ences in the distribution of APOE ε4 status and MMSE 
score (both P <   0.001) rather than age, education level, 
and gender. The proportion of MMSE scores and APOE 
ε4 are dependent on the ATN framework, of which the 
highest percentage of APOE ε4 and lowest MMSE scores 
are in A+ profiles. Compared with the other three 
groups, A+(TN)- group showed the lowest levels of CSF 
clusterin.

Differences in CSF clusterin across the AD continuum
To assess the levels of CSF clusterin across the AD con-
tinuum, we employed ATN classification framework. Sig-
nificant differences were shown by one-way ANCOVA 
after Bonferroni correction among the four groups 
(Fig. 1). As mentioned above, the A+(TN)- group had the 
lowest concentration of CSF clusterin. And compared to 
the A+(TN)- group, increased level of CSF clusterin was 
in the A+(TN) + group (P <   0.001 after Bonferroni cor-
rection). Considering age, gender, APOE ε4, education 
level all influence AD, we conducted another ANCOVA 
after adjusting for all these factors, which yielded the 
same results as previous studies.

We also repeated ANCOVA in groups classified by Aβ 
pathology and tau pathology status or in groups classi-
fied by Aβ pathology and neurodegeneration status. The 
results of the two analyses are presented in the Supple-
mentary Fig. 3 and Supplementary Fig. 4, which are con-
sistent with those based on ATN classification system. 
This consistency suggests that the preceding grouping is 
reasonable.

Our results suggest that during AD progression, CSF 
clusterin levels are different, which may be associated 
with the pathological changes in ATN biomarkers.
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Table 1  Characteristics of participants based on ATN classification

Numbers and percentages are used to express categorical variables. Means ± SDs is used to express continuous variables.

Abbreviations: CU Cognitively unimpaired, MCI Mild cognitive impairment, AD Alzheimer’s disease, F Female, M Male, APOE Apolipoprotein E, SD Standard deviations, 
MMSE Mini Mental State Examination, CSF cerebrospinal fluid, Aβ42 amyloid-β 42, p-tau phosphorylated-tau, t-tau total-tau
a  Comparison of subgroups were employed by analyses of variance
b  Comparison of subgroups were employed by chi square

Characteristics A-(TN)- A+(TN)- A+(TN)+ A-(TN)+ P

N 50 39 147 40

Clinical diagnosis details (n, %)

CU 37(44.05) 13(15.48) 16(19.04) 18(21.43)

MCI 11(9.40) 6(5.13) 82(70.09) 18(15.38)

AD 2(2.67) 20(26.67) 49(65.33) 4(5.33)

Age (Mean ± SD, years) 74.53 ± 6.09 75.58 ± 5.23 74.66 ± 7.26 77.00 ± 7.46 0.232a

Gender (F/M) 19/31 12/27 61/86 17/23 1.000b

Education (Mean ± SD, years) 15.28 ± 3.01 15.51 ± 3.50 15.83 ± 2.93 16.10 ± 2.62 0.514a

APOE ε4 (n, %) 3 (6.00) 20 (51.28) 102 (69.39) 7 (17.50) < 0.001b

MMSE score 28.44 ± 1.47 26.51 ± 2.45 25.69 ± 3.31 28.20 ± 1.74 < 0.001a

CSF biomarker

Aβ42 (pg/ml) 1441.64 ± 252.09 639.87 ± 194.49 587.76 ± 176.21 1794.03 ± 664.20 < 0.001a

t-tau (pg/ml) 191.10 ± 31.10 181.61 ± 33.97 353.71 ± 97.99 320.71 ± 81.04 < 0.001a

p-tau (pg/ml) 16.78 ± 2.87 16.66 ± 3.53 35.99 ± 10.63 29.09 ± 9.66 < 0.001a

Clusterin 20.56 ± 0.45 20.24 ± 0.45 20.38 ± 2.02 20.98 ± 0.36 < 0.001a

Fig. 1  CSF clusterin in the ATN classification. The levels of CSF clusterin in the four biomarker profiles were described by scatter plots. The difference 
in four groups employed an analysis of covariance (ANCOVA) followed by Bonferroni post hoc analyses. The significant P-values were marked after 
Bonferroni correction



Page 5 of 9Tang et al. BMC Neurology          (2022) 22:508 	

CSF clusterin levels in the A‑(TN) + group
Participants who had abnormal tau pathology or neuro-
degeneration without amyloidosis(A-(TN) + group)were 
considered as suspected AD. The results of the Bonfer-
roni post hoc test showed CSF clusterin levels were dif-
ferent among groups. As shown in Fig. 1, the higher level 
of CSF clusterin was in the A-(TN) + group compared to 
the A-(TN)- group (no pathology, P <   0.001 after Bon-
ferroni correction), the A+(TN)- group (amyloid-only 
pathology, P <   0.001 after Bonferroni correction), and 
the A+(TN)  +  group (abnormal amyloid and abnor-
mal t-tau/p-tau, P <   0.001 after Bonferroni correction) 
after adjusting for age, diagnosis, education, gender, and 
APOE ε4 status. This result suggests that the elevation of 
CSF clusterin level may be associated with tau pathology/
neurodegeneration.

CSF clusterin and AD core biomarkers
Finally, to study the associations between CSF clusterin 
and the core AD biomarkers based on ATN system, we 
employed the linear regression methods adjusting for 
age, diagnosis, education, gender, and APOE ε4 status. 
We excluded participants in the A-(TN) + group in this 
analysis. These results were presented in Supplemen-
tary Table  1. In all the participants (n = 237), CSF clus-
terin was positively associated with CSF Aβ42 (β = 0.040, 
P <   0.001) (Fig.  2a), CSF p-tau (β = 0.325, P <   0.001) 
(Fig.  2d), and CSF t-tau (β = 0.346, P < 0.001) (Fig.  2g). 
We further investigated these correlations in the sub-
groups, including biomarker normal and AD continuum 
groups. Figure 2b showed no significant association was 
observed between CSF clusterin and CSF Aβ42 in the bio-
marker normal group (β = 0.002, P = 0.763). In AD con-
tinuum groups, there was a positive relationship between 
CSF clusterin and CSF Aβ42 in Fig.  2c. Results showed 
the CSF clusterin were positively associated with CSF 
t-tau and CSF p-tau both in biomarker normal group 
and AD continuum group (Fig.  2h, e, i, f ). We studied 
the association of CSF clusterin with CSF Aβ42 among 
A-TN- and A + TN- subjects. There was a positive rela-
tionship between CSF clusterin and CSF Aβ42 (β = 0.026, 
P < 0.005). We repeated the analysis after excluding the 
outliers, which yielded the similar results Supplementary 
Table 2.

Discussion
In our study, we assessed the CSF clusterin levels across 
AD continuum using the ATN classification system. We 
further explored the associations of CSF clusterin with 
AD core pathological biomarkers in different subgroups. 
Our results indicated that CSF clusterin levels were dif-
ferent across AD continuum influenced AD pathologies: 

the decreased levels of CSF clusterin at early stages are 
related to abnormal Aβ pathology; and the elevated 
levels of CSF clusterin are related to tau pathology and 
neurodegeneration.

Our data proved our hypothesis that the levels of CSF 
clusterin have different levels across the AD continuum 
rather than a unidirectional increase or decrease as 
shown by previous studies. The different levels of clus-
terin during different AD stages have not been observed 
by previous studies due to their adoption of clinical stag-
ing. Compared to a previous ADNI study with clusterin 
increasingly in AD patients [10], our study provides more 
samples and extends into the ATN system. Since we used 
ATN classification, different levels of CSF clusterin dur-
ing different AD pathological stages became evident 
across AD severity spectrum. We found that decreased 
level of CSF clusterin was initially observed in amyloid-
only pathology, which was considered as the earliest stage 
of AD, and elevated levels of CSF clusterin were observed 
in downstream tau pathology and neurodegeneration. 
In light of previous studies, the mechanisms underlying 
the different levels of CSF clusterin might be as follows. 
As for the lowered CSF clusterin levels in amyloid-only 
pathology, one probably explanation is that CSF clusterin 
can bind with Aβ and produce complexes [29], which 
may lead to lower CSF clusterin; another potential expla-
nation is that Aβ can promote degradation of clusterin 
lysosomes via the expression of sortilin in the early stage 
of AD [30]. As for the increased CSF clusterin levels in 
tau pathology and neurodegeneration, the explanation 
may be that clusterin increases in response to inflam-
matory processes mediated by cytokine in plaques [31, 
32]. Our finding was in line with those of previous stud-
ies showing that this increase in CSF clusterin levels was 
a response to Aβ stress and neural injury [33, 34]. CSF 
clusterin will be a promising candidate marker to reflect 
disease progression and be a potential outcome param-
eter in future trials.

In the present study, compared to the A-(TN)- 
group, higher levels of CSF clusterin were observed in 
both A+(TN) + and A-(TN) + groups, suggesting that 
increases in CSF clusterin levels were related to tau 
pathology or neurodegeneration. These results are con-
sistent with that of a recent study which indicated that 
increased clusterin levels occurred not only in the pres-
ence of amyloid plaques but also the primary tauopa-
thy [35]. The cause-and-effect relationship between 
increased CSF clusterin and tau pathology/neurode-
generation is ambiguous. Some studies showed that 
AD patients had increased clusterin levels due to neu-
rodegeneration, which could significantly ameliorate 
tau pathology by inhibiting fibril formation (Nuutinen 
et  al. 2009; Schrijvers et  al. 2011; Cunin et  al. 2016). 
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However, a previous animal study found that an exog-
enous injection of clusterin could increase the levels of 
tau proteins, suggesting clusterin could aggravate tau 
pathology (Martin-Rehrmann et al. 2005).

We further investigated the associations between CSF 
clusterin and CSF core biomarkers separately in total 
individuals, biomarker normal, and AD continuum 
group. Both in total participants and AD continuum 
group, CSF clusterin levels were positively related to 

Fig. 2  Associations of CSF clusterin levels with AD core pathological biomarkers. Scatter plots depict the associations of CSF clusterin with 
core pathological biomarkers: Aβ42, p-tau and t-tau in whole cohort (a, d, g), biomarker normal (b, e, h) and Alzheimer’s continuum (c, f, i). The 
multiple linear regression was applied to compute the standardized regression coefficients (β) and the P-values, containing age, diagnosis, gender, 
education, and APOE ε4 status as covariates
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CSF Aβ42, CSF p-tau, and CSF t-tau, which was consist-
ent with most previous studies. Clusterin and p-tau/t-tau 
might be linked via neuronal damage [36]. Interestingly, 
CSF clusterin was also positively associated with CSF 
t-tau and p-tau in biomarker normal. This might be 
explained by physiological aging processes, considering 
the close relationship between age and clusterin in Sup-
plementary Fig.  2. Previous studies have showed clus-
terin may be a protective participant in, such as adaptive 
responses to regeneration of mild injured neurons and 
neuroinflammation [37–39].

Previous studies did not focus on levels of CSF clus-
terin in different stages of AD. The highlight of the 
current research is that it is the first to study the CSF 
clusterin levels in different AD pathological stages. And 
an AD biomarker classification system we used based on 
the diagnostic guidelines of the NIA-AA study. There is 
a temporal sequence on the models of AD pathophysi-
ology theorize. Extracellular Aβ deposition(A) initiates 
a biological cascade, followed by phosphorylated tau 
aggregation (T) that leads to neurodegeneration (N) [3, 
40]. Based on the classical A-T-N sequence, we suspect 
that CSF clusterin levels may dynamically change, associ-
ated with the pathological changes in ATN biomarkers. 
Nevertheless, we recognize that our research is only at 
the level of observation and limits any conclusion about 
disease progression. Further studies are required more 
follow-up data to study the dynamic evolution of clus-
terin in AD pathology. Also, more animal experiments 
are needed to uncover the underlying mechanisms in the 
dynamic CSF clusterin in disease progression.

Conclusion
In the current research, we assessed CSF clusterin levels 
in the Alzheimer’s continuum based on ATN system clas-
sification. The application of this system made us unravel 
that CSF clusterin levels are different in the development 
of the pathological stage in AD. To sum up, the decreased 
levels of CSF clusterin at an early stage are related to 
abnormal Aβ pathology; and the enhanced levels of CSF 
clusterin are related to tau pathology and neurodegen-
eration. Our study provided underlying simultaneous 
processes in AD progression. Future studies should use 
longitudinal data and explore the underlying mechanisms 
in the dynamic CSF clusterin.
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