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Abstract 

Background Small multiple intracranial aneurysms (SMIAs) are known to be more prone to rupture than are single 
aneurysms. However, specific recommendations for patients with small MIAs are not included in the guidelines of 
the American Heart Association and American Stroke Association. In this study, we aimed to evaluate the feasibility of 
machine learning-based cluster analysis for discriminating the risk of rupture of SMIAs.

Methods This multi-institutional cross-sectional study included 1,427 SMIAs from 660 patients. Hierarchical cluster 
analysis guided patient classification based on patient-level characteristics. Based on the clusters and morphological 
features, machine learning models were constructed and compared to screen the optimal model for discriminating 
aneurysm rupture.

Results Three clusters with markedly different features were identified. Cluster 1 (n = 45) had the highest risk of suba-
rachnoid hemorrhage (SAH) (75.6%) and was characterized by a higher prevalence of familiar IAs. Cluster 2 (n = 110) 
had a moderate risk of SAH (38.2%) and was characterized by the highest rate of SAH history and highest number 
of vascular risk factors. Cluster 3 (n = 505) had a relatively mild risk of SAH (17.6%) and was characterized by a lower 
prevalence of SAH history and lower number of vascular risk factors. Lasso regression analysis showed that compared 
with cluster 3, clusters 1 (odds ratio [OR], 7.391; 95% confidence interval [CI], 4.074–13.150) and 2 (OR, 3.014; 95% 
CI, 1.827–4.970) were at a higher risk of aneurysm rupture. In terms of performance, the area under the curve of the 
model was 0.828 (95% CI, 0.770–0.833).

Conclusions An unsupervised machine learning-based algorithm successfully identified three distinct clusters with 
different SAH risk in patients with SMIAs. Based on the morphological factors and identified clusters, our proposed 
model has good discrimination ability for SMIA ruptures.
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Background
Previous studies have suggested that the size of an aneu-
rysm is the most important indicator of its risk of rupture 
in patients with multiple intracranial aneurysms (MIAs) 
[1]. However, 20–29% of ruptured aneurysms were not 
the largest in size in patients with MIAs and subarach-
noid hemorrhage (SAH) [2, 3]. In patients with MIAs, 
ruptured aneurysms appear to be smaller (< 7 mm), and 
smaller aneurysms account for more than half of all rup-
tured MIAs [2]. Björkman et al. [4] found that of all the 
ruptured IAs in patients with MIAs, 53.7% and 8.2% 
were < 7 mm and < 3 mm in size, respectively. The Small 
Unruptured Intracranial Aneurysm Verification Study 
in Japan demonstrated that the average annual risk of 
rupture was 0.34%/year for single unruptured aneu-
rysms ≤ 5  mm in diameter and 0.95%/year for multiple 
unruptured aneurysms [4]. This suggests that in order to 
prevent future aneurysmal rupture, MIAs with a diam-
eter of ≥ 4 mm should also be considered for treatment. 
However, the recently updated guidelines of the Ameri-
can Heart Association and American Stroke Association 
do not include specific recommendations for patients 
with small MIAs (< 7  mm) [5]. Therefore, the clinical 
management of small aneurysms in patients with MIAs 
should be considered and analyzed, as this can help to 
improve the prognosis of this group of patients.

Approximately 20–40% of patients with unruptured 
IAs also harbor additional IAs [6]. Patients with MIAs 
can share some characteristics with those with single 
aneurysms; for example, the risk factors for MIAs can 
be the same as those for aneurysm formation in gen-
eral. Female sex, age, arterial hypertension, smoking, 
and familial IA have been found to be the major risk fac-
tors for MIA formation [7–9], and they have also been 
reported to increase the risk of aneurysm rupture [10, 
11]. However, compared with single aneurysms, MIAs 
are generally at a higher risk of growth and rupture [12], 
suggesting that the development of MIAs is driven by 
an underlying pathophysiological etiology. The risk fac-
tors associated with aneurysm rupture may play a more 
important role in patients with MIAs than in those with 
single aneurysm. As such, compared with patients with 
single aneurysms, those with MIAs are more likely to 
exhibit natural patterns of grouping (risk factor discrimi-
nation), which may be related to the risk of SAH.

In patients with MIAs, the characteristics associated 
with aneurysm rupture can be divided into patient-level 
(such as age and sex) and aneurysm-level (such as size 
and neck width) factors. Each aneurysm in the same 
patient shares the same patient-level characteristics but 
can have its own independent aneurysm-level charac-
teristics. Patient-level characteristics can influence the 
occurrence, growth, and morphology of MIAs, thus 

influencing aneurysm-level characteristics. Moreover, 
both patient- and aneurysm-level characteristics can 
influence aneurysm rupture. As such, some autocorrela-
tion between these factors is inevitable.

In this study, we adopted unsupervised machine learn-
ing-based method, cluster analysis, to classify complex 
epidemiological factors and comorbidities into simple 
clusters (phenogroupings). Cluster analysis can iden-
tify patients with similar clinical characteristics across 
various groups with different clinical phenotypes (e.g., 
patients with a higher or lower prevalence of risk factors 
or comorbidities). Unlike traditional regression analy-
ses, cluster analysis divides a set of data into several dis-
tinct categories based on the similarities and differences 
between the data. Data belonging to the same category 
have high levels of similarity, whereas those in different 
categories have low levels of similarity and low levels of 
cross-category correlation. These phenogroupings are 
associated with distinct baseline demographic character-
istics and comorbidities, highlighting the distinct pheno-
types of patients with SMIAs. Management approaches 
can differ between groups of patients with different clini-
cal characteristics who have MIAs with varying rupture 
risks. Therefore, in this study, we sought to: (1) analyze 
patient-level risk factors to identify the clinical pheno-
types that are most relevant for discriminating multi-fac-
torial clusters among patients with MIAs; and (2) analyze 
aneurysm-level risk factors to evaluate the association 
between these clusters and aneurysm rupture.

Methods
Study population
This was a cross-sectional study of consecutive patients 
with MIAs who attended three medical centers in China 
(Beijing Tiantan Hospital; Zhujiang Hospital; Peking Uni-
versity International Hospital) between 1 January, 2015, 
and 1 January, 2019. Patients were included if they had 
at least two saccular and small IAs (< 7 mm). The exclu-
sion criteria were as follows: patients whose largest 
aneurysm was sized > 7  mm; patients with fusiform or 
dissecting IAs; patients with arteriovenous malforma-
tion/moyamoya disease/arteriovenous fistula; patients 
with incomplete digital subtraction angiography data or 
unreadable and unclear 3D rotational angiography.

All aneurysms were divided into the ruptured and 
unruptured groups based on their presentation at the 
time of admission. Patients who presented with a sus-
picion of SAH routinely underwent head computed 
tomography (CT) and—if the head CT findings were 
negative—a lumbar puncture. Patients with SAH were 
included only if the aneurysm responsible for SAH could 
be determined through microscopic visual assessment or 
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a definitive hemorrhage pattern on CT (localized to one 
IA).

Patient‑level characteristics
For each patient, data related to their individual char-
acteristics were collected from the medical history 
recorded by the treating physician during interviews with 
the patient or their family members. Additional informa-
tion was collected through a structured questionnaire via 
telephone interviews.

The individual patient-level characteristics included 
baseline information and data related to vascular risk fac-
tors (Table 1). The following baseline data were collected: 
age, sex, history of SAH (caused by other aneurysms), 
family history of IAs (a familial history of aneurysmal 
SAH and evidence of familial aneurysms [at least 1 first-
degree family member with an IA]) [13], and numbers 
of IAs. The vascular risk factors were as follows: hyper-
tension, hyperlipidemia, cardiovascular disease (angina 
pectoris, myocardial infarction, or peripheral vascular 
disease), intracranial atherosclerotic stenosis ≥ 50%, his-
tory of stroke (transient ischemic attack or stroke), cur-
rent smoking (still smoking upon admission); former 
smoking (used to smoke regularly and quit at least 1 year 
before admission), and alcohol consumption (current or 
previous intake of > 5 drinks per day) [14]. In addition, 

the vascular burden (that is, the number of vascular risk 
factors) was calculated for each patient [15].

Aneurysm‑level characteristics
The blood vessels were visualized via 3D digital subtrac-
tion angiography/CT angiography, and the morphologi-
cal features and presence of stenosis were determined at 
the respective center by two experienced readers with 
more than 10  years of experience. Data recorded from 
the angiograms included the number, location, and size 
of IAs; these data will form the basis of a separate study 
and publication. All 1,427 angiograms were reevaluated 
and measured at a 0.1-mm scale by two authors (X.T. 
and X.F.) at the central reading center (Fig.  1). The fol-
lowing parameters were calculated: size of the aneu-
rysm, defined as the maximum distance between any two 
points on an aneurysmal body; neck width, defined as the 
maximum distance between any two points on the aneu-
rysmal neck plane; aspect ratio (AR), defined as the ratio 
of dome height to neck width [16]; size ratio (SR), defined 
as the ratio of maximum aneurysmal height to the par-
ent diameter; branching-to-parent ratio (BPR; defined as 
the ratio of the sum of the diameters of branch vessels to 
the diameter of the proximal main vessel in bifurcation 
aneurysms; set to 1 for sidewall aneurysms); neck-to-par-
ent ratio (NPR), defined as the ratio of the neck width to 

Table 1 Characteristics of patients in the three clusters

SAH Subarachnoid hemorrhage, IA Intracranial aneurysm

Patient‑level Characteristics Cluster A Cluster B Cluster C P‑value

No. (%) 45 (6.8) 110 (16.7) 505 (76.5) -

Presented with SAH (%) 34 (75.6) 42 (38.2) 89 (17.6)  < 0.001

Baseline information
 Age (mean ± SD) 58.5 ± 9.6 56.0 ± 10.8 57.6 ± 10.5 0.264

 Female sex (%) 34 (75.6) 28 (25.5) 378 (74.9)  < 0.001

 History of SAH (%) 0 32 (29.1) 1 (0.2)  < 0.001

 Family history of IAs (%) 45 (100.0) 1 (0.9) 0  < 0.001

 Number of IAs (mean ± SD) 2.2 ± 0.4 2.4 ± 0.6 2.4 ± 0.5 0.124

Vascular risk factors
 Hypertension (%) 26 (57.8) 79 (71.8) 285 (56.4) 0.012

 Diabetes mellitus (%) 9 (20.0) 13 (11.8) 79 (15.6) 0.398

 Hyperlipidemia (%) 7 (15.6) 29 (26.4) 96 (19.0) 0.161

 Cardiovascular diseases (%) 1 (2.2) 9 (8.2) 60 (11.9) 0.087

 History of stroke (%) 8 (17.8) 25 (21.8) 66 (13.1) 0.055

 Intracranial atherosclerotic stenosis ≥ 50% (%) 9 (20.0) 38 (35.5) 146 (28.9) 0.185

 Current smoking (%) 5 (11.1) 48 (43.6) 86 (17.0)  < 0.001

 Former smoking (%) 0 13 (11.8) 12 (2.4)  < 0.001

 Alcohol consumption (%) 3 (6.7) 86 (78.2) 8 (1.6)  < 0.001

Number of vascular risk factors (%)  < 0.001

  < 3 37 (82.1) 41 (32.0) 416 (82.4)

  ≥ 3 8 (17.9) 69 (68.0) 89 (17.6)
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the diameter of the parent artery; irregular shape, defined 
as an aneurysm with multiple lobes, daughter sacs, or 
other types of wall protrusions [17]; inflow angle, defined 
as the angle between the parent artery and the direction 
of the aneurysm [18]; outflow angle, defined as the angle 
at which the aneurysm flowed outward to the distal part 
of the artery; main branching angle, defined as the angle 
of the parent artery (in case of a sidewall aneurysm) or 
the angle between the parent artery and the daughter 
branch most approaching 180° (in case of a bifurcation 
aneurysm) [2] (the sum of the inflow, outflow, and main 
branching angles was 360°); bifurcation location, defined 
as aneurysms that had necks located on two vascular 
branches simultaneously; and posterior circulation loca-
tion, defined as aneurysms located at the basilar, verte-
bral, and posterior cerebral arteries.

Statistical analyses
Continuous variables were compared between groups 
using the Student’s t-test (for normally distributed varia-
bles) or Mann–Whitney U test (for non-normally distrib-
uted variables). One-way analysis of variance was used 
to analyze differences in more than two groups. For vari-
ables with few missing data, mean imputation was used; 
20 variables had no missing data, and 5 had < 10% missing 
data. Any variable with > 50% missing data was excluded 
from analysis. Finally, 25 variables were included in the 
models. The analysis of both datasets—the complete case 
dataset and imputed dataset—showed similar results.

Construction of clusters
We used agglomerative hierarchical cluster analysis to 
classify patients into groups based on 14 patient-level 
characteristics, including five baseline factors (age, sex, 
history of SAH, family history of IAs, and number of IAs) 
and nine vascular risk factors (hypertension, diabetes 
mellitus, hyperlipidemia, cardiovascular diseases, his-
tory of stroke, intracranial atherosclerotic stenosis ≥ 50%, 
current smoking, former smoking, and alcohol consump-
tion). This is a commonly used method suitable for binary 
variables [19, 20]. The grouping process was based solely 
on patient-level data, did not include any aneurysm-level 
characteristics, and was blinded to the presence of SAH. 
The algorithm started with individual patients and suc-
cessively clustered them until the final group contained 
all patients. The Jaccard similarity coefficient was used 
as a measure of distance between binary variables and 
average linkage to define the average distance between 
data points in separate clusters. All prevalent conditions 
in this cohort were included in the cluster analysis. The 
optimum number of clusters was determined using the 
NbClust package in R statistical software. This function 
provides 30 indices that can be used to determine the 
optimal number of clusters in a dataset using an objective 
and data-driven “majority vote” approach [21, 22].

Identification of morphological determinants for small IA 
rupture in patients with MIAs
All the included aneurysms were randomly divided into 
training and testing sets (7:3). Using clusters as a dummy 

Fig. 1 Measurements of the morphological features of aneurysms. a, Neck width; b, height; c, extension of the maximum distance of the dome 
from the center of the neck plane; d, diameter of the parent artery; e and f, diameter of the branch artery. (A) inflow angle (angle between the 
parent artery and c); (B) outflow angle; (C) branching angle; aspect ratio, b/a; size ratio, size/d; branching-to-parent ratio, (e + f )/d; neck-to-parent 
ratio, a/d
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independent variable, multivariable regression models 
were constructed using logistics, lasso, and ridge regres-
sion analyses to assess the risk of aneurysm rupture. 
These models were named the logistics, lasso, and ridge 
models, respectively. Receiver operating curves were 
constructed, and the areas under the curve of these mod-
els were compared in order to select the optimal final 
model. The variates included in the optimal final model 
were summarized, and the odds ratio (OR) and 95% con-
fidence interval (CI) of each variate were calculated. The 
variance inflation factor of each variate was used to test 
collinearity and to identify the morphological determi-
nants for predicting aneurysm rupture. Additionally, 
the importance of these variables was calculated. In this 
study, P < 0.05 was considered statistically significant, 
and all calculations were performed on IBM SPSS Statis-
tics for Windows, version 25 (IBM Corp., Armonk, N.Y., 
USA) and R statistical software.

Results
Study population
A total of 660 patients with 1,427 SMIAs (< 7 mm) that 
met the inclusion and exclusion criteria were included in 
this study (Table 1). Ruptured IAs were present in 25.0% 
(165/660) of the included patients and comprised 11.6% 
(165/1427) of the 1,427 SMIAs. Among the 660 patients, 
476 (72.1%) had 2 coexisting IAs, 137 (20.9%) had 3, and 
47 (7.1%) had 4 or more coexisting IAs. In terms of size, 
378 (26.5%) IAs were < 3 mm, 683 (47.9%) were 3–5 mm, 
and 366 (25.6%) were 5–7 mm.

Cluster analysis
The unsupervised cluster analysis that was blinded to the 
presence of SAH identified three distinct clusters with 
different patterns of clinical factors (Fig. 2). The distribu-
tion of individual patient-level factors in the three clus-
ters is shown in Table 1 and Fig. 3. There were significant 
differences in age, sex, number of coexisting IAs, diabe-
tes mellitus, hyperlipidemia, and cardiovascular disease 
between the clusters (P > 0.050). The patients in clus-
ter 1 (n = 45) had a family history of IAs (Fig.  3A) and 
the highest rate of SAH history (34/45, 75.6%, Fig.  2C). 
Patients in cluster 2 (n = 110) had a moderate risk of SAH 
(42/110, 38.2%) and significantly higher rates of SAH 
history (29.1%, Fig.  3B), hypertension (71.8%), current 
and former smoking (55.4%), and alcohol consumption 
(78.2%). Notably, patients in cluster 2 also had a higher 
vascular burden (Fig.  3C); 73.6% (81/110) of patients in 
this cluster had two or more vascular risk factors and 
62.7% (69/110) had three or more vascular risk factors. 
Patients in cluster 3 (n = 505) had a relatively mild risk of 
SAH (89/505, 17.6%) and showed significantly lower rates 
of SAH history (0.2%), hypertension (56.4%), current and 

former smoking (19.4%), alcohol consumption (1.6%), 
and lower vascular burden (only 17.6% of patients had 
three or more vascular risk factors). Consequently, the 
clusters were significantly associated with SAH risk 
(P < 0.001, Fig. 2C).

Associations between patient clusters and SMIA rupture
The results of cluster analysis and aneurysm-level data 
were used to verify the performance of various models in 
the training and test groups (Table 2). The areas under the 
curve of the logistics, ridge, and lasso models were 0.789 
(95% CI, 0.745–0.833), 0.788 (95% CI, 0.742– 0.885), 
and 0.787 (95% CI, 0.744–0.833) in the training group 
(Fig.  4A) and 0.828 (95% CI, 0.770–0.833), 0.802 (95% 
CI, 0.7736–0.868), and 0.795 (95% CI, 0.728–0.861) in 
the test group, respectively (Fig. 4B). The logistics regres-
sion model showed relatively better discrimination per-
formance in both groups and was selected as the optimal 
model for assessing the risk of SMIA rupture. The areas 
under the receiver operating characteristic curves were 
nearly 0.8 for all models, indicating that they showed 
good discrimination performance overall. Table  3 sum-
marizes the characteristics of the final prediction model. 
The ORs of the independent variables were as follows: 
cluster 1 (OR, 7.391; 95% CI, 4.074–13.150; P < 0.001), 
cluster 2 (OR, 3.014; 95% CI, 1.827–4.970; P < 0.001), AR 
(OR, 2.282; 95% CI, 1.409–3.696; P = 0.001), bifurcation 
location (OR, 2.010; 95% CI, 1.190–3.394; P = 0.009), 
NPR (OR, 1.696; 95% CI, 1.027–2.800; P = 0.039), size 
(OR, 1.326; 95% CI, 1.111–1.583; P = 0.002), and BPR 
(OR, 0.335; 95% CI, 0.162–0.693; P = 0.003); the variance 
inflation factors associated with the same variables were 
1.86, 1.89, 1.37, 1.22, 1.52, 1.39, and 1.28, respectively.

The size cutoff for a higher risk of aneurysm rupture 
was 4.6 mm, as determined by the Youden Index. Nota-
bly, the variable importance of clusters was highest in the 
lasso model (relevance from high to low: clusters, BPR, 
AR, bifurcation, size, NPR, posterior circulation, and size 
ratio; (Fig. 4C) and third highest in the ridge model (rel-
evance from high to low: AR, irregular shape, clusters, 
bifurcation, size ratio, posterior circulation, neck, BPR, 
and number of coexisting aneurysms). These results indi-
cate that the cluster variable can be a vital independent 
risk factor for assessing the risk of SMIA rupture.

Incremental predictive value of clusters for outcome 
prediction
The baseline regression model for SMIAs was con-
structed using the individual morphological features of 
aneurysms. The addition of the cluster variable to the 
base model significantly improved its integrated discrim-
ination ability, resulting in accurate reclassification of the 
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Fig. 2 Starting from the bottom, the clusters are progressively joined (at levels of similarity shown at their union) until a single cluster is formed at 
the top (A). NbClust provides the statistically optimum number of clusters, which were three for the index of 6:24 indicators (B). Cluster 1 (n = 45) 
shows the highest rate of subarachnoid hemorrhage (SAH) (34/45, 75.6%); Cluster 2 (n = 110) shows a moderate risk of SAH (42/110, 38.2%); and 
cluster 3 (n = 505) shows a relatively mild risk of SAH (89/505, 17.6%). Consequently, the cluster variable is significantly associated with the risk of 
SAH (C)

Fig. 3 Distribution of patient-related factors in the three clusters. All patients in Cluster 1 (n = 45) have a family history of intracranial aneurysms (A). 
Compared with clusters 1 and 3, cluster 2 (n = 110) has significantly higher rates of prior aneurysmal subarachnoid hemorrhage due to the rupture 
of another aneurysm (B) and a higher number of vascular risk factors (C)
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variables in terms of SMIA rupture (C statistics: 0.709 vs. 
0.789; Fig. 4D).

Discussion
This study revealed three main findings. First, unsu-
pervised cluster analysis successfully identified three 
specific groups in a large cohort of patients with small 
(< 7 mm) MIAs who were referred for the evaluation of 
SAH risk. The patient groups were mainly characterized 
by differences in a family history of IAs, SAH history, 
hypertension, smoking status, and alcohol consump-
tion, corresponding to differences in SAH rates. Second, 
the cluster variable was found to be a critical independ-
ent risk factor for evaluating the risk of individual aneu-
rysms, and this result was replicated in the validation 
group. Third, our machine learning-based model, which 
combined the cluster variable with individual morpho-
logical factors, showed good discrimination ability for 
SMIA rupture.

One of the most advantageous features of machine 
learning algorithms is that they can discover hidden 
patterns in heterogeneous data. Moreover, cluster anal-
ysis can access complex nonlinear interactions and ana-
lyze the intrinsic structure of data [19]. Unsupervised 
machine learning algorithms have previously been used 

to determine the size cutoff for the IA population based 
on morphological and hemodynamic features [20]. To the 
best of our knowledge, this study is the first to analyze 
clinical factors using an unsupervised machine learn-
ing algorithm to successfully group patients with SMIAs 
according to their risk of SAH.

The phenogroups derived from cluster analysis dem-
onstrated varying levels of risk for SAH, ranging from 
low (cluster 3) to high (cluster 1). Cluster 1 was associ-
ated with the highest rate of SAH. All patients in cluster 
1 had a family history of IA, which is recognized as an 
important risk factor for aneurysm formation, change, 
and rupture (according to the updated guidelines of the 
American Heart Association and American Stroke Asso-
ciation) [23]. Cluster 2 was associated with a moderate 
risk of SAH (cluster 2); patients in this groups showed the 
highest levels of current and former smoking [24], previ-
ous history of SAH [10], hypertension [25], and alcohol 
consumption [26]. Moreover, cluster 2 had more patients 
with three or more vascular risk factors, suggesting that 
a high vascular burden may be an important and novel 
indicator for evaluating the risk of aneurysm rupture 
[15]. These results showed that patients with MIAs who 
have a family history of IA or/and a higher vascular bur-
den should be managed with more caution in the clinical 

Table 2 Univariate analysis between the unruptured and ruptured groups in the training and test groups

SAH Subarachnoid hemorrhage, AR Aspect ratio, BPR Branching-to-parent ratio, NPR Neck-to-parent ratio, PC Posterior circulation

Training group (n = 1010) Test group (n = 417)

Unruptured Ruptured P‑value Unruptured Ruptured P‑value

N (%) 894(88.5) 116(11.5) 368(88.2) 49 (11.8)

Cluster groups (%)  < 0.001  < 0.001

 Cluster 1 51(5.7) 33(28.4) 24(6.5%) 14(28.6)

 Cluster 2 159(17.8) 32(27.6) 50(13.6) 12(24.5)

 Cluster 3 684(76.5) 51(44.0) 294(79.9) 23(46.9)

Aneurysm‑level characteristics
Size (mean ± SD) 3.9 ± 1.3 4.7 ± 1.3  < 0.001 4.0 ± 1.4 4.9 ± 1.3  < 0.001

Size Group (%) 0.012 0.006

  < 3 291(27.3) 14(13.5) 96(26.1) 4(8.2)

 3–7 573(53.7) 65(62.5) 272(73.9) 45(91.8)

Neck (mean ± SD) 3.2 ± 1.1 3.5 ± 1.1 0.004 3.3 ± 1.1 3.5 ± 1.2 0.012

AR (mean ± SD) 1.1 ± 0.4 1.3 ± 0.5  < 0.001 1.1 ± 0.4 1.4 ± 0.5  < 0.001

BPR (mean ± SD) 1.1 ± 0.3 1.0 ± 0.4 0.001 1.1 ± 0.3 1.0 ± 0.4 0.023

NPR (mean ± SD) 1.0 ± 0.4 1.1 ± 0.5 0.002 1.0 ± 0.4 1.1 ± 0.4 0.055

SR (mean ± SD) 1.0 ± 0.5 1.4 ± 0.6  < 0.001 1.1 ± 0.5 1.5 ± 0.6 0.004

Location of PC (%) 66(7.4) 13(11.2) 0.149 29(7.9) 7(14.3) 0.134

Irregular shape (%) 259(29.0) 43(37.1) 0.073 89(24.2) 25(51.0)  < 0.001

Bifurcation aneurysm (%) 190(21.3) 37(31.9) 0.010 84(22.8) 17(34.0) 0.083

Inflow angle (mean ± SD) 95 ± 33 103 ± 32 0.008 98 ± 35 110 ± 35 0.022

Outflow angle (mean ± SD) 101 ± 30 103 ± 29 0.612 99 ± 32 102 ± 34 0.538

Main branching angle (mean ± SD) 139 ± 33 134 ± 33 0.086 137 ± 34 131 ± 37 0.239
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setting. MIAs and a family history of IA could be related 
due to underlying genetics or common environmen-
tal exposure/lifestyle, and few studies have investigated 
whether these parameters could be common risk factors 
for SHA.

The phenogroups facilitated our assessment of the risk 
of aneurysm rupture. As expected, when multivariate 

analyses were performed using the phenogroups as a 
dummy variable, all three machine learning models con-
sistently showed that phenogroups were significantly 
associated with the rupture risk of individual SMIAs. 
The cluster with the highest risk of SHA had the highest 
OR in the logistics model, followed by the clusters with 
medium (cluster 2) and low (cluster 3) risk. Moreover, the 

Fig. 4 Performance of the logistics, ridge, and lasso regression models combining the cluster variable and aneurysm-level factors in the training 
(A) and test groups (B). A comparison of the importance of determinants for rupture discrimination (C). A comparison of logistic models based on 
morphological factors with/without clusters (D). BPR, branching-to-parent ratio; AR, aspect ratio; Bif, bifurcation location; NPR, neck-to-parent ratio; 
PC, posterior circulation; SR, size ratio
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clusters were the most important determinant of aneu-
rysm rupture, followed by BPR, AR, bifurcation, and 
size (Fig. 4C). We found that the addition of the cluster 
variable to the model greatly improved its discrimination 
ability, leading to the reclassification of individual SMIAs 
(Fig.  4D). Our study proves that an unsupervised clus-
tering method that segregates patients into distinct phe-
nogroups with distinct risks of aneurysm rupture may 
present a novel tool for risk assessment among patients 
with SMIAs. The clinical applications of cluster-based 
approaches may also be enhanced by incorporating a 
broader range of data, including the findings on high-res-
olution magnetic resonance imaging and hemodynamic 
measurements. Nevertheless, these hypotheses need to 
be tested in future studies.

In a previous study, aneurysm size was ranked as the 
most important risk factor for aneurysm rupture [5]. 
Moreover, larger aneurysms are widely accepted to be 
more dangerous than smaller ones. A systematic review 
of the growth and rupture risk of ≤ 7  mm IAs con-
cluded that 12 out of 13 studies reported a rupture rate 
of < 1%, whereas 1 reported a rupture rate of 3.10% [27]. 
The recently updated guidelines of the American Heart 
Association and American Stroke Association [23] for 
managing unruptured IAs do not include specific recom-
mendations for treating aneurysms ≤ 7  mm. However, 
there is a controversy regarding recommendations for 
patients with MIAs, as ruptured MIAs are often small 
in size [27, 28]. In our study, 25.0% (165/660) of patients 
with SMIAs sized ≤ 7  mm experienced aneurysm rup-
ture, which is consistent with the findings of previous 
studies [27, 28]. The final lasso and ridge models found 
that in multiple aneurysms sized ≤ 7  mm, size was also 
an important independent risk factor aneurysm. Further 
analysis revealed that the size cutoff determined by the 
Youden Index for evaluating a higher risk of aneurysm 

rupture was 4.6 mm. This finding was similar to that of 
the Small Unruptured Intracranial Aneurysm Verifica-
tion Study, which suggested that MIAs sized ≥ 4  mm 
should be considered for treatment in order to prevent 
future aneurysmal rupture [28].

Aneurysm rupture is significantly associated with vari-
ous risk factors, including bifurcation aneurysm [27, 29, 
30] and AR [31, 32]. In this study, we used two novel 
morphological parameters in our analyses: BPR and NPR. 
Multivariate analysis showed that a smaller BPR was 
associated with a greater risk of aneurysm rupture. This 
may be due to the smaller diameter of the distal branch 
vessel, which renders it more susceptible to large blood 
flow velocity, thereby increasing the risk of rupture [33, 
34]. Although wide-necked aneurysms have been defined 
as those with a neck width of > 4 mm, this criterion may 
be too absolute [35]. Blood flow through aneurysms of 
different-sized parent arteries may be different, even 
when the aneurysms have similar neck widths [35]. NPR, 
also known as the “neck ratio,” is a novel index defined 
as the ratio of the neck width of a clinical aneurysm to 
the diameter of the parent artery. NPR is associated with 
the incomplete occlusion of flow diverter-treated side-
wall aneurysms [36, 37], and we found that a larger NPR 
was associated with a greater risk of aneurysmal rupture. 
This may be because a larger neck width entails greater 
blood flow, leading to greater shear stress on the vessel 
wall [38].

The final model did not reveal any significant asso-
ciations between size ratio, posterior circulation aneu-
rysm, irregular shape, in/outflow angle, branching angle, 
and aneurysm rupture. Nevertheless, our findings do 
not diminish the importance of these predictive factors 
for MIA rupture. Instead, we suggest that these are not 
significantly associated with aneurysmal rupture after 
adjusting for the other predictors included in our models. 
In fact, size ratio and posterior circulation were included 
in the lasso model for discriminating the risk of rupture 
(Fig. 4C).

Limitations
This study has some limitations. First, the aneurysms 
in this study were selected from a multi-center cross-
sectional database; therefore, the generalizability of our 
proposed model may not be absolute. Further, we can-
not address whether this model can predict impending 
rupture in unruptured IAs. Second, we lack data on 
other potentially relevant characteristics such as genet-
ics, blood pressure, hemodynamic parameters, and 
vascular wall enhancement (as visualized on magnetic 
resonance imaging). It is plausible that these factors 
may lead to phenotypic clustering patterns that are dis-
tinct from those observed in our study. Finally, we did 

Table 3 Multivariate analysis of the characteristics of 1427 small 
(< 7 mm) intracranial aneurysms in 660 patients

OR Odds ratio, BPR Branching-to-parent ratio, AR Aspect ratio, NPR Neck-to-
parent ratio, VIF Variance inflation factor

OR 95% CI P‑value VIF

Bifurcation location 2.010 1.190–3.394 0.009 1.217

BPR 0.335 0.162–0.693 0.003 1.283

Size 1.326 1.111–1.583 0.002 1.388

AR 2.282 1.409–3.696 0.001 1.371

NPR 1.696 1.027–2.800 0.039 1.517

Clusters

 Cluster 3 Reference Reference Reference

 Cluster 1 7.391 4.074–13.150  < 0.001 1.860

 Cluster 2 3.014 1.827–4.970  < 0.001 1.891
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not include small aneurysms in patients with multiple 
aneurysms > 7  mm, which may cause a selection bias. 
These patients were excluded under the assumption 
that the risk of SAH would be affected by the presence 
of a larger aneurysm. Further prospective cohort stud-
ies must be conducted to address this issue.

Conclusions
In conclusion, we used an unsupervised clustering algo-
rithm to analyze the clinical data of a large cohort of 
patients with SMIAs (< 7 mm). Based on the results, we 
identified three specific groups with significantly differ-
ent risks of SAH. Our findings suggest that the cluster 
variable can be a critical independent risk factor for 
individual aneurysm rupture, and this result was rep-
licated in the validation group. Our machine learning 
models combine cluster analysis with individual mor-
phological factors and show very good discrimination 
ability for the risk of rupture of individual SMIAs.
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