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Abstract 

Introduction Platelets are the primary peripheral reserve of amyloid precursor protein (APP), providing more than 
90% of blood amyloid-beta (Aβ). Some oxidative stress markers and neurotransmitter markers were also differentially 
expressed in the peripheral platelets of AD. Therefore, the present study explored the differences in platelet-associ-
ated biomarkers between AD and healthy controls using meta-analysis and systematic review to reveal the value of 
platelet in the pathogenesis and development of AD.

Methods We searched all the related studies that probed into the platelets in AD based on PubMed, Embase, and 
web of science databases from the establishment to November 04, 2021.

Results Eighty-eight studies were included in the meta-analysis, and the platelets data of 702 AD and 710 controls 
were analyzed. The results of standardized mean difference (SMD) showed that platelets in AD had lower levels of APP 
ratio (SMD: -1.89; p < 0.05), ADAM10 (SMD: -1.16; p < 0.05), Na + -K + -ATPase (SMD: -7.23; p < 0.05), but higher levels 
of HMW/LMW tau (SMD: 0.92; p < 0.05), adenosine  A2 receptor (SMD: 4.27; p < 0.05), MAO-B (SMD: 1.73; p < 0.05), NO 
(SMD: 4.25; p < 0.05) and  ONOO− (SMD: 7.33; p < 0.05). In the systematic review, some other platelet markers seem to 
be meaningful in AD patients.

Conclusion The results of the present meta-analysis and systematic review demonstrated that the alterations of APP 
metabolic enzymes, oxidative stress markers, and neurotransmitter factors in platelets were similar to their changes in 
the central nervous system of AD, suggesting that platelet could be a good source of peripheral biomarkers and may 
play an important role in the pathophysiological development of AD.

Keywords Alzheimer’s disease, Platelets, Meta-analysis, Systematic review

Introduction
Alzheimer’s disease (AD) is an age-related progressive 
neurodegenerative disorder, leading to the progres-
sive cognitive deterioration [1]. AD is the most com-
mon dementia, accounting for 60% to 70% of dementia. 
Alzheimer’s Disease International (ADI) estimates that 
more than 50 million people worldwide are living with 
dementia, which will increase to 152 million by 2050. 
With the rapid aging of the global population, AD has 
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become a major social problem, costing the world an 
estimated $1 trillion a year and placing a crushing bur-
den on patients and their caregivers [2]. However, there 
is no effective treatment and no clear therapeutic tar-
gets in AD. Therefore, it is very important to clarify 
the pathophysiology of AD and explore more effective 
biomarkers.

The pathological features of AD are insoluble paren-
chymal deposits of amyloid-beta (Aβ) and tau tangle. 
Aβ42 is the main component of senile plaques in the 
brain of AD patients. The Aβ is a highly hydrophobic 
peptide of 39–43 amino acids, released by the proteolytic 
cleavage of amyloid-β precursor protein (APP) [3], which 
is hydrolyzed to Aβ via the amyloidosis pathway with a 
continuous enzymatic action of β- and γ- secretase [3]. 
APP is cleaved by α- and γ- secretase to prevent Aβ for-
mation in the non-amyloidosis pathway. Beta-site APP-
cleaving enzyme 1 (BACE1) has been reported to have 
β-secretase activity. A-disintegrin and metalloprotease 10 
(ADAM10) is associated with α-secretase activity. Prese-
nilin-1 (PSEN-1) is composed of one of the four proteins 
of the γ-secretase complex. Studies have shown that both 
central and peripheral biomarkers of APP metabolism 
could provide important insights into the neurobiology 
of AD [4], some of which have diagnostic significance [5].

APP is a ubiquitous protein that is expressed in vari-
ous cells, including platelets, white blood cells, and so 
on. Human platelets are the largest source of circulating 
APP, and the blood APP cleavage pathway is close to the 
amyloidosis and non-amyloidosis pathway in the central 
nervous system (CNS) [6]. Platelets contain the cellular 
mechanisms necessary for APP processing, and platelets 
are the preferential activation of amyloid workarounds in 
AD patients [4]. Full-length and processed APP exists in 
human platelets and has been shown to contain BACE-
1and release Aβ [4]. More recently, Tang et  al. found 
increased levels of Aβ, increased immunoreactivity of 
BACE1, and decreased immunoreactivity of ADAM10 in 
platelets of AD, indicating that the amyloidogenic path-
way of the APP metabolism is activated in platelets of AD 
patients, paralleling the intracerebral APP processing in 
AD [4]. However, Bermejo-Besco et  al. found a reduc-
tion of APP levels and augmented levels of ADAM10 in 
AD patients [7]. Zainaghi et  al. showed that changes in 
platelet APP fragments were associated with membrane 
fluidity and cognitive decline [6]. Zubenko et  al. found 
that relatives of AD patients with increased platelet 
membrane fluidity developed dementia significantly ear-
lier than those with normal platelet membrane fluidity 
[8]. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-
hexatriene (DPH) in platelet membranes was found to be 
significantly reduced in AD patients [8], but other studies 
found the opposite result [9].

Oxidative stress (OS) is a state of imbalance between 
free radical production and free radical degradation 
by the antioxidant system, and OS is considered to be 
a key factor in the pathogenesis of AD and mild cogni-
tive impairment (MCI) [10]. OS and Aβ production are 
proportionally related; Aβ could induce oxidative stress 
in vivo and in vitro, while OS could increase Aβ produc-
tion through proteolytic APP. Butterfield et  al. experi-
mentally verified that Aβ-associated free radical damage 
is a fundamental process of AD [10]. Studies also found 
that OS in platelets increased with aging, and was more 
prominent in AD patients [11]. Some studies found 
that NO production in platelets of AD was significantly 
increased [9], but the results were not consistent [12].

Although the neurobiological background of AD is 
characterized primarily by the accumulation of amyloid 
plaques and tangles in the brain, changes in other neu-
rotransmitter systems are also contributing to cognitive 
deficits and behavioral disorders in AD patients [13]. 
Some intracellular signaling pathways important for 
platelet activation were also being described as regulat-
ing APP processing, including the synthesis and release 
of neurotransmitters (serotonin, glutamate, dopamine, 
etc.) [14]. Genetic studies suggest the role of serotonin 
(5-hydroxytryptamine, 5-HT) 2A and 5-HT 2C recep-
tor polymorphisms in developing AD behavior and psy-
chological symptoms. Platelets are considered to be an 
easily available peripheral model for studying the presyn-
aptic (5-HT reuptake, monoamine oxidase B/MAO-B/ 
activity) and postsynaptic (5-HT 2A receptor binding) 
processes in central 5-hydroxyaminergic neurons [15]. 
However, current findings on platelet 5-HT concentra-
tion and platelet MAO-B activity in AD patients are 
inconsistent.

The abnormalities in APP metabolism, APP secretases, 
OS, and other intracellular signaling pathway biomark-
ers have been demonstrated in platelets of AD, but the 
results were conflicting. In the present study, we analyzed 
the differences of platelet-associated metabolic markers 
between AD patients and normal controls through meta-
analysis and systematic review, exploring the related roles 
of platelets in the development and pathogenesis of AD.

Methods
Search strategy and selection criteria
The two investigators conducted systematic docu-
ment retrieval. Original studies reporting measures of 
platelet-associated markers in peripheral blood were 
searched through PubMed, Embase, and Web of Sci-
ence from the establishment to November 04, 2021. 
Mesh terms and topic terms were used as the search-
ing term, including "platelet" and "Alzheimer s disease", 
"Alzheimer Dementia", "Senile Dementia", "Alzheimer 
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Type Dementia", "Alzheimer Sclerosis", "Presenile 
Dementia." (supplementary material 1) Any disagree-
ments among investigators were resolved through 
negotiation and arbitration. To avoid missing literature, 
we also looked through the references of all the relevant 
articles.

English-language or Chinese-language publications 
reporting concentrations of platelet-associated mark-
ers in living human beings were included if they met 
the following criteria: (1) original studies reported data 
in at least two of the groups (AD and control); (2) the 
principles that these studies used to diagnose AD were 
qualified; (3)literature sources and necessary data were 
available and all included articles reported the platelet-
associated markers data of the control group and AD 
patients, with mean value with standard derivation 
(SD); (4) The control group had normal cognitive func-
tion, no history of neurological disease; and (5) The 
included studies were Cohort or case–control studies 
(only initial data was extracted from the cohort study 
data).

The exclusion criteria were demonstrated as follows: 
(1) letters, editorials, summaries, conference abstracts, 
case reports, or publications without sufficient informa-
tion; (2) unable to extract valid outcome data from the 
literature; and (3) articles were excluded if they measured 
marker concentrations in postmortem samples, and had 
sample size less than 5, or used the samples that over-
lapped with other studies.

Data extraction and quality evaluation
Two participants (Fu and Huang) extracted data sepa-
rately and a third (Bao) investigator verified the data 
abstracted by the two authors to avoid mistakes and bias. 
The following data were extracted from each included 
study: author’s name, publication year, country, sample 
size, age and gender distribution, diagnostic criteria for 
AD, and platelet-associated markers data. We use End-
note X9 for literature selection and collation. In addition 
to using the duplicate function of the document manage-
ment software, we carried out manual verification. In the 
case of missing data, we used get-data software to extract 
the relevant data of the article chart, or contacted the 
corresponding author asking for the relevant data. Qual-
ity assessments of all potentially eligible studies were con-
ducted using the Newcastle- Ottawa Scale (NOS) [16]. 
The evaluation item consists of 3 parts (selection, com-
parability, exposure or outcome) with a maximum score 
of 9. Studies with NOS scores lower than five were recog-
nized to be of inferior quality and therefore excluded. The 
systematic review assessed platelet markers measured in 
less than three studies qualitatively.

Statistical analysis
Standardized mean difference (SMD) with 95% CI 
was used to compare the platelet-associated markers 
between AD patients and healthy controls. When the 
forest map effect box (95%CI of SMD) did not cross the 
0 limits, the effect value was statistically significant (test 
for overall effect P < 0.05). Heterogeneity analysis was 
assessed by using the Cochrane Q test and  I2 statistic. 
 I2 > 50% or P < 0.1 represented substantial heterogene-
ity and random-effects model was chosen. To assess 
each study’s influence on the pooled estimate, sensitiv-
ity analysis was applied by removing each study by turns, 
and meta-regression was used to explore the causes of 
heterogeneity. Egger’s tests estimated publication bias. 
Probability value P value < 0.05 was considered to be sta-
tistically significant. All statistical analysis of this meta-
analysis was performed using Stata version 15.0 software 
(supplementary material 2).

Results
Literature search findings
The initial literature search generated altogether 1194 
records (Fig. 1). A total of 88 studies, including 3 Cohort 
studies and 85 Case–control studies, were ultimately 
included, and these studies included 1189 subjects with 
AD and 1214 controls. Among these studies (69 stud-
ies), 20 markers, including 662 subjects with AD and 
680 controls, were quantitatively analyzed in the meta-
analysis and baseline characteristics were shown on 
supplementary material 3, while among them (22 stud-
ies), 24 markers were reviewed systematically because 
there were less than three studies for each marker 
(supplementary material 4). Quality assessments of the 
studies were detailed in supplementary material 5. Indi-
vidual marker performances and heterogeneity analyses 
were shown in supplementary material 6.

Comparisons between AD and platelet‑associated marker 
levels
The SMD results showed that patients with AD had lower 
levels of APP ratio (SMD: -1.89; 95% CI -2.28 to -1.49, 
p < 0.05), ADAM10/actin (SMD: -3.13; 95% CI -4.86 to 
-1.40, p < 0.05), ADAM10 (SMD: -1.16; 95% CI -2.13 to 
-0.18, p < 0.05), and  Na+-K+ -ATPase (SMD: -7.23; 95% CI 
-8.77 to -5.68, p < 0.05), but higher levels of high molecu-
lar weight (HMW) / low molecular weight (LMW) tau 
(SMD: 0.92; 95% CI 0.58 to 1.25, p < 0.05), adenosine 
 A2 receptor (SMD: 4.27; 95% CI 1.29 to 7.25, p < 0.05), 
MAO-B (SMD: 1.73; 95% CI 0.73 to 2.72, p < 0.05), NO 
production (SMD: 4.25; 95% CI 0.32 to 8.17, p < 0.05) and 
 ONOO− production (SMD: 7.33; 95% CI 6.57 to 8.39, 
p < 0.05) (Fig. 2). There were no significant differences in 
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the levels of BACE-1, PSEN-1, 5-HT,  Ca2+, Phospholi-
pase  A2  (PLA2), DPH and I-[4-(trimethylamino) phenyl]-
6-phenyl-1,3,5, hexatriene (TMA-DPH), between AD 
patients and control subjects (Fig. 2).

Investigation of heterogeneity
High heterogeneity was found in most comparisons 
(supplementary material 6). Sensitivity analyses indi-
cated that the removal of any study had no significant 
effect on the results of the meta-analysis result (sup-
plementary material 7). Significant publication bias 
was not found in most studies, as demonstrated by the 
funnel plots and confirmed by the Egger’s tests (supple-
mentary materials 7), but publication bias was detected 
in studies focusing on APP ratio (Egger’s intercept 
-3.67, p = 0.001), ADAM10/actin (Egger’s intercept 
-3.53, p = 0.010), and MAO-B (Egger’s intercept 2.58, 
p = 0.025) (supplementary material 7). The heterogene-
ity of the markers with publication bias was detected 

by the shear and complement method (supplementary 
material 7).

Systematic review
Due to the limited number of related studies on some 
peripheral platelet-related markers, systematic reviews 
were conducted (supplementary material 2). The results 
of systemic review showed that the levels of platelet 
immunoglobulin, APP-N, BACE (36 kDa/BACE 57 kDa), 
matrix metalloproteinases-9 (MMP-9), MMP-2, platelet 
membrane fatty acids, phospholipase C (PLC), phenol-
sulphotransferase (PST), plasma-derived growth factor 
(PDGF), C-type lectin-like receptor 2(CLEC2), extra-
cellular vesicles (EVs), glycogen synthase kinase 3-beta 
(GSK3β) ratios were significantly different between AD 
patients and controls (Fig.  3), but further studies were 
needed to verify the alterations of these markers in AD 
patients.

Fig. 1 Literature screening flow chart
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Discussion
The APP Processing System
A meta-analysis in 2017 found that the APP ratio in 
peripheral platelets of AD patients was significantly lower 
than that in controls [17]. Our meta-analysis updated rel-
evant data in recent years, and we also found decreased 

APP ratio in AD patients’ platelets [17]. APP is the pre-
cursor of Aβ protein and is highly expressed in the brain 
and platelets. Aβ protein secreted by platelets has been 
reported to contain a small number of intact 140–150-
KD APPs and a large number of carboxy-truncated 120–
130-KD and 110-KD APPs. These carboxy-truncated 

Fig. 2 SMD (95%Confidence Interval) of platelet-associated markers for meta-analysis. The bar chart represents the number of articles for 
meta-analysis

Fig. 3 SMD (95%Confidence Interval) of platelet-associated markers for systematic review. The bar chart represents the number of articles for 
systematic review. Platelet membrane drug receptor: different drugs act on platelet membrane 5-HT receptor (Although there have been more 
than three studies on this marker, the results are classified as a systematic review because different drugs act on this receptor)
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APPs may undergo further cleavage before the activated 
platelets are released into granules [18]. Platelet-released 
APP forms may have growth factor-related functions. 
90-KD APP has been shown to promote the growth of 
cultured fibroblasts and neurons. However, it is more 
likely that APP containing the serine protease inhibitor 
form may be released by platelets and the platelet APP 
also participate in the clotting cascade by inhibiting acti-
vated clotting pathway enzymes. Studies have found that 
platelet APP ratio decreased gradually with the progres-
sion of the disease, suggesting that this peripheral param-
eter changed in the early stage of AD, and platelet APP 
ratio also significantly altered with the clinical status pro-
gressed [18]. In addition, some studies conducted diag-
nostic studies on peripheral platelet APP ratio found that 
its accuracy could reach 90.5% and its sensitivity could 
reach 80% [19]. Therefore, the platelet APP isoform ratios 
could be used as a periphery biomarker in diagnosing 
and developing AD.

Currently, results on platelet APP secretase in AD 
patients are controversial, and there is no relevant meta-
analysis. Our meta-analysis found that ADAM10 level in 
peripheral platelets was significantly lower in AD patients 
than in healthy controls, consistent with the findings in 
the CNS [20]. ADAM10 is a type I membrane glycopro-
tein of 748 amino acids, responsible for the exfoliation 
of extracellular domains and regulating the hydrolysis of 
multiple proteins in the membrane. ADAM10 synaptic 
localization and activity decreased in AD patients, lead-
ing to an increase in Aβ level and damaging the plasticity 
of synaptic structures. Some studies have found that the 
decrease of ADAM10 platelet expression level is related 
to the disease stage of AD. Other study also found that 
the level of ADAM10 in platelets in AD patients was 
significantly lower than that in healthy controls, and 
decreased significantly with the increase of disease sever-
ity in AD patients [21]. Therefore, platelet ADAM10 is an 
applicable peripheral biomarker that can reflect the path-
ological changes and disease severity of AD.

Our analysis found that platelet BACE1 was higher in 
AD patients than in healthy controls, but the increase 
was insignificant (P = 0.059). Besides, in the systematic 
review we found that the platelet BACE isoform ratio 
(36KDa/57KDa) appeared to differ between AD patients 
and controls. BACE1 is an enzyme having β-secretase 
activity, and β-secretase activity was found to be signifi-
cantly increased in platelets of AD patients and corre-
lated with the MMSE score [22]. A study of platelet APP 
in AD showed a significant increase in cell-associated 
APP fragments after β-secretase cleavage [23]. Catalysis 
by APP pyrolysis to produce Aβ N- terminus was origi-
nally referred to as β-secretase activity and is a rate-lim-
iting step in Aβ production. Several postmortem brain 

studies have found increased levels of β -secretase activ-
ity in BACE protein and up-regulation of BACE mRNA 
in brain regions associated with AD [24]. Therefore, more 
studies are needed to verify the alteration of BACE-1 and 
BACE isoform ratio in peripheral platelet of AD patients, 
and the association with the central pathological changes.

Our meta-analysis found no significant difference in 
platelet PSEN-1 level between AD patients and healthy 
controls; this finding was different from previous study 
[25]. The PSEN protein encoded by PSEN-1 and PSEN-2 
genes is an important component of γ-secretase [26]. 
Mutations in PSEN-1 gene mutation result in conforma-
tional changes, which further affect γ -secretase activ-
ity and increase the production of Aβ42 [26]. However, 
there is no consistent finding in the PSEN-1 level in the 
CNS of AD patients. This inconsistency may be caused 
by the fact that PSEN-1 is involved in both amyloidosis 
and non-amyloidosis pathways of APP, and less is known 
about other pathophysiological functions of this protein. 
Therefore, the role of platelet PSEN-1 in APP metabolism 
in AD patients still needs to be further explored. Besides, 
some studies analyzed the value of combined utilization 
of the platelet APP ratio and APP secretase (ADAM10
、BACE1 and PSEN-1) in AD, and found that the com-
bination has a sensitivity of 88.9%, providing its potential 
application value in AD diagnosis and screening [27].

In addition to the significant findings in Aβ protein 
pathway, we also found that, in AD patient the ratio of 
HMW to LMW Tau in the peripheral platelet was sig-
nificantly higher than that in healthy controls, with low 
heterogeneity and bias. Hyperphosphorylation of Tau 
protein leads to microtubule separation and entangle-
ment aggregation, which is one of the neuropathological 
hallmarks of AD. Tau protein is also present in peripheral 
platelet. HMW human tau variants have been described 
mainly in the peripheral nervous system and neural 
crista-derived cell lines, and it may be related to the 
aggregation of tau near 60KD. The aggregation of such 
polymers may be related to the pathophysiology of the 
AD in the central nervous system and peripheral blood 
cells [28]. Besides, the high HMW/ LMW Tau ratio was 
correlated with the severity of cognitive impairment [29]. 
The Tau protein ratio in platelets could reflect the central 
pathology of AD, and has a certain value in AD diagnosis 
(sensitivity 71.43%, specificity 69.23%) [30].

Oxidative stress system
Except for the APP Processing System, oxidative stress 
is also important pathogenesis of AD. Our meta-analysis 
found that the levels of NO and ONOO- production in 
platelets of AD patients were higher than those in the 
healthy control group, suggesting the involvement of 
oxidative stress in platelets of AD patients. During the 
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chronic progression of AD, NO overexpression may 
lead to neurodegenerative disease through protein nitra-
tion induced by reactive peroxynitrite [9]. The complex 
pathology of AD is not limited to the brain. Oxidative 
stress was detected in platelets during normal aging, 
and it was even more intense in AD [31]. We found that 
platelet levels of NO and  ONOO− production were sig-
nificantly elevated in AD patients, which may be good 
biomarkers for peripheral oxidative stress in AD patients. 
It was noticed that three of the four studies included in 
analyzing NO and  ONOO− production came from the 
same laboratory, while the inconsistent findings reported 
by the fourth study was from a different laboratory. 
Therefore, race and laboratory bias should be consid-
ered when explaining the NO and  ONOO− production 
in AD. In addition, Na + /K + -ATPase activity in the 
platelet membrane was found to be significantly reduced 
in platelets in AD patients, compared to control indi-
viduals. Na + /K + -ATPase is an important part of ion 
homeostasis. Because ATPase is rich in sulfhydryl (SH), 
its sulfhydryl group may be the target of free radical OS 
induction [32]. Studies found that  ONOO− can inhibit 
Na + /K + -ATPase activity of cell membrane [32]. The 
reduction of Na + /K + -ATPase activity in platelets of 
AD patients indicates the connection between ion chan-
nel and oxidative stress in platelets, and their contribu-
tions to the pathophysiological process related to AD.

However, our meta-analysis found that  Ca2+ accu-
mulation was not significant different in platelets of AD 
patients. Oxidative stress leads to induced cellular dys-
function, resulting in calcium ion accumulation and 
neuronal death [33]. Although some studies have found 
increased  Ca2+ concentration in platelet APP, the altera-
tion of  Ca2+ influx through membrane calcium channel 
and the change of  Ca2+ release from internal stores is 
complex; more studies are required to verify the role of 
platelet calcium concentration in pathological condition 
of AD.

Other metabolic systems
This study also analyzed other neurotransmitter systems 
and found that platelet MAO-B levels were significantly 
higher in AD than in controls. Activated MAO induces 
deposition of Aβ through abnormal cleavage of APP. In 
addition, activated MAO contributes to the formation of 
neurofibrillary tangles, the loss of neural cells, and cogni-
tive impairment [34]. Increased MAO-B activity in aging 
brains leads to increased oxidative stress [35]. Platelets 
serve as a good peripheral model for AD, and we found 
significant differences in platelet MAO-B levels between 
AD patients and controls, consistent with changes in the 
CNS. Although some neurotransmitters (e.g. cholinester-
ase, 5-HT) were found to be affected by MAO activation 

after cognitive impairment [35], our results found no sig-
nificant difference in platelet 5-HT between AD patients 
and controls. This may be due to the very slow oxidation 
of 5-HT by MAO-B in the periphery platelets; MAO-B 
was found to be poor in oxidizing serotonin in platelets 
[36]. These results suggest that the MAO-B metabolic 
pathway plays a certain role in both central and periph-
eral system of AD.

The meta-analysis found that peripheral platelet  A2A 
adenosine receptor expression was significantly higher 
in AD patients than in controls, consistent with brain 
tissue changes. Adenosine is an important endogenous 
neuromodulator that affects a variety of neurodegenera-
tive diseases by interacting with four G-protein-coupled 
receptors  A1,  A2A,  A2B and  A3 [37].  A2A adenosine recep-
tor antagonists have neuroprotective effects in neurode-
generative diseases [37]. Injury of  A2A adenosine receptor 
prevents Aβ -induced synaptic toxicity and cognitive 
deficits in different animal models [38]. Therefore, the 
increased platelet  A2A adenosine receptor expression, 
may play a role in the pathological processes of AD, and 
could be used as a potential therapeutic target. In addi-
tion, our systematic analysis also found that some bio-
markers that may be meaningful in platelets in AD, 
including GSK3β, CLEC2, EVs, PST, PDGF, PLC, mem-
brane lipoprotein, MMPs, APP-N, APP-C, immunoglob-
ulin. GSK-3 is a proline-oriented serine/threonine kinase 
that was first identified due to its role in the regulation 
of glycogen metabolism. GSK3 has been found to play 
an important role in AD through a variety of pathways. 
GSK3β can modify APP and tau proteins [39]. Forlen-
za’s study found reduced rates of P-GSK3β in periph-
eral plaques of AD patients, consistent with the findings 
in CNS. However, there are only a few relevant studies 
on these related markers in platelets, more studies are 
needed to verify the role of these markers in AD.

Limitations
Although this study is the first comprehensive and sys-
tematic review of previous studies on platelet-associated 
markers in patients with AD, noticeable heterogene-
ity exists, and the present meta-analysis still has some 
limitations. First, since the severity of disease in the AD 
group included in the meta-analysis was different, and 
most studies did not provide disease severity data, the 
impact of disease severity on platelet-associated mark-
ers in AD patients is unknown. Second, some of stud-
ies were published before the year 2000, and many were 
not shown in the form of the mean (standard deviation). 
Although we tried to contact the authors, relevant results 
were still not obtained. In addition, grey literature was 
not searched in this study. Thirdly, different experimen-
tal methods and conditions of different studies may cause 
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some heterogeneity. Fourthly, some markers were posi-
tive in individual studies but negative in aggregate analy-
ses. The first reason is that the number of studies is not 
enough, and the objectives, perspectives and contents of 
the studies are not enough. Due to incomplete informa-
tion in the included studies, the potential mechanism 
of these platelet-associated markers and their potential 
correlation with other clinical regulatory factors (such 
as race, medication status, course of disease, APOE 
gene carrying and mental health level) cannot be further 
studied.

Conclusions
In this meta-analysis, compared with the control group, 
APP ratio, ADAM10, ADAM10/actin, Na + -K + -ATPase 
in platelets of AD group significantly decreased; HMW 
tau/LMW tau, adenosine  A2 receptor, MAO-B, NO and 
 ONOO− productions significantly increased; BACE-1, 
PSEN-1, 5-HT,  Ca2+, DPH, TMA-DPH had no signifi-
cant difference. The systematic review found that platelet 
immunoglobulin, APP-N, BACE (36 KD/57KD), MMP-9, 
MMP-2, platelet membrane fatty acids, PLC, PST, PDGF, 
CLEC2, EVs, GSK3β ratios may be biomarkers worthy of 
further attention in the future. The present study indi-
cates that platelet is a good peripheral model to study 
those metabolic mechanisms in CNS of AD patients; 
many platelet markers may be useful in the diagnosis of 
AD, and could be used as potential therapeutic targets.
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