
R E S E A R C H Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Gou et al. BMC Neurology          (2023) 23:142 
https://doi.org/10.1186/s12883-023-03183-w

BMC Neurology

†Chen Gou and Shuangfeng Yang have contributed equally to this 
work and share first authorship.

*Correspondence:
Michael E. Sughrue
sughruevs@gmail.com
Xiaoming Wang
wangnsmc@163.com

1Institute of Neurological Diseases, North Sichuan Medical College, 
Nanchong 637000, China
2Department of Neurology, Affiliated Hospital of North Sichuan Medical 
College, Nanchong 637000, China
3Omniscient Neurotechnology, Sydney, NSW 2000, Australia
4Shenzhen Xijia Medical Technology Company, Shenzhen,  
Guangdong Province 518052, China

Abstract
Background Migraine is a complex disorder characterized by debilitating headaches. Despite its prevalence, its 
pathophysiology remains unknown, with subsequent gaps in diagnosis and treatment. We combined machine 
learning with connectivity analysis and applied a whole-brain network approach to identify potential targets for 
migraine diagnosis and treatment.

Methods Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI(rfMRI), and 
diffusion weighted scans were obtained from 31 patients with migraine, and 17 controls. A recently developed 
machine learning technique, Hollow Tree Super (HoTS) was used to classify subjects into diagnostic groups based on 
functional connectivity (FC) and derive networks and parcels contributing to the model. PageRank centrality analysis 
was also performed on the structural connectome to identify changes in hubness.

Results Our model attained an area under the receiver operating characteristic curve (AUC-ROC) of 0.68, which 
rose to 0.86 following hyperparameter tuning. FC of the language network was most predictive of the model’s 
classification, though patients with migraine also demonstrated differences in the accessory language, visual and 
medial temporal regions. Several analogous regions in the right hemisphere demonstrated changes in PageRank 
centrality, suggesting possible compensation.

Conclusions Although our small sample size demands caution, our preliminary findings demonstrate the utility of 
our method in providing a network-based perspective to diagnosis and treatment of migraine.
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Background
Migraine is a common primary headache disorder 
characterized by attacks of debilitating headaches [1]. 
Although its pathophysiology remains poorly under-
stood, there is a suggested dysfunction of the brain in 
regulating pain and external stimuli, as in other chronic 
pain syndromes [2]. Around one-third of migraine head-
aches are preceded by a visual, auditory, or somatosen-
sory aura, and a majority are associated with nausea, 
vomiting, and sensitivity to light. Currently, diagnostic 
pathological changes have not been identified, and diag-
nosis relies on retrospective patient reports of headache 
characteristics [3]. However, the heterogeneity in individ-
ual patient symptoms, along with a long list of differential 
diagnoses may sometimes complicate accurate diagnosis, 
accounting for ongoing underdiagnosis and undertreat-
ment of this chronic condition [4, 5]. Evidently, further 
research is necessary to elucidate the pathophysiology of 
migraine and develop biomarkers for diagnosis.

The use of neuroimaging may be a potential avenue 
for improving diagnosis. Several studies have relied on 
functional magnetic resonance imaging(fMRI) to identify 
differences between patients with migraine and healthy 
controls (for reviews see: Skorobogatykh et al. [6] and 
Schwedt et al. [7]). Lee et al. using an independent com-
ponents analysis (ICA) of migraine resting-state fMRI 
(rsfMRI) found an independent component that they 
termed the “pain matrix” (based on its labeling within 
Neurosynth) that included: the dorsolateral prefrontal 
cortex (DLPFC), anterior insula, anterior cingulate cor-
tex (ACC), thalamus, precuneus, supramarginal gyrus, 
planum temporale, premotor cortex, and cerebellum [8]. 
While they do not label the network affiliations of these 
regions of the pain matrix, their findings are comparable 
to Coppola et al., who used a similar analytic approach 
and found that portions of the default mode network 
(DMN) and central executive network (CEN) (which 
overlap with Lee’s Pain Matrix) express differential con-
nectivity to healthy controls (HCs) [9]. Research also sug-
gests that functional connectivity (FC) among regions 
along the nociceptive and somatosensory pathways is 
disrupted during the different phases of migraine head-
ache [6, 7, 10–12]. In a series of recent papers, Meylakh 
and colleagues have been utilizing rfMRI to elucidate the 
underlying mechanisms of brain dysfunction in the con-
text of migraine; revealing that brainstem pain areas are 
anomalously regulated (via the descending pain modula-
tory pathway) by higher cortical regions [13–16]. While 
the mechanisms and specifics are still unknown, the lit-
erature is converging on a consensus regarding the net-
work associations with migraine, including the DMN, 
CEN, sensorimotor network (SMN), and limbic system 
[17–20].

Despite these findings, definitive fMRI biomarkers have 
not yet been identified, particularly due to the heteroge-
neity in study methods. There has also been a scarcity 
of studies which integrate fMRI findings into machine 
learning models to develop clinical tools for diagnosis. 
Zhang et al. combined functional and structural MRI to 
distinguish patients with migraine from controls with 
83.67% accuracy [21]. Chong et al. utilized the FC of pre-
defined pain-related regions to discriminate migraine 
sufferers from controls [22]. Their model achieved an 
accuracy of 96.7% in patients with migraine with a longer 
disease duration (> 14 years), and 82.1% in those with a 
shorter disease duration (< 14 years). These findings are 
exciting, however, the existing machine learning attempts 
rely on unspecific anatomical templates, manifesting 
in the use of terms such as DLPFC or ACC. Given each 
of these regions are now known to comprise of several 
smaller regions [23], it is currently difficult to adopt find-
ings as objective biomarkers for intervention. Therefore, 
more rigorous, and sophisticated methods are required 
to examine changes in FC and utilize these in diagnosis 
and treatment.

In the present study, we used FC and graph theory 
analysis with a sophisticated machine learning technique 
on a cohort of patients with migraine and healthy con-
trols. The machine learning classification was coupled 
with a recently described feature importance derivation 
method to identify disturbances in specific brain regions 
and large-scale networks underlying migraine. We hope 
our methodology can provide further insight into the 
pathophysiology of migraine and offer targets to improve 
patient outcomes.

Methods
Patient cohort
Altogether 35 patients with migraine and 20 healthy con-
trols (HCs) from the Department of Neurology of the 
Affiliated Hospital of North Sichuan Medical College 
were recruited from January 2021 to January 2022 for this 
study. Two patients with migraine and three HCs had to 
be excluded due to head movements during fMRI acqui-
sition, and two patients with migraine were excluded due 
to previous imaging data suggesting cerebrovascular mal-
formation. 31 patients with migraine and 17 HCs were 
finally included in the study. The subjects met the criteria 
for episodic with or without aura migraine as classified 
as per the International Classification of Headache Dis-
orders, 3rd edition [24]. HCs had no history of migraine 
or other headaches, no family history of migraine. All 
participants were Chinese, right-handed, and between 18 
and 50 years old. Patients had no migraine 72 h prior to 
the scan and no symptoms of developing one during or 
24  h after the scan. Neither migraineurs nor HCs were 
taking medication, including preventative medication 
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for migraine. Female subjects were not in the menstrual 
phase of their cycle (days 1–7). All subjects underwent a 
general physical and neurological examination. Partici-
pants completed the Hamilton Depression Rating Scale 
(HAMD), Hamilton Anxiety Rating Scale (HAMA), the 
Migraine Specific Quality of Life survey (MSQ), and the 
Visual Analog Scale (VAS),and subsequently underwent 
Diffusion Weighted Imaging (DWI) and rsfMRI.

Exclusion criteria for all subjects included: (i) other pri-
mary headaches or secondary headache; (ii) definite his-
tory of neuropsychiatric diseases or internal disease; (iii) 
drug, alcohol and tobacco addiction; (iv) pregnancy or 
lactation; (v) steroid, psychiatric, and immunosuppres-
sive drug users; (vi) MRI contraindication.

Patients with migraine completed the HAMD, HAMA, 
the MSQ, and the VAS. All participants subsequently 
underwent DWI, and rfMRI. The study received ethics 
committee approval from the Affiliated Hospital of North 
Sichuan Medical College. All participants signed writ-
ten informed consent. The study has been performed in 
accordance with the Declaration of Helsinki.

Image acquisition
All examinations were performed on Signa Excite HD 
3.0 T superconducting MR system (GE, Milwaukee, WI, 
USA) with a 32-channel phased array head coil. During 
MRI scanning, participants were instructed to rest qui-
etly, stay awake and breathe smoothly until the end of the 
examination. The gap between the subject’s head and the 
coil was filled with sponge to minimize head movement.

T1-weighted image scan parameters included: echo 
time (TE) = 3.2 ms, repetition time (TR) = 8.2 ms, flip 
angle = 12°, matrix = 256x256, 1 mm slice thickness. Func-
tional MRI scan parameters: echo-planar imaging (EPI) 
sequence, TR = 2,000 ms, TE = 30 ms, flip angle = 90°, 
field of view is 24 cm×24 cm, matrix = 64 × 64, slice thick-
ness = 4 mm, slices = 33.

Diffusion weighted imaging parameters included: 
20 contiguous slices, slice thickness = 5  mm, 
FOV = 220 × 220  mm, matrix = 128 × 128  mm, TR = 6000 
ms, TE = 114 ms, acquisition NEX = 2 partial Fourier, 64 
diffusion directions with b-value = 1000 s/mm2, and one 
image with no diffusion weighting (b = 0  s/mm2), band-
width = 250 Hz/pixel. Acquisition time was 19.16 min per 
DWI scan.

Diffusion weighted imaging (DWI) preprocessing
The DWI images were processed using the Infinitome 
software [25], which employs standard processing steps 
in the Python language. Initially, the diffusion image was 
resliced to ensure isotropic voxels and motion correction 
was performed using a rigid body registration algorithm 
to a baseline scan. Slices with excess movement, defined 
as DVARS > 2 sigma from the mean slice were eliminated 

[26]. The T1 image was skull stripped using the HD-BET 
software [27], which was inverted and aligned to the DWI 
image using a rigid alignment, and used as a mask to skull 
strip the DWI image. Next, gradient distortion correction 
was performed by applying a diffeomorphic warping reg-
istration method between the DWI and T1 images. The 
fiber response function was then estimated using con-
strained spherical deconvolution and deterministic trac-
tography was performed with uniform seeding, with four 
seeds per voxel. This manifests in about 300,000 stream-
lines per brain.

Structural connectivity based parcellation
Identifying connectivity changes at an anatomical level 
requires an atlasing scheme to parcellate the brain. While 
several schemes are available, many rely on healthy corti-
ces for parcellation. Furthermore, most available atlases 
parcellate a given scan based on the group average of 
these healthy cohorts, neglecting the possible impacts 
of gyral variation or morphological differences brought 
on by pathology. In order to mitigate this, we adopted a 
machine-learning based method to create subject spe-
cific versions of the Human Connectome Project Multi-
modal Parcellation (HCP-MMP1) atlas [23], which has 
been described elsewhere [28]. This method relies on a 
machine learning model which is trained using DWI data 
from 178 healthy controls obtained from the SchizCon-
nect database, processed as above, to learn the structural 
connectivity pattern between voxels included within the 
379 parcels of the HCP-MMP1 atlas. In order to parcel-
late the DWI scans in the current study, the unaltered 
HCP-MMP1 atlas was initially warped onto each brain 
and the trained machine learning model was applied to 
each subject to re-appoint voxels located at the endpoint 
of tractography streamlines to their most likely parcel-
lation based on the structural connectivity vectors. This 
reparcellates the voxels, creating a subject specific ver-
sion of the HCP-MMP1 atlas with 180 cortical parcels 
and 9 subcortical structures per hemisphere, along with 
the brainstem as one parcel.

The network affiliation of each HCP parcels was 
based on the automatic mapping provided by the 
Infinitome software, which itself is based on previous 
meta-analyses exploring each large-scale network. The 
networks included in this template were the core net-
works described by Yeo et al. [29], the CEN, DMN, Dor-
sal Attention Network (DAN), Limbic Network (LN), 
Salience Network (SN), Sensorimotor Network (SMN), 
and the Visual Network (VN), along with several net-
works which are either part of the extended versions of 
the core networks, or additional networks described 
in the literature, including the Accessory Language 
and Language Networks (part of the extended DMN), 
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Auditory System (part of the SMN), Multiple demand 
network, and the Ventral Attention Network (VAN).

Resting-state fMRI pre-processing steps
The rfMRI images were processed using standard pro-
cessing steps including: (1) motion correction on the 
T1 and BOLD images using a rigid body alignment, (2) 
elimination of slices with excess movement (defined as 
DVARS > 2 sigma from the mean slice), (3) skull strip-
ping of the T1 image using a convolutional neural net 
(CNN), which is inverted and aligned to the resting state 
bold image using a rigid alignment, and used as a mask 
to skull strip the rfMRI image, (4) slice timing correction, 
(5) Global intensity normalization, (6) gradient distor-
tion correction using a diffeomorphic warping method 
to register the rfMRI and T1 images, (7) High variance 
confounds are calculated using the CompCor method 
[30]; these confounds as well as motion confounds are 
regressed out of the rfMRI image, and the linear and 
quadratic signals are detrended. Note this method does 
not perform global signal regression, (8) spatial smooth-
ing is performed using a 4 mm full width half maximum 
(FWHM)Gaussian kernel. Functional connectivity analy-
sis was performed in native space. The personalized atlas 
created in previous steps is registered to the T1 image, 
and grey matter atlas regions are aligned with the grey 
matter regions in each subject’s scans. Thus, it is ideally 
positioned for extracting a BOLD time series, averaged 
over all voxels within a region, from all 379 regions. The 
Pearson correlation coefficient is calculated between the 
BOLD signals of each unique area pair (self to self-inclu-
sive), which yields 143,641 correlations.

Machine learning classification and feature extraction 
using the hollow-tree Super (HoTS) method
Machine learning was used to model the diagnostic group 
of each participant based on the pairwise functional cor-
relation between the 379 regions of each individual’s 
brain atlas. A boosted trees approach, the Extreme Gra-
dient Boosting (XGboost) ensemble in Python [31], was 
used to fit the model. This approach provides a superior 
prediction ability than single trees.

In order to identify the features the model relied on 
the most to make its predictions, we utilized a recently 
developed feature extraction technique, Hollow Tree 
Super (HoTS) described elsewhere [32]. Briefly, HoTS 
linearizes decision trees in order to provide directional 
feature importance coefficients. This technique enables 
the extraction of feature importance in cases with a large 
number of features, as in the parcellated human brain, 
and provides the ability to derive a scale to the contribu-
tion of each feature. Consequently, for each model we 
attained a list of FC features, corresponding to pairwise 
HCP parcels, along with an indication of their impact 

on the overall model. The XGboost models were tuned 
by using a system developed by Omniscient Neurotech-
nology. The learning rate, the random seed initialisa-
tion value, the minimum tree depth for prediction were 
tested. The XGboost models were also tuned using a dis-
tribution of models with different performance metrics 
obtained from this process in a relatively short amount 
of time due to parallelisation. Furthermore, the XGboost 
models were also tuned using cross-validation meth-
ods to ensure that the hyperparameters were not being 
optimised just for the given training and test data splits. 
This is a form of overfitting, which was neutralised with 
5-fold cross-validation. Each model was evaluated with 
the mean area under the receiver operating character-
istic curve (AUC-ROC). For each model, we produced 
a network-based plot of the contribution of each large-
scale brain network to the model, along with a SHAP 
plot of the top 20 features contributing to the model. 
The network-based plots were produced by aggregating 
the SHAP contribution values of each brain region to the 
model by their network affiliation [33]. Note that these 
plots therefore do not necessarily reflect intra-network 
connectivity. Each SHAP plot provides a list of features in 
descending order of importance, along with their impact 
on the model along the x-axis. The colour of each point 
indicates whether a high (red), or low (blue) value of that 
feature is associated with the model.

Median absolute deviation outlier detection
In order to find outliers in FC in the migraine group, we 
calculated the median and median absolute deviation 
(MAD) within the FC of healthy controls. We then deter-
mined for each migraine patient whether FC was an out-
lier, based on a threshold MAD of 3 or more. The number 
of anomalies within each network were then counted and 
the mean calculated.

PageRank centrality analysis
In order to investigate changes in centrality and identify 
hubopathy within our sample, we calculated weighted 
PageRank centrality from the tractography adjacency 
matrix of the number of streamlines connecting the 379 
regions. PageRank centrality is a measure of the impor-
tance of a given brain region within a network, based 
on its influence on the topography of information flow 
in the brain. PageRank considers a region with a high 
number of influential connections important, however 
biases against connections which are endpoints [34]. 
Weighted PageRank centrality was calculated using the 
NetworkX module in Python [35]. The raw centralities 
were converted into a rank from 1, signifying the high-
est centrality, to 379, the lowest centrality, for each sub-
ject. The median rank for each region was calculated in 
the healthy cohort and set as the default listing order for 
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parcellations, and this order was compared to the order 
in migraineurs.

Statistical analysis
Nominal demographic data were compared between 
patients with migraine and controls using a Chi-squared 
test, while continuous variables were compared using a 
Mann-Whitney U test. All analyses were performed on R 
version 4.1.0.

Results
Subject demographics
Table  1 highlights the demographic characteristics for 
the entire cohort. The median age was 25 in patients with 
migraine and controls. There was a significant association 
between sex and diagnostic group (Χ2(1) = 3.9, p = 0.049). 
84% of the migraine cohort was female, while the control 
group had an even distribution of males and females (due 
to the convenience sampling method for healthy controls; 
and clinical cohort enrollment for migraineurs) we could 
not sex match the groups, however, sex was included as 
a covariate in all models). Only 9 patients with migraine 
(29.0%) had migraines with aura. Median disease dura-
tion for the patients with migraine was 6 years (IQR = 4). 
All subjects were without depression and anxiety. The 
median MSQoL score of migraine patients was 62 (15.5), 
lower than HCs. The patients had a moderate pain 
intensity,

FC differences in the language network may differentiate 
patients with migraine from controls
Our model differentiating migraine from healthy con-
trols initially achieved a mean AUC of 0.68 ± 0.13, which 
increased to 0.86 following hyperparameter tuning. At 
a network level, parcels belonging to the language net-
work had the greatest contribution to the model’s classi-
fication (Fig.  1a,b). At a region level, a low FC between 
left area 45 (of the language network) and left area 23c 
(of the salience network) had the greatest impact on the 
model output (Fig.  1c,d). The rest of the features in the 
top 20 had a significantly smaller impact on model out-
put, however, the majority of them were DMN regions, 
including the left area 31p ventral (31pv), left area 8Av, 
left area dorsal d23 a + b (d23ab), left area 9 anterior (9a), 
left area 9 posterior (9p), right area 9p, and right para-
hippocampal area 2 (PHA2); or CEN regions, including 
the right anterior agranular insula complex (AAIC), right 
parieto-occipital sulcus area 2 (POS2), left area posterior 
47r (p47r), left area 33 prime (33pr), right 31 anterior 
(31a), right area lateral intraparietal dorsal (LIPd), left 
area inferior frontal sulcus anterior (IFSa), and right area 
posterior 24 (p24), though these were ranked lower.

Next, the MAD analysis showed the greatest number 
of deviations in the migraine group in the accessory lan-
guage network, the language network, the medial tempo-
ral system, and visual system (Fig. 1e,f ).

PageRank centrality revealed contralateral changes in 
migraine
PageRank centrality in migraine patients showed shifts 
from the median PageRank in controls in the right area 
lateral occipital 3 (LO3), right superior temporal sulcus 
ventral posterior (STSvp), right 9p, right Amygdala, and 
right area anterior 47 rostral (a47r) (Fig. 2a,b). The right 
STSvp and right amygdala demonstrated higher PageR-
ank centrality in most patients with migraine than con-
trols, whereas the right LO3, right 9p, and right a47r 
demonstrated lower centrality. All the regions demon-
strating a shift in PageRank centrality were in the right 
hemisphere. The PageRank centrality ranks of one sub-
ject, subject 12, differed significantly from both the 
patient and control ranks.

Discussion
The present study investigated the ability of a gradi-
ent boosted trees approach in differentiating patients 
with migraine from controls, and derived brain regions 
and networks which accounted for the classification dif-
ferences in each case. Our findings indicate that FC 
differences in the language network were most predic-
tive of diagnostic grouping, though the accessory lan-
guage areas, the limbic system and sensory systems also 
demonstrated deviations in FC compared to controls. 

Table 1 Demographic and clinical characteristics for the entire 
cohort
Demographic Migraineurs

(n = 31)
Healthy 
Controls
(n = 17)

p value

Sex F/M (%) 26/5 (83.9/16.1) 8/9 (47.1/52.9) 0.049

Median age (IQR)years 25 (8) 25 (3) 0.429

Migraine with aura 
(Yes/No) (%)

9/22 (29.0/71.0)

Median Disease Dura-
tion (IQR)years

6 (4)

Attack per month 2(1–5)

Median HDRS17 score 
(IQR)

6 (3.5)

Median HAM-A score 
(IQR)

6 (6)

Median MSQoL score 
(IQR)

62 (15.5)

Median VAS score (IQR) 5 (2.5)
HDRS17, Hamilton Depression Rating Scale (0–52)

HAM-A, Hamilton Anxiety Rating Scale (0–30)

MSQoL, Migraine Specific Quality of Life (25–100)

VAS, Visual Analog Scale (0–10)
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Fig. 1 (a) Mean importance of each network’s contribution to the model classifying patients with migrainefrom controls based on functional connectiv-
ity. (b) A graphical representation of the Language network. (c) A SHAP plot demonstrating parcel-based feature importance in the model classifying 
patients with migrainefrom controls. Each feature represents pairwise functional connectivity between two regions. The features are listed in descending 
order of importance. The horizontal axis provides an indication of each feature’s impact on the model, and the color of each point represents whether 
a high or low value of the given feature is associated with its impact. (d) A graphical representation of the top 20 features whose functional connectiv-
ity contributed to the machine learning model’s classification. The colors of each arrow signify the network to which each parcellation belongs, with a 
key provided at the bottom right corner of the figure. In this representation, the language network has been classed within the Default Mode Network 
(purple), its primary network. (e) The graph represents the mean number of anomalies detected through median absolute deviation within each network, 
in patients with migraineand controls. (f) A graphical representation of the Accessory Language, Language, Medial Temporal, and Visual networks on a 
left sided brain. The network corresponding to each color has been provided in the key in the bottom right corner of the Fig. 31a, area 31 anterior; 31pv, 
area 31 posterior ventral; 33pr, area 33 prime; 7AL, lateral area 7 A; 7Am, medial area 7 A; 8Av, area 8 A ventral; 9a, area 9 anterior; 9p, area 9 posterior; A4, 
auditory 4 complex; AAIC, anterior agranular insular complex; AIP, anterior intraparietal area; d23ab, area dorsal 23 a + b; FEF, frontal eye fields; FOP4, frontal 
opercular area 4; LIPd, area lateral intraparietal dorsal; LIPv, area lateral intraparietal ventral; p24, area posterior 24; p47r, area posterior 47r; PBelt, parabelt 
complex; PFm, area PFm complex; PHA2, parahippocampal area 2; POS2, parieto-occipital sulcus area 2; SCEF, supplementary and cingulate eye field 2; 
SFL, superior frontal language area; STSdp, superior temporal sulcus dorsal posterior; STSvp, superior temporal sulcus ventral posterior; TE1p, area TE1 
posteiror; TPOJ3, area temporoparietooccipital junction 3; V6, sixth visual area; V6A, sixth visual area A
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Furthermore, our PageRank analysis indicated that there 
may be analogous contralateral changes in migraine 
patients, which could potentially be harnessed as a treat-
ment target. Collectively, these data highlight the utility 
of our methodology to explore the connectomic distur-
bances underlying migraine. Through validation, our 
findings may be used to further elucidate migraine’s 
pathophysiology and develop diagnostic and therapeutic 
modalities to improve patient outcomes.

Interactions of the default mode and salience networks in 
migraine
The top feature contributing to our model’s classifica-
tion was a low correlation between the left area 45, part 
of the default mode network [36], and left area 23c, part 
of the salience network [36]. Area 23 has previously been 
shown to be activated in response to acute pain [37], 
and our results may therefore be pointing to altered pain 
perception in patients with migraine. A reduction in 
the thickness of the posterior cingulate cortex, a region 
known to be involved in nociception and chronic pain, 
has been associated with migraine improvement [38]. 
Furthermore, temporal fluctuations in the connectivity of 
the salience network has previously been associated with 
migraine [39], and the insula, a core part of the salience 
network exhibits altered connectivity in migraine 
patients [40–42]. The salience network has previously 
been proposed to be responsible for switching between 
the introspective default mode network, and the central 
executive network [43]. Our findings may be pointing to 
alterations in this mechanism, which may be responsible 
for heightened awareness of pain in migraine. Promoting 

connectivity between these two networks through non-
invasive stimulation may, therefore, provide a therapeu-
tic option, though further studies must examine whether 
this association exists in larger cohorts.

Migraine and language network changes
Interestingly, the language network was most associated 
with our model’s classification of patients with migraine 
from controls. This can be attributed to the contribution 
of left area 45, given it was part of the top two features 
contributing to the model at the individual region level. 
To our knowledge, no previous studies have described 
the language network in migraine, though this relation-
ship may be explained by the function of this network. 
It should also be noted that dysphasia is not uncommon 
during migraine. The language network, and the acces-
sory language network, which also demonstrated dis-
tinct connectivity in migraine, are not part of the core 
networks described in other studies, and are often part 
of extended network schemes, which are subdivisions of 
other networks. Some authors in fact consider these net-
works part of the extended default mode network [36], 
though the individual network affiliations of each region 
differs. The specific regions of the HCP atlas comprising 
the language network in the Infinitome scheme include 
left area 55b, left area 8 C, left area 44, left area 45, left 
area 8BM, left area IFJa, the left anterior intraparietal 
area (AIP), left area PFm complex (PFm), left superior 
frontal language area (SFL), left supplementary and cin-
gulate eye field (SCEF), the left parabelt complex (PBelt), 
left STSdp, left STSvp, left area TE1 posterior (TE1p), 
and left area PHT, while the accessory language area 

Fig. 2 (a) A heatmap of PageRank centrality of all 379 brain regions in migraine patients, ordered by the median PageRank centrality of healthy controls 
to identify deviations. deviations in patients with migraine from the median PageRank centrality of controls for all 379 brain regions. Each row represents 
a migraine subject, while each column is a brain region. Blue represents a lower PageRank centrality, while red represents a higher PageRank centrality. 
The purple boxes represent five brain regions which showed deviations in migraine subjects compared to controls: right LO3, right STSvp, right 9p, right 
Amygdala, and right a47r. (b) The five brain regions showing deviations in PageRank centrality are shown on a brain for anatomical reference. The red 
regions represent areas where migraine sufferers had a lower PageRank centrality than controls, while blue represents regions where migraine sufferers 
had a higher PageRank centrality than controls
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includes left STSda, left TE1a, left TGv, and left STSva. 
These networks comprise regions such as the superior 
temporal area and the temporal pole, which are sites of 
multisensory integration. The superior temporal sulcus 
integrates visual, somatosensory, and auditory informa-
tion [44], whereas the temporal pole is a region for inte-
gration of auditory, olfactory and somatosensory stimuli 
[45]. The temporal pole has been implicated in migraine, 
with several studies revealing cortical thinning, atypical 
resting-state FC, and hyperexcitability of the temporal 
pole in patients with migraine compared to healthy con-
trols [46–49]. Furthermore, left area 45, the pars triangu-
laris, was also highlighted in our study as one of the main 
features contributing to the model’s classification. Once 
again, a crucial part of the language network as one of 
the constituents of Broca’s area, the pars triangularis has 
been shown to play a role in pain empathy, and patients 
with migraine have shown altered FC in the region of the 
inferior frontal gyrus [50–54]. Together, these findings 
suggest that the language network may be an important 
locus in migraine, and may be mediated by deficits in 
multisensory integration resulting in altered pain percep-
tion. It is also worth noting that a previous population 
study has demonstrated that patients with migraine had 
impaired verbal ability and language reception at ages 
three to 13 prior to the development of headache [55]; 
whereas another study showed patients with migraine 
performed worse in several domains of the MoCA, 
including language compared to healthy controls [56]. 
It is however important to again note that all of these 
brain regions which are involved in language are not 
solely language areas. For example, area 45 is involved 
in sensorimotor learning and integration [57], while the 
left inferior frontal gyrus in general has shown involve-
ment in response inhibition [58, 59], a deficit known to 
persist even outside of attacks in migraine [60], and one 
which parallels our hypotheses regarding the interaction 
between the DMN and SN in the previous section. The 
networks highlighted in our model also depend on the 
networks ascribed to each region. This was performed 
manually and based on the literature, as we did not per-
form task-based fMRI. Different studies may ascribe 
regions to different networks, though the affiliations pro-
vided by the Infinitome software rely on several meta-
analyses and along with a recent comprehensive analysis 
of network affiliation specifically based on the Glasser 
atlas [36]. Therefore, while further studies are neces-
sary to elucidate the nature of the relationship between 
language and migraine, it is nonetheless interesting that 
several regions known to have a role in language were 
highlighted in our study.

Alterations in multiple networks underlie migraine
The visual network and the medial temporal region also 
demonstrated deviations in FC in migraine. The visual 
network has been strongly linked to migraine. Recently, 
Huang and Wilkins demonstrated that the distribution 
of the visual network was altered in migraine patients 
and demonstrated lateralization [61]. In another study, 
there was enhanced FC between the thalamus and sev-
eral parts of the visual cortex, suggesting aberrant pro-
jections from the thalamus to the visual network [62]. 
These changes may underlie the visual symptoms associ-
ated with migraine, both with and without aura. Further-
more, the medial temporal lobe has been associated with 
nociception in chronic pain, with a meta-analysis dem-
onstrating reduced activation in the right anterior hip-
pocampus in patients with migraine [63]. A recent study 
has also demonstrated that mesial temporal sclerosis on 
MRI is a common finding in patients with migraine with-
out a history of epilepsy, suggesting damage as a result of 
migraine [64]. These changes demonstrate that migraine 
is a complex multi-network condition which may require 
a whole-brain approach for targeted therapies. Methods 
such as ours may be promising in identifying potential 
targets.

Harnessing compensatory changes in migraine
While the left sided language networks accounted most 
for the FC -based classification, right sided regions dem-
onstrated the greatest amount of deviation in PageRank 
centrality, a measure of hubness based on structural 
connectivity. Regions which demonstrated higher Pag-
eRank in migraineurs, including the right STSvp, and 
right amygdala, may be demonstrating compensatory 
changes. The potential changes in the left superior tem-
poral region in the context of the language network has 
been previously discussed, however, the amygdala is also 
a key region of nociceptive and emotional processing, 
and has demonstrated FC changes in migraine [65]. One 
study in fact demonstrated that these changes were later-
alized to the left, which may explain the increased hub-
ness of the right amygdala in our dataset [20]. This may 
however also be due to possibly different functions of the 
amygdala bilaterally, and further studies are necessary to 
explain these findings. Nonetheless, these regions may 
potentially provide targets for diagnosis and interven-
tions such as transcranial magnetic stimulation (TMS) to 
treat migraine.

Limitations
Our study has several key limitations. Our small sam-
ple size limits the generalizability of our findings, and 
larger prospective studies and replication in indepen-
dent cohorts is necessary to substantiate our results. In 
addition, given our small sample size, we were unable 
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to conduct sub-analyses to compare migraine with and 
without aura, which should be a goal in future studies. 
We were also unable to combine structural and FC data 
as our sample was insufficient. Multimodal data may 
however improve the accuracy of models and provide 
further directions to improve diagnosis and treatment 
options in migraine. Finally, the model presented in the 
study has not yet been applied to other types of head-
ache or pain patients.In future, we will conduct compara-
tive studies on different types of headache, which may 
have guiding significance for the differential diagnosis of 
migraine.

Conclusions
Here, we utilize an explainable machine learning 
approach to analyze resting state FC data in a sample of 
patients with migraine, and a healthy control comparison 
group. We find that FC of the language network is most 
indicative of migraine status, however, other networks, 
including accessory language, demonstrate distinguish-
able characteristics. Additionally, we demonstrate a 
shift in hubness across the brain, with right hemisphere 
regions showing increased hubness in migraineurs; a 
potential marker and target for reorganization. While 
this study is too limited to define reliable biomarkers of 
migraine, it does suggest the possibility of aberrant brain 
organization across higher order cognitive networks, and 
extends the focus beyond the abnormal processing of 
pain -- to abnormal brain organization.
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