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Abstract 

Background  There is bidirectional communication between the gut microbiota and the brain. Empirical evidence 
has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut 
microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut micro-
biota on brain and cognition.

Methods  One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and dif-
fusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) 
and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to 
assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between 
microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the 
gut microbiota-brain-cognition relationship.

Results  We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, 
higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral 
paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations 
were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association 
between gut microbial diversity and behavioral inhibition in males.

Conclusions  These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-
cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for 
mental disorders with abnormal behavioral inhibition.
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Introduction
Increasing evidence endorses the notion that there is 
bidirectional communication between the gut microbiota 
and the central nervous system through the microbiota-
gut-brain axis [1–3]. On one hand, the gut microbiome 
can influence the development, aging and neurodegener-
ation of the brain, which in turn could have consequences 
for subsequent behavior [4]. A plausible explanation lies 
in the fact that gut bacteria are capable of synthesizing 
and releasing various metabolites including neuropep-
tides and neurotransmitters [5], which might signal to the 
brain via nervous, endocrine, and immune systems. On 
the other hand, the brain can impact the gut microbiota 
through the autonomic nervous system, by modulating 
gut functions (e.g., motility, intestinal transit and secre-
tion, and permeability), and through the luminal secre-
tion of hormones that regulate microbial gene expression 
[3]. Earlier imaging studies have examined the associa-
tions of gut microbiota with brain structure and func-
tion in humans. For example, multimodal neuroimaging 
(including regional homogeneity and functional connec-
tivity density, cerebral blood flow, gray matter volume, 
and fractional anisotropy) fusion biomarkers mediate 
the association between gut microbiota and cognition 
in healthy young adults [6]. Wang et al. revealed that gut 
microbiota alteration caused default mode network func-
tional connectivity impairment by increasing systemic 
inflammation in end-stage renal disease [7]. Moreover, 
a recent longitudinal study demonstrated a significant 
influence of 4-week multi-strain probiotic administra-
tion on resting-state functional connectivity in healthy 
subjects [8], providing indirect support for the gut micro-
biota-brain function interaction. Nonetheless, there is a 
paucity of large sample and multimodal neuroimaging 
studies offering direct insight regarding the nature of the 
gut microbiota-brain relationship in healthy populations.

It is generally accepted that sex can influence the 
complexity and diversity of gut microbes and recipro-
cally the gut microbiota can affect sex steroid hormones 
[9]. Previous human studies have revealed consider-
able sex differences in the composition of gut micro-
biome [10]. In parallel, experimental animal research 
has corroborated the sexual dimorphism of gut micro-
biota observed in humans [11–13]. Conversely, there 
is empirical evidence that probiotics can regulate the 
levels of sex hormones by manipulating the intestinal 
microbiome in polycystic ovary syndrome patients [14]. 
In addition, extensive neuroimaging research has estab-
lished the presence of sex differences in brain structure, 
perfusion, and function. With respect to brain struc-
ture, a prior large-scale study has reported higher gray 
matter volume, cortical surface area and white matter 

integrity in males, and higher cortical thickness and 
white matter tract complexity in females [15]. In regard 
to brain perfusion, females have higher global cerebral 
blood flow (CBF) than males [16]. As to brain func-
tion, males show stronger functional connectivity in 
unimodal sensorimotor cortex, while females exhibit 
stronger functional connectivity in default mode net-
work [15]. Despite these findings, sex-dependent 
effects of gut microbiota on the brain are less clearly 
established, with only a more recent animal study sug-
gesting that disruption of the gut microbiome affects 
hippocampal neurogenesis in a sex-dependent manner 
[17]. More broadly, as there has been a growing empha-
sis on the sex-specific influence of gut microbiota on 
mental disorders [18], elucidating such effects not only 
may aid in further understanding disease mechanisms, 
but also may have clinical implications for developing 
personalized medicine approaches.

In the current study, we collected fecal samples from 
a large sample of healthy young adults and utilized 
16S rRNA  gene amplicon sequencing technology to 
measure gut microbial diversity [19]. Structural MRI, 
arterial spin labeling (ASL), resting-state functional 
MRI (fMRI), and diffusion tensor imaging (DTI) were 
adopted to assess brain structure, perfusion, and func-
tion. Mounting evidence converges to support the con-
cept that a conjoint analysis of multimodal imaging 
data would provide integrated information on complex 
underlying neurobiological features [20–22]. Addition-
ally, the Go/No-Go task was employed to assess the 
ability of behavioral inhibition [23]. We focused our 
efforts on this cognitive domain because poor inhibi-
tory control is thought to be a common symptom of a 
number of mental disorders, and sex-dependent asso-
ciations between addiction-related behaviors and the 
microbiome were observed in some studies [24–26].

Based on this combined body of data, the first goal of 
this exploratory study was to examine the sex-depend-
ent associations between gut microbial diversity and 
multimodal brain imaging measures. The second objec-
tive was to assess the sex-specific links between micro-
bial diversity-associated brain imaging measures and 
behavioral inhibition. Finally, we sought to character-
ize the meditative role of the identified neuroimaging 
biomarkers in accounting for the sex-specific effects of 
gut microbial diversity on behavioral inhibition. A flow 
chart of the research design is shown in Fig. 1. Building 
on previous work, we hypothesized that there would 
be marked sexual dimorphism in the gut microbiota-
brain-cognition relationships.
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Materials and methods
Participants
A total of 157 healthy young adults were recruited by 
advertisement. All participants met the inclusion criteria 
of Chinese Han, right handedness, and within a restricted 
age range of 18–30  years. Exclusion criteria included 
neuropsychiatric or severe somatic disorder, a history 
of alcohol or drug abuse, regular smoker, menstruating 
females, current medication (e.g., antibiotics, sedative 
hypnotics or contraceptives) within a month, pregnancy, 
MRI contraindications, and a family history of psychi-
atric illness among first-degree relatives. The MINI-
International Neuropsychiatric Interview (M.I.N.I.) and 
Alcohol Use Disorders Identification Test (AUDIT) were 
used in the process of excluding participants. This study 
was approved by the ethics committee of The First Affili-
ated Hospital of Anhui Medical University, all methods 
were carried out in accordance with relevant guidelines 
and regulations. Written informed consent was obtained 
from all participants after they had been given a complete 
description of the study.

Go/No‑Go task
The Go/No-Go task was conducted on a computer to 
assess the ability of behavioral inhibition using E-Prime 
2.0 (http://​www.​pstnet.​com/​eprime.​cfm) [23]. The pri-
mary variable of interest is the accuracy in “No-Go” con-
ditions (Acc_No-Go) that reflects behavioral inhibition. 

The details are described in the online Supplemental 
methods.

MRI data acquisition
High-resolution 3D T1-weighted structural images, per-
fusion imaging, resting-state blood-oxygen-level-depend-
ent (BOLD) fMRI data, and DTI data were obtained 
using a 3.0-Tesla MR system (Discovery MR750w, Gen-
eral Electric, Milwaukee, WI, USA) with a 24-channel 
head coil. The details are described in the online Supple-
mental methods.

Gray matter volume analysis
Voxel-based morphometry (VBM) analysis was per-
formed using the CAT12 toolbox (http://​www.​neuro.​
uni-​jena.​de/​cat) implemented in the Statistical Para-
metric Mapping software (SPM12, http://​www.​fil.​ion.​
ucl.​ac.​uk/​spm). First, all the structural T1-weighted 
images were corrected for bias-field inhomogeneities. 
Second, these images were segmented into gray matter, 
white matter and cerebrospinal fluid density maps using 
the “new-segment” approach [27]. Third, a diffeomor-
phic anatomical registration through the exponentiated 
Lie algebra (DARTEL) technique was used to generate 
a custom, study-specific template [28]. Fourth, each 
participant’s gray matter density image was warped 
to the customized template; then the resultant images 
were affine registered to the Montreal Neurological 

Fig. 1  A flow chart of the research design. Abbreviation: MRI, magnetic resonance imaging

http://www.pstnet.com/eprime.cfm
http://www.neuro.uni-jena.de/cat
http://www.neuro.uni-jena.de/cat
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Institute (MNI) space and resampled to a voxel size 
of 1.5  mm × 1.5  mm × 1.5  mm. Fifth, the modulation 
was applied by multiplying the transformed gray mat-
ter density maps with the non-linear components of 
Jacobian determinants, which resulted in the normal-
ized gray matter volume (GMV) maps representing the 
local native-space GMV after correcting the confound-
ing effect of variance induced by individual whole-brain 
size. Finally, the resultant GMV images were smoothed 
with a 6  mm full-width at half maximum (FWHM) 
Gaussian kernel.

Cerebral blood flow analysis
Three ASL difference images were calculated by sub-
tracting the label images from the control images and 
then averaged. Next, CBF was quantified by applying a 
single-compartment model [29] to the mean ASL dif-
ference and proton-density-weighted reference images 
[30–32]. SPM12 software was used to normalize the 
CBF images into the MNI space using the following 
steps: (1) individual structural images were firstly co-
registered with the CBF images; (2) the transformed 
structural images were segmented and normalized to 
the MNI space; and (3) the CBF image of each subject 
was written into the MNI space using the deformation 
parameter derived from the prior step and was resliced 
into a 2-mm cubic voxel. For the purpose of standardi-
zation, the CBF value of each voxel was divided by the 
global mean CBF value. Finally, the CBF images were 
smoothed with a 6 mm FWHM Gaussian kernel.

Functional connectivity strength analysis
Resting-state BOLD data were preprocessed using 
SPM12 and Data Processing & Analysis for Brain Imag-
ing (DPABI, http://​rfmri.​org/​dpabi) [33]. The details are 
described in the online Supplemental methods.

Functional connectivity strength (FCS) is a graph 
theory measure that evaluates functional connectiv-
ity of each voxel with all other voxels across the whole 
gray matter [34–36]. Firstly, we computed Pearson’s cor-
relation coefficients between the BOLD time courses 
of all pairs of voxels and obtained a whole gray matter 
functional connectivity matrix for each participant. For 
a given voxel, FCS was computed as the sum of posi-
tive functional connectivity above a threshold of 0.25 
between that voxel and all other voxels within the whole 
gray matter. Then, we normalized the FCS value of each 
voxel by dividing it by the global mean FCS value. Finally, 
the FCS maps were smoothed with a 6  mm FWHM 
Gaussian kernel.

White matter integrity analysis
For DTI data, standard processing steps were performed 
by using the FMRIB Software Library (FSL, www.​fmrib.​
ox.​ac.​uk/​fsl). First, eddy current distortion and head 
motion were corrected by registering the diffusion-
weighted images to the first b0 image through the affine 
transformations. Second, the data were skull-stripped 
by using the FMRIB Brain Extraction Tool. Finally, dif-
fusion parameters including fractional anisotropy (FA), 
axial diffusivity (AD), radial diffusivity (RD), and mean 
diffusivity (MD), were calculated by using the DTIFIT 
toolbox. Then, tract-based spatial statistics (TBSS) pipe-
line was conducted [37, 38]. Briefly, individual FA images 
were firstly non-linearly registered to the MNI space. 
After transformation into the MNI space, mean FA image 
was created and thinned to generate a mean FA skeleton. 
Then, each subject’s FA image was projected onto the 
skeleton via filling the mean FA skeleton with FA values 
from the nearest relevant tract center by searching per-
pendicular to the local skeleton structure for maximum 
FA value. Finally, the registration and projection infor-
mation derived from the FA analysis was applied to the 
other diffusion parameters to project AD, RD, and MD 
images onto this common skeleton.

Fecal samples collection and gut microbiota analysis
Microbial genome DNA was extracted from the fecal 
samples using a QIAamp DNA Stool Mini Kit (Qiagen 
Inc., Hilden, Germany). The V4 region of 16S ribosomal 
RNA (rRNA) gene was amplified. The qualified ampli-
con mixture was then sequenced on the MiSeq platform 
with the PE250 sequencing strategy. Alpha diversity was 
assessed using the species richness indices (Sobs, Chao, 
and Ace) and species diversity indices (Shannon and 
Simpson that reflect both species richness and species 
evenness) [39, 40], which were calculated by MOTHUR 
(v1.31.2) [41] and QIIME (v1.8.0) [42] at the opera-
tional taxonomic unit (OUT) level. The species accu-
mulation curves were plotted in Supplementary Fig. S1, 
which indicated that the sampling amount was sufficient. 
The details are described in the online Supplemental 
methods.

Statistical analysis
Demographic, cognitive, and gut microbial variables were 
compared between males and females using two sample 
t-tests in the SPSS 26.0 software (SPSS Inc., Chicago, IL, 
United States).

In the male and female groups separately, voxel-based 
partial correlation analyses between alpha diversity and 
brain imaging measures (GMV, CBF, and FCS) were 
performed using multiple regression analyses in the 

http://rfmri.org/dpabi
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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SPM12 software. For CBF analyses, age was included 
as a nuisance covariate, with total intracranial vol-
ume (TIV) and FD as additional covariates for GMV 
and FCS analyses respectively. Multiple comparisons 
were corrected using a cluster-level family-wise error 
(FWE) method, resulting in a cluster defining thresh-
old of p = 0.001 and a corrected cluster significance of 
p < 0.05. For the TBSS analysis, non-parametric per-
mutation testing (permutation number = 5000) and 
threshold-free cluster enhancement (TFCE) in the 
FSL software were used for statistical inference of the 
partial correlations between alpha diversity and diffu-
sion parameters (AD, RD and MD) controlling for age. 
The FWE method was also used to correct for multi-
ple comparisons with a corrected significance threshold 
of p < 0.05. In case of significant correlations identified 
for any brain regions in either males or females, these 
significant regions were defined as regions of inter-
est (ROIs) and mean imaging values within these ROIs 
were extracted to further examine whether there were 
significant sex differences in the correlations. That is, 
ROI-based partial correlation coefficients between 
imaging measures and alpha diversity were transformed 
into Fisher’s Z scores and then compared between 
males and females [43]. Specifically, we compared cor-
relation differences between groups using Fisher’s r to 
z transformation, so that z scores were compared and 
analyzed for statistical significance using z test statis-
tics at a set alpha level (significance level). To estimate 
the effect sizes of sex, we also calculated Cohen’s q (no 
effect: q < 0.1, small effect: 0.1 < q < 0.3, intermediate 
effect: 0.3 < q < 0.5, large effect: q > 0.5) [44].

For brain imaging parameters showing correlations 
with gut microbial diversity, we further examined their 
associations with the ability of behavioral inhibition 
(Acc_No-Go) using partial correlation analyses. To test 
whether the association between variables was medi-
ated by other variables, mediation analysis was per-
formed using the PROCESS macro (http://​www.​proce​
ssmac​ro.​org/) [45]. In the mediation analysis model 
(Fig.  8A), all paths were reported as unstandardized 
ordinary least squares regression coefficients, namely, 
total effect of X on Y (c) = indirect effect of X on Y 
through M (a × b) + direct effect of X on Y (c’). The sig-
nificance analysis was based on 5000 bootstrap realiza-
tions and a significant indirect effect is indicated when 
the bootstrap 95% confidence interval (CI) does not 
include zero. In this study, only variables that showed 
a significant correlation with others in the correlation 
analyses were considered independent (alpha diversity), 
dependent (cognition), or mediating variables (neuro-
imaging parameters) in the mediation analysis.

Results
Demographic, cognitive, and gut microbial characteristics
As shown in Table 1, males and females differed signifi-
cantly in age (t = -2.84, p = 0.005), years of education 
(t = -3.60, p < 0.001), body mass index (BMI, t = 4.15, 
p < 0.001), TIV (t = 11.15, p < 0.001), and FD (t = 2.35, 
p = 0.020). Of note, Pearson’s correlation analyses 
revealed strong positive correlations (r > 0.95) between 
Sobs, Chao, and Ace indices as well as a strong negative 
correlation (r = -0.92) between Shannon and Simpson 
indices (Supplementary Table S1). Therefore, we reported 
the main results of Chao and Shannon analysis and pro-
vided the results of Sobs, Ace, and Simpson analysis in 
the Supplementary materials.

Sex differences in alpha diversity‑GMV association
After controlling for age and TIV, we found a significant 
positive correlation between Shannon index and GMV 
in the right cerebellum VI (R-Cbe VI, cluster size = 523 
voxels, peak MNI coordinate x/y/z = 34.5/-37.5/-28.5, 
peak t = 4.56; p < 0.05, cluster-level FWE corrected) in 
males but not females (Fig. 2). ROI-based analysis further 
demonstrated a significant sex difference in the Shannon 
index-GMV association (Table 2). The difference was still 
significant after additional adjustment for education and 
BMI (Supplementary Table S2). The results of Simpson 
index analysis were similar to those of Shannon index 
analysis (Supplementary Fig. S2).

Sex differences in alpha diversity‑CBF association
After controlling for age, we found a positive correlation 
between Shannon index and CBF in the bilateral calcar-
ine sulcus (B-CAL, cluster size = 781 voxels, peak MNI 
coordinate x/y/z = -2/-70/18, peak t = 4.52; p < 0.05, clus-
ter-level FWE corrected) (Fig. 3A) and a negative correla-
tion between Shannon index and CBF in the left superior 

Table 1  Demographic and cognitive characteristics of the 
sample

The data were presented as the mean ± SD

Abbreviations: SD standard deviation, BMI body mass index, TIV total intracranial 
volume, FD frame-wise displacement, Acc_No-Go accuracy in “No-Go” conditions

Characteristics Males Females t value p value

Number of 
subjects

80 77 - -

Age (years) 21.80 ± 2.39 22.87 ± 2.34 -2.84 0.005

Education (years) 15.26 ± 1.93 16.32 ± 1.77 -3.60 < 0.001

BMI (kg/m2) 22.42 ± 3.69 20.42 ± 2.18 4.15 < 0.001

TIV (cm3) 1569.97 ± 101.63 1393.49 ± 96.49 11.15 < 0.001

FD (mm) 0.13 ± 0.06 0.11 ± 0.03 2.35 0.020

Acc_No-Go 0.61 ± 0.19 0.58 ± 0.18 0.95 0.342

http://www.processmacro.org/
http://www.processmacro.org/
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frontal gyrus (L-SFG, cluster size = 268 voxels, peak MNI 
coordinate x/y/z = -20/-6/48, peak t = -4.41; p < 0.05, 
cluster-level FWE corrected) (Fig.  3B) in males but not 
females. ROI-based analysis further demonstrated signif-
icant sex differences in the Shannon index-CBF associa-
tions (Table 2). The differences were still significant after 
additional adjustment for education and BMI (Supple-
mentary Table S2). The results of Simpson index analysis 
were similar to those of Shannon index analysis (Supple-
mentary Fig. S3).

Sex differences in alpha diversity‑FCS association
After controlling for age and FD, we found significant 
positive correlations between Chao index and FCS in the 
bilateral paracentral lobule (R-PCL: cluster size = 94 vox-
els, peak MNI coordinate x/y/z = 9/-33/60, peak t = 5.10; 
L-PCL: cluster size = 81 voxels, peak MNI coordinate 
x/y/z = -9/-21/63, peak t = 5.35; p < 0.05, cluster-level 

FWE corrected) in males but not females (Fig.  4). ROI-
based analysis further demonstrated significant sex dif-
ferences in the Chao index-FCS associations (Table  3). 
The differences remained significant after additional 
adjustment for education and BMI (Supplementary Table 
S3). The results of Sobs and Ace indices analysis were 
similar to those of Chao index analysis (Supplementary 
Fig. S4).

Sex differences in alpha diversity‑diffusion parameters 
association
After controlling for age, we found significant nega-
tive correlations between Shannon index and dif-
fusion parameters (AD, RD, and MD) (Fig.  5A) and 
between Chao index and diffusion parameters (RD and 
MD) (Fig.  5B) across widespread white matter regions 
(p < 0.05, FWE corrected) in males but not females. ROI-
based analysis further demonstrated significant sex dif-
ferences in the Shannon index-diffusion parameters 

Fig. 2  Sex differences in the associations between Shannon index and GMV. Voxel-based analysis reveals a positive correlation between Shannon 
index and GMV in R-Cbe VI in males. Scatter plots show the ROI-based correlations between Shannon index and GMV in R-Cbe VI in males and 
females, separately. Abbreviations: GMV, gray matter volume; Cbe VI, cerebellum VI; ROI, region of interest; R, right; L, left

Table 2  Sex differences in the associations between Shannon index and brain imaging measures

Abbreviations: GMV gray matter volume, CBF cerebral blood flow, AD axial diffusivity, RD radial diffusivity, MD mean diffusivity, Cbe VI cerebellum VI, CAL calcarine 
sulcus, SFG superior frontal gyrus, R right, B bilateral, L left

Imaging measures rmales (p) rfemales (p) Z value of sex comparison in 
r (p)

Cohen’s q

GMV in R-Cbe VI 0.468 (< 0.001) 0.088 (0.452) 2.576 (0.010) 0.419

CBF in B-CAL 0.497 (< 0.001) -0.227 (0.049) 4.769 (< 0.001) 0.776

CBF in L-SFG -0.552 (< 0.001) -0.069 (0.556) -3.392 (< 0.001) 0.552

AD -0.622 (< 0.001) 0.026 (0.825) -4.633 (< 0.001) 0.754

RD -0.533 (< 0.001) 0.014 (0.907) -3.737 (< 0.001) 0.608

MD -0.510 (< 0.001) 0.033 (0.778) -3.660 (< 0.001) 0.596
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Fig. 3  Sex differences in the associations between Shannon index and CBF. Voxel-based analysis reveals a positive correlation between Shannon 
index and CBF in B-CAL (A) and a negative correlation between Shannon index and CBF in L-SFG (B) in males. Scatter plots show the ROI-based 
correlations between Shannon index and CBF in B-CAL and L-SFG in males and females, separately. Abbreviations: CBF, cerebral blood flow; CAL, 
calcarine sulcus; SFG, superior frontal gyrus; ROI, region of interest; B, bilateral; R, right; L, left

Fig. 4  Sex differences in the associations between Chao index and FCS. Voxel-based analysis reveals positive correlations between Chao index 
and FCS in the bilateral PCL in males. Scatter plots show the ROI-based correlations between Chao index and FCS in the bilateral PCL in males and 
females, separately. Abbreviations: FCS, functional connectivity strength; PCL, paracentral lobule; ROI, region of interest; R, right; L, left
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associations (Table  2) and Chao index-diffusion param-
eters associations (Table  3). These differences remained 
significant after additional adjustment for education 
and BMI (Supplementary Tables S2 and S3). While the 
results of Sobs index analysis were similar to those of 

Chao index analysis, the Ace index-diffusion parameters 
association was identified in a localized region and the 
Simpson index-diffusion parameters association was not 
significant (Supplementary Fig. S5).

Table 3  Sex differences in the associations between Chao index and brain imaging measures

Abbreviations: FCS functional connectivity strength, RD radial diffusivity, MD mean diffusivity, PCL paracentral lobule, R right, L left

Imaging measures rmales (p) rfemales (p) Z value of sex comparison in 
r (p)

Cohen’s q

FCS in R-PCL 0.512 (< 0.001) -0.082 (0.487) 3.978 (< 0.001) 0.648

FCS in L-PCL 0.508 (< 0.001) -0.107 (0.362) 4.100 (< 0.001) 0.667

RD -0.566 (< 0.001) -0.040 (0.730) -3.696 (< 0.001) 0.602

MD -0.551 (< 0.001) -0.013 (0.908) -3.728 (< 0.001) 0.607

Fig. 5  Sex differences in the associations of diffusion parameters with Shannon and Chao indices. Voxel-based analysis reveals negative correlations 
of diffusion parameters with Shannon (A) and Chao (B) indices across widespread white matter regions in males. Scatter plots show the ROI-based 
correlations of diffusion parameters with Shannon and Chao indices in males and females, separately. Abbreviations: AD, axial diffusivity; RD, radial 
diffusivity; MD, mean diffusivity; ROI, region of interest; R, right; L, left
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Gut microbiota‑brain‑cognition associations in males
In light of significant correlations between gut microbial 
diversity and neuroimaging parameters in males rather 
than in females, we further assessed the relationships 
between microbial diversity-related imaging param-
eters and cognition in males. Results showed that Acc_
No-Go was positively correlated with GMV in R-Cbe VI 
(Fig. 6A) and CBF in B-CAL (Fig. 6B), and was negatively 
correlated with CBF in L-SFG (Fig.  6C), RD related to 
Shannon index (Fig.  6D) and RD related to Chao index 
(Fig.  6E) in males. Critically, we also observed signifi-
cant positive associations of Acc_No-Go with Shannon 
(Fig. 7A) and Chao (Fig. 7B) indices in males.

Considering these associations among alpha diver-
sity, brain imaging parameters, and cognition in males, 
we adopted mediation analysis model to further char-
acterize their relationship. To summarize individual 
differences in neuroimaging, a principal component 
analysis (PCA) was firstly performed to identify latent 

components underlying the four Shannon-related neu-
roimaging variables (GMV in R-Cbe VI, CBF in B-CAL, 
CBF in L-SFG, and RD). PCA is a technique to reduce 
the dimensionality of a data set composed of a large 
number of interrelated variables, while retaining as 
much of the variation present as possible in the data set 
[46]. Based on the Kaiser-Guttman criterion, compo-
nents with an eigenvalue (EV) < 1.0 were removed. As 
a consequence, only the first neuroimaging component 
that accounted for 52% of the variance was retained 
and extracted for subsequent mediation analysis. Then, 
we found that the relationship between Shannon index 
and Acc_No-Go was significantly mediated by the 
first neuroimaging component (indirect effect = 0.086, 
SE = 0.037, 95% CI: 0.017, 0.164) in males (Fig.  8B). 
Moreover, the total effect of Shannon index on Acc_
No-Go was significant (c = 0.098, SE = 0.039, p = 0.014) 
while the direct effect was insignificant (c’ = 0.012, 
SE = 0.053, p = 0.818), indicating a full mediation.

Fig. 6  Scatter plots of correlations between alpha diversity-related neuroimaging parameters and Acc_No-Go in males. Abbreviations: Acc_No-Go, 
accuracy in “No-Go” conditions; GMV, gray matter volume; CBF, cerebral blood flow; RD, radial diffusivity; Cbe VI, cerebellum VI; CAL, calcarine sulcus; 
SFG, superior frontal gyrus; R, right; B, bilateral; L, left
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Discussion
By using 16S amplicon sequencing to characterize gut 
microbiome diversity and multimodal MRI techniques 
to delineate brain properties, we conducted the first 

comprehensive analyses to investigate the effects of sex 
on the associations between the gut microbiota and the 
brain in a large sample of healthy young adults, and fur-
ther explored the neural mechanism by which the gut 

Fig. 7  Scatter plots of correlations between alpha diversity and Acc_No-Go in males. Abbreviations: Acc_No-Go, accuracy in “No-Go” conditions

Fig. 8  Conceptual diagram of mediation analysis. A Graphical representation of a mediation analysis model with one mediator. Total effect of 
X on Y (c) = indirect effect of X on Y through M (a × b) + direct effect of X on Y (c’). B The mediation analysis between Shannon index (X) and 
Acc_No-Go (Y), with the first neuroimaging component as the mediator (M). Path coefficients with p values (*p < 0.05 and **p < 0.01, respectively). 
Abbreviations: Acc_No-Go, accuracy in “No-Go” conditions
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microbiota influenced cognition in a sex-dependent way. 
Overall, we found specific gut microbiota-brain-cogni-
tion associations only in males, which is coherent with 
our hypothesis of sexual dimorphism in such relations. 
Specifically, higher gut microbial diversity was associ-
ated with higher GMV in Cbe VI, higher CBF in CAL yet 
lower CBF in SFG, higher FCS in PCL, and lower diffu-
sivity in widespread white matter regions in males. How-
ever, these associations were absent in females. More 
importantly, these neuroimaging biomarkers were a sig-
nificant mediator of the association between gut micro-
bial diversity and behavioral inhibition in males. These 
findings suggest that sex may serve as a potential influen-
tial factor that needs to be taken into account when stud-
ying and interpreting the gut microbiota-brain-cognition 
relationships.

Past small sample studies have established the associa-
tions of gut microbiota diversity and structure with cer-
ebellar structure and functional connectivity [47–49], 
highlighting the pivotal role of the cerebellum in the 
microbiota-gut-brain axis. Complementing and extend-
ing these previous findings, our large sample study fur-
ther revealed that higher gut microbial diversity was 
associated with higher GMV in Cbe VI in males rather 
than females. Sex difference in this association may 
be attributed to sex differences in the composition [9], 
metabolites [50, 51], and immunity [52, 53] of the gut 
microbiota, which may render this cerebellar region par-
ticularly susceptible to gut microbial diversity in males. 
Cbe VI is considered a cerebellar functional hub that is 
of high connectivity to the cerebral cortex and subcortex 
[54]. Moreover, the cerebellum has been shown to play 
a role in inhibitory control [55]. The prior findings may 
explain the current observation of a link between higher 
GMV in Cbe VI and better ability of behavioral inhibition 
in males.

The gut microbiome can regulate neurovascular integ-
rity, including CBF and blood–brain barrier (BBB) func-
tion [56, 57]. Impaired BBB function is also linked with 
CBF alterations [58]. Short-chain fatty acid (SCFA) pro-
duced by microorganisms can alter BBB permeability 
[59] and tight junctions of BBB [60, 61], which may result 
in CBF changes. Remarkably, the SCFA producing genera 
Prevotella, Ruminococcus and Roseburia are reported to 
depend on sex and hormonal status [9]. In addition, Sad-
ler and colleagues found that SCFA supplementation in 
the drinking water of male mice significantly improved 
recovery of affected limb motor function, suggesting 
that microbiota-derived SCFA can modulate poststroke 
recovery in males [62]. All of these findings converge to 
support the notion that the gut microbiota might influ-
ence brain perfusion in a sex-dependent fashion, which 
is in agreement with our finding of associations of higher 

gut microbiome diversity with higher CBF in CAL yet 
lower CBF in SFG in males only. Furthermore, hyper-
perfusion in CAL and hypoperfusion in SFG were both 
found to relate to better Go/No-Go task performance, 
which is consistent with previous studies emphasizing 
the importance of these brain regions in cognitive func-
tions [63, 64]. In combination, these findings have led 
to some speculation that the visual and executive con-
trol networks might be implicated in inhibitory  control 
synergistically.

Some studies have attempted to assess the relationships 
between brain functional connectivity and gut micro-
biota. For example, Gao et  al. reported that gut alpha 
diversity was associated with functional connectivity 
between the amygdala and thalamus, between the ante-
rior cingulate cortex and anterior insula, and between the 
supplementary motor area and inferior parietal lobule in 
infants [65]. Curtis et al. showed that insular resting-state 
functional connectivity was related to gut microbiota 
diversity [48]. Simpson and colleagues found that micro-
biome depletion by antibiotics resulted in altered func-
tional connectivity among brain regions [66]. Moreover, 
a longitudinal fMRI study revealed that consumption 
of a fermented milk product with probiotic for 4 weeks 
was associated with changes in midbrain functional con-
nectivity in healthy women, partially in favor of the asso-
ciation between gut microbiota changes and functional 
connectivity alterations [67]. However, sex effects have 
not been considered in these previous studies. In this 
study, we observed that higher gut microbial diversity 
was associated with higher FCS in PCL in males but not 
females, yielding direct and complementary insight into 
the sex-specific mechanisms by which the gut microbiota 
exert effects on the sensorimotor network functional 
connectivity.

DTI is the most commonly used MRI technique to 
evaluate brain white matter integrity [38]. Taking advan-
tage of DTI, extensive animal and human research has 
established the presence of links between gut microbiota 
and brain microstructure in healthy and clinical condi-
tions [68–71]. In line with these pilot studies, we found 
that the higher gut microbiota diversity was associated 
with lower water diffusion across widespread white mat-
ter regions in males but not females. While the underly-
ing cellular mechanisms are unknown, strongly affected 
AD, RD, and MD suggest that axonal myelination, fiber 
coherence, axonal diameter, packing density, and per-
meability levels may all contribute to these white matter 
integrity changes [72–74]. Notably, higher RD was found 
to correlate with lower accuracy in “No-Go” conditions, 
implying that a disruption of the myelin sheath rather 
than pure axonal damage may underlie worsen behavio-
ral inhibition.
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The reasons for the sex differences in gut microbiota-
brain-cognition relationships are unknown and are likely 
to be multifactorial. Among them, sex hormones may 
contribute most to the observed dimorphism. On one 
hand, the gut microbiota and the brain may be differen-
tially affected by estrogen and androgen [9, 75–77]. On 
the other hand, it is evident that estrogen and proges-
terone fluctuation over the menstrual cycle is related to 
brain structural and functional changes in females [78]. 
Thus, substantial changes in estrogen and progesterone 
levels over the menstrual cycle may explain the lack of 
significant gut microbiota-brain associations in females. 
In addition, we cannot rule out the possibility that the 
higher levels of testosterone and its stable concentration 
across the life span in males [79] may also contribute to 
the sex dimorphism.

Our mediation analysis suggests that the relationship 
between gut microbial diversity and behavioral inhibition 
ability can be fully mediated by the neuroimaging bio-
markers (including GMV, CBF, and diffusion parameters) 
in males. Theoretically, it provides preliminary evidence 
that the effects of gut microbiome on cognition appear to 
have a sex-dependent neuroanatomical basis. Moreover, 
this finding is of high clinical and translational impor-
tance, which may expose the gut microbiota as a bio-
marker-driven and sex-sensitive intervention target for 
mental  disorders with abnormal behavioral inhibition. 
This may ultimately inform a novel conceptualization of 
how to treatment these disorders via the regulation of gut 
microbiota in a personalized manner.

Several limitations should be noted in our research. 
First, the cross-sectional design limits our ability to make 
causal inferences. Future prospective longitudinal stud-
ies are needed to resolve causality of the complex gut 
microbiota-brain-cognition relationship. Second, we 
only focused on the correlations between gut microbi-
ome diversity and the brain. Further investigations are 
required to determine whether and how certain bacte-
ria are linked to brain structure and function in a sex-
dependent manner. Third, since this study population 
was selected from a group of educated volunteers with 
an age range of 18–30 years, these findings might not be 
representative of the general population. Future stud-
ies may benefit from enrolling a sample of subjects with 
broader age and educational ranges. Finally, multiple 
testing corrections were not performed for multimodal 
brain imaging measures. However, the voxel-based sta-
tistical test for each imaging measure was corrected for 
multiple comparisons with appropriate methods. Type 
II error control is equally important because our analy-
ses are exploratory in nature and important for future 
hypotheses generation.

In conclusion, this is to our knowledge the first mul-
timodal MRI study demonstrating sex differences in 
the correlations between gut microbiota and brain 
structure, perfusion, and function in a large cohort of 
healthy young adults. In accordance with our expecta-
tions, we found specific gut microbiota-brain-cognition 
associations in males rather than females. More gener-
ally, these findings may contribute to groundwork for 
future individualized, biomarker-driven and sex-sensi-
tive interventions of mental disorders by targeting the 
microbiota-gut-brain axis.
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