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Abstract 

Background Emergent Large Vessel Occlusion (ELVO) stroke causes devastating vascular events which can lead to 
significant cognitive decline and dementia. In the subset of ELVO subjects treated with mechanical thrombectomy 
(MT) at our institution, we aimed to identify systemic and intracranial proteins predictive of cognitive function at time 
of discharge and at 90-days. These proteomic biomarkers may serve as prognostic indicators of recovery, as well as 
potential targets for novel/existing therapeutics to be delivered during the subacute stage of stroke recovery.

Methods At the University of Kentucky Center for Advanced Translational Stroke Sciences, the BACT RAC  tissue 
registry (clinicaltrials.gov; NCT 03153683) of human biospecimens acquired during ELVO stroke by MT is utilized for 
research. Clinical data are collected on each enrolled subject who meets inclusion criteria. Blood samples obtained 
during thrombectomy were sent to Olink Proteomics for proteomic expression values. Montreal Cognitive Assess-
ments (MoCA) were evaluated with categorical variables using ANOVA and t-tests, and continuous variables using 
Pearson correlations.

Results There were n = 52 subjects with discharge MoCA scores and n = 28 subjects with 90-day MoCA scores. Sev-
eral systemic and intracranial proteins were identified as having significant correlations to discharge MoCA scores as 
well as 90-day MoCA scores. Highlighted proteins included s-DPP4, CCL11, IGFBP3, DNER, NRP1, MCP1, and COMP.

Conclusion We set out to identify proteomic predictors and potential therapeutic targets related to cognitive 
outcomes in ELVO subjects undergoing MT. Here, we identify several proteins which predicted MoCA after MT, which 
may serve as therapeutic targets to lessen post-stroke cognitive decline.
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Background
Emergent large vessel occlusion (ELVO) stroke is one of 
the leading causes of dementia and disability [19]. For 
ELVO candidates, endovascular mechanical thrombec-
tomy (MT) has been shown to improve both neurologi-
cal and cognitive functions in patients when compared to 
subjects treated with medical therapy alone [33]. How-
ever, despite effective strategies to re-establish blood 
flow, patients still suffer from significant cognitive effects 
from the injury [15, 28]. In stroke patients, cognitive dis-
ability confers a poorer prognosis regarding functional 
outcomes as well as increased dependence on caregivers 
[22, 27, 30]. Vascular contribution to cognitive impair-
ment and dementia (VCID), found in 25–30% of stroke 
patients, is a particularly devastating long-term outcome 
[12]. While no disease-modifying treatments exist for 
VCID, early detection may focus medical attention and 
allow for increased rehabilitation intensity. Thus, novel 
biomarkers and therapeutic targets will allow for much-
needed advances in prognostics and treatment of this 
devastating disease.

At the University of Kentucky Center for Advanced 
Translational Stroke Science, human biospecimens 
obtained from ELVO stroke subjects treated with MT 
are utilized for research. This Blood And Clot Thrombec-
tomy Registry And Collaboration (BACT RAC ) protocol 
(clinicaltrials.gov; NCT 03153683) allows for processing 
of both intracranial (distal to thrombus) and systemic 
(carotid) arterial blood samples. Systemic samples are 
utilized as acquiring systemic arterial blood is an easier 
prognostic step than intracranial; however, intracranial 
blood samples allow for comparison of systemic protein 
expression with expression at the site of infarction. Using 
these data, we have reported inflammatory-associated 
proteomic responses that are predictive of clinical out-
comes, such as functional recovery.

Several biomarkers (total tau, pTau181, Aβ40, Aβ42, 
Aβ42/40), GFAP, and Nfl) of dementia also have been 
reported to be associated with VCID [3, 4, 13, 25, 31]. 
However, because stroke is an acute vascular event not 
always present in ADRD populations, the addition of 
other potential biomarkers will strengthen the predic-
tive model for determining stroke patients most likely to 
incur cognitive impairment. The objective of this study 
was to utilize the BACT RAC  registry to identify prot-
eomic biomarkers predictive of cognitive performance at 
discharge and 90-days in ELVO subjects treated with MT.

Methods
Tissue sample and clinical data acquisition
This study utilizes the BACT RAC  tissue registry (clini-
caltrials.gov; NCT 03153683) of human biospecimens 
acquired during ELVO stroke in subjects undergoing 

MT. This study is approved by the University of Kentucky 
Institutional Review Board (IRB). Inclusion criteria for 
this study included all ELVO subjects who were candi-
dates for MT and aged 18 or older. Exclusion criteria for 
this study included age less than18, subjects who were 
pregnant, incarcerated subjects, and subjects unable to 
consent within the IRB-outlined 72-h window. Subjects 
included in this current study were enrolled between 
June 21, 2017, and March 1, 2021. Methods of acquir-
ing systemic blood during MT per the BACT RAC  pro-
tocol has been previously published.8 Briefly, arterial 
blood proximal to the clot is sampled immediately prior 
to recanalization. Blood is aliquoted into BD Microtainer 
tubes with K2E (K2EDTA; Becton, Dickinson and Com-
pany) and spun down at 2000 rcf for 15  min, plasma is 
promptly extracted off the top and flash frozen on dry 
ice in a Wheaton CryoELITE cryogenic vial (DWK Life 
Sciences; Millville, New Jersey). Samples are stored at 
-80 C until batches are sent to Olink Proteomics (Olink 
Proteomics, Boston, MA) for analysis of plasma protein. 
OLINK proteomics is a high-throughput, multiplexed 
protein analysis technology that allows for the simulta-
neous quantification of hundreds of proteins in a single 
sample.

While BACT RAC  enrollment continues, we limited 
the dataset to this interval to ensure complete primary 
outcomes. Clinical data are collected on each subject 
including demographics, comorbidities, relevant labs, 
radiographic outcome, thrombectomy outcome, and 
both functional and cognitive outcome metrics. Specific 
to this study, Montreal Cognitive Assessment (MoCA) 
scores were either clinically documented in the full 
30-point scale or the abbreviated mini-MoCA, 12-point 
scale. The Montreal Cognitive Assessment (MoCA) is a 
widely used screening tool to assess cognitive function in 
adults. It was developed to detect mild cognitive impair-
ment (MCI) and early dementia. The test measures dif-
ferent cognitive domains, such as attention, memory, 
language, orientation, visuospatial skills, and executive 
function. The full MoCA test consists of 30 questions 
and takes approximately 10–15  min to administer. It 
assesses a wide range of cognitive functions and is sen-
sitive to mild cognitive impairment. The full MoCA test 
is typically administered by a trained healthcare profes-
sional, such as a physician, nurse, or psychologist. The 
mini-MoCA is a shorter version of the MoCA test, con-
sisting of only 12 questions, and it takes approximately 
5–10 min to administer. The mini-MoCA is a quicker and 
more convenient screening tool for busy healthcare pro-
fessionals or for use in settings where time is limited. It 
focuses on the most critical cognitive domains, such as 
attention, memory, and executive function. A limitation 
of this study is inconsistent administration of the MoCA 
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or mini-MoCA at discharge by the medical professionals. 
To remedy this inconsistency in scoring we converted the 
mini-MoCA score into a 30-point scale for comparability 
using the following equation.

Specimen processing and proteomic analysis
Methods for biospecimen processing for proteomic anal-
ysis has been previously published [8, 16–18, 26]. Plasma 
samples are sent to Olink Proteomics (Olink Proteomics, 
Boston, MA) for analysis of 96 cardiometabolic and 96 
inflammatory proteins. Olink returns proteomic expres-
sion values in a Normalized Protein eXpression (NPX) 
value, which is in log2 scale to reduce intra- and inter-
assay variability when running statistics across sample 
sets. Presently, Olink has been included in over 11,000 
publications (https:// www. olink. com/).

Statistical analysis
When assessing for the presence of comorbidities such 
as hypertension, hyperlipidemia, and diabetic status, 
unpaired t-tests were utilized. For categorical variables 
such as location of thrombus (left, right, basilar), and 
BMI (normal, overweight, and obese) ANOVA was uti-
lized. For continuous variables such as infarct volume, 
age of patient, and infarct time, Pearson correlations were 
utilized. Protein concentrations from individual patient 
samples were assessed with MoCA score at discharge 
and 90-days using Pearson correlations. For all analyses, 
p ≤ 0.05 was considered significant. Data analysis was 
performed in GraphPad Prism Version 9.3.1.

Results
Subject demographic and comorbid data
Table  1 demonstrates the demographic, comorbid, and 
outcome data for the separate cohorts of subjects ana-
lyzed in this study. There were n = 52 subjects with dis-
charge MoCA scores and n = 28 subjects with 90-day 
MoCA scores.

MoCA scores and subject characteristics
Discharge MoCA scores were assessed in relation to 
demographic data, comorbidities, and outcome. When 
location of thrombus was assessed, subjects with a basi-
lar thrombus were found to have significantly lower dis-
charge MoCA scores when compared to the right-sided 
thrombus group (p = 0.01) indicating greater cognitive 
burden in basilar subjects. No other thrombus location 
assessments were significant, including no relationship 
between left- vs. right-sided locations. There was a posi-
tive correlation between low-density lipoprotein (LDL) 
and MoCA score at discharge (p = 0.02;  R2 = 0.12). There 

Pro− rated Score = (30×mini −MoCA score)/12

were no significant relationships between discharge 
MoCA scores and patient age, sex, presence of hyperten-
sion, hyperlipidemia, diabetes diagnosis, BMI, A1c, TSH 
levels at presentation, high-density lipoprotein (HDL), 
triglyceride level, total cholesterol, previous stroke, 
infarct time, infarct volume, or whether subject received 
tPA prior to MT.

90-day MoCA scores were also assessed in relation to 
demographic data, comorbidities, and outcome. Age was 
found to have a negative correlation with 90-day MoCA 
scores, indicating older subjects performed worse on the 
cognitive examination (p = 0.03). When subjects were 
broken down into respective BMI categories (< 24.9 
as normal, 25–29.9 as overweight, and ≥ 30 as obese), 
ANOVA testing revealed the normal weighted group 
had significantly lower 90-day MoCA scores when com-
pared to the obese group (p = 0.03). There were no sig-
nificant relationships identified when assessing 90-day 
MoCA scores and patient sex, A1c, TSH, LDL, HDL, tri-
glycerides, total cholesterol; diagnosis of hyperlipidemia, 
hypertension, diabetes; infarct time, infarct volume, atrial 
fibrillation or location/source of thrombus.

MoCA scores and proteomics
Of the n = 52 subjects with a discharge MoCA score, 
n = 23 had proteomic data for analysis. Likewise, of the 
n = 28 subjects with a 90-day MoCA score, 13 had prot-
eomic data for analysis. Table  2 demonstrates the top 6 
most significant intracranial and systemic proteins corre-
lated with discharge MoCA scores from n = 23 subjects. 
Again, there were no significant relationships identified 
when assessing MoCA scores and patient sex, A1c, TSH, 
LDL, HDL, triglycerides, total cholesterol; diagnosis of 
hyperlipidemia, hypertension, diabetes; infarct time, 
infarct volume, atrial fibrillation or location/source of 
thrombus.

Proteins were ranked by smallest p-value and largest 
 R2 value. Most significant intracranial proteins correlated 
to discharge MoCA score (all with positive correlations) 
include thyroxine-binding globulin (SERPINA 7), delta 
and notch-like epidermal growth factor-related receptor 
(DNER), apolipoprotein M (APOM), insulin-like growth 
factor binding protein-3 (IGFBP3), soluble dipeptidyl 
peptidase-4 (s-DPP4), and multiple epidermal growth 
factor-like domains protein 9 (MEGF9). Most significant 
systemic proteins correlated to discharge MoCA score 
(all with positive correlations) include DNER, APOM, 
IGFBP3, stem cell factor (SCF), prolyl endopeptidase 
FAP (FAP), and transforming growth factor-beta-induced 
protein ig-h3 (TGFBI) (Fig. 1).

Table 3 demonstrates the top 6 most significant intrac-
ranial and systemic proteins related to discharge MoCA 
scores from n = 13 subjects. Proteins were ranked by 

https://www.olink.com/
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Table 1 .

MOCA at Discharge MOCA at 90 Days

Overall Cohort n = 52 Proteomic Cohort n = 23 Overall Cohort n = 28 Proteomic Cohort n = 13

Age (median; range) 62 ± 14.7 59 ± 15.1 60 ± 16.5 59 ± 18.7

Sex
 Female 29 (56) 15 (65) 10 (36) 5 (38)

 Male 23 (44) 8 (35) 18 (64) 8 (62)

BMI
 < 18.5 2 (4) 1 (4) 0 (0) 0 (0)

 18.5–24.9 10 (19) 5 (22) 5 (18) 2 (15)

 25–29.9 15 (29) 8 (35) 9 (32) 6 (46)

 > 30 25 (48) 9 (39) 14 (50) 5 (38)

Comorbidities
 Hypertension 42 (81) 18 (78) 23 (82) 11 (85)

 Diabetes Mellitus II 14 (27) 2 (9) 6 (21) 2 (15)

 Hyperlipidemia 16 (31) 5 (22) 8 (29) 4 (31)

 Atrial Fibrillation 20 (38) 10 (36) 9 (39) 5 (38)

 Previous Stroke 6 (12) 3 (13) 1 (4) 0 (0)

Smoking Status*
 Never 25 (48) 11 (52) 12 (52) 6 (50)

 Currently 17 (33) 8 (38) 8 (35) 5 (42)

 Previously (> 6 months) 6 (2) 2 (10) 3 (13) 1 (8)

NIHSS on Admission
 Minor Stroke (1–4) 3 (6) 1 (4) 2 (7) 1 (8)

 Moderate Stroke (5–15) 32 (63) 17 (74) 15 (54) 7 (54)

 Moderate/Severe (16–20) 10 (19) 4 (17) 7 (25) 4 (30)

 Severe Stroke (≥ 21) 6 (12) 1 (4) 4 (14) 1 (8)

NIHSS at Discharge*
 Minor Stroke (1–4) 38 (74) 16 (70) 16 (59) 6 (50)

 Moderate Stroke (5–15) 12 (24) 6 (26) 10 (37) 5 (42)

 Moderate/Severe (16–20) 1 (2) 1 (4) 1 (4) 1 (8)

 Severe Stroke (≥ 21) 0 (0) 0 (0) 0 (0) 0 (0)

TICI Score
 2A =  < 50% Perfusion 0 (0) 0 (0) 0 (0) 0 (0)

 2B =  > 50% Perfusion 19 (37) 9 (39) 11 (44) 6 (46)

 3 = Full Perfusion 32 (63) 14 (61) 14 (56) 7 (54)

LKN to Thrombectomy 564 ± 356 657 ± 405 625 ± 402 796 ± 460

Infarct Volume (mm3) 22,353 ± 27,183 15,991 ± 18,015 32,808 ± 37,961 27,403 ± 36,709

Location of Thombus
 Left ICA 2 (4) 1 (4) 1 (4) 1 (8)

 Right ICA 1 (2) 0 (0) 0 (0) 0 (0)

 Left MCA 16 (30) 6 (26) 8 (28) 1 (8)

 Right MCA 28 (54) 14 (61) 14 (50) 9 (69)

 Basilar 5 (10) 2(9) 5 (18) 2 (15)

Source of Thrombus
 Cardioembolic 32 (61) 14 (59) 15 (53) 7 (53)

 Atherembolic 14 (27) 3 (13) 7 (25) 2 (15)

 Intracranial Stenosis 1 (2) 1 (5) 1 (5) 1 (8)

 Dissection 1 (2) 1 (5) 1 (5) 1 (8)

 Carotid Occlusion 1 (2) 1 (5) 1 (5) 1 (8)

 Infection 0 (0) 0 (0) 0(0) 0 (0)
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smallest p-value and largest  R2 value. Most significant 
intracranial proteins correlated with 90-day MoCA (all 
were negative correlations) include artemin (ARTN), 
monocyte chemotactic protein-2 (MCP-2), monocyte 
chemotactic protein 1 (MCP-1), cartilage oligomeric 
matrix protein (COMP), neuropilin-1 (NRP1), and 
eotaxin (CCL11). Most significant systemic proteins 
negatively correlated with 90-day MoCA scores include 
ARTN, latent-transforming growth factor beta-binding 
protein 2 (LTBP2), and MCP-2. Most significant systemic 
proteins positively correlated with 90-day MoCA scores 
include insulin-like growth factor binding protein-3 

(IGFBP3), tyrosine-protein kinase receptor tie-1 (TIE1), 
and interleukin-7 receptor subunit alpha (IL7R).

Discussion
Thrombectomy guidelines for ELVO stroke subjects have 
been generated by trials which measured neurologic/
functional outcome, often the modified Rankin Score 
[34]. We aimed to utilize systemic and intracranial prot-
eomic data on ELVO subjects undergoing MT to identify 
proteomic biomarkers of cognition which may be both 
prognostic as well as targets for novel/existing therapies. 
Systemic blood is reliably accessible for potential prog-
nostics while the analysis of intracranial blood reveals the 
local ischemic response, which identifies potential thera-
peutic targets.

We started by investigating patient demographic data 
for predictors of cognitive performance. When assessing 
discharge MoCA scores, aside from basilar location of 
thrombus and LDL levels, there were no significant rela-
tionships with demographic/laboratory data nor infarct 
time. Our finding of a positive correlation between LDL 
and discharge MoCA scores but not 90-day MoCA 
scores may be related to atherosclerotic burden at pres-
entation; however, studies have reported few cognitive 
consequences related to chronic LDL levels [20]. When 
assessing 90-day MoCA scores, age was found to have 
a negative correlation, whereas having normal BMI was 
associated with lower cognitive scores. Both findings 
are unsurprising as age-related cognitive decline is well-
known, and our group has previously reported obese 
stroke patients are significantly younger (17 years) com-
pared to the normal BMI cohort [17].

Next, we investigated systemic and intracranial pro-
teins found to have significant correlations to dis-
charge MoCA scores as well as to 90-day MoCA scores. 

Table 1 (continued)

MOCA at Discharge MOCA at 90 Days

Overall Cohort n = 52 Proteomic Cohort n = 23 Overall Cohort n = 28 Proteomic Cohort n = 13

 Unknown 3 (6) 3 (13) 2 (7) 1 (8)

CTA Collateral Score*
 0 2 (9) 2 (10) 4 (24) 3 (25)

 1 15 (68) 14 (70) 10 (58) 7 (58)

 2 3 (14) 2 (10) 2 (12) 2 (17)

 3 2 (9) 2 (10) 1 (6) 0 (0)

*missing 1 (n = 51) *missing 2 (n = 23) *missing 5 (n = 23) *missing 1 (n = 12)

**missing 3 (n = 49) **missing 1 (n = 24) **missing 1 (n = 27)

***missing 7 (n = 45) ***missing 3 (n = 22) ***missing 3 (n = 25)

****missing 10 (n = 42) ****missing 9 (n = 19)

*****missing 11 (n = 17)

Table 2 Top 6 most significant intracranial and systemic proteins 
related to discharge MoCA by n = 23 subjects. Proteins were 
ranked by smallest p-values and largest  R2 values; all correlations 
were positive

Proteins Significantly Correlated to Discharge MoCA Scores

Proteins P-value R2 value

Intracranial Samples

 SERPINA7 0.01 0.28

 DNER 0.01 0.27

 APOM 0.02 0.24

 IGFBP3 0.03 0.21

 s-DPP4 0.05 0.18

 MEGF9 0.05 0.18

Systemic Samples

 DNER 0.001 0.42

 APOM 0.004 0.33

 IGFBP3 0.008 0.29

 SCF 0.02 0.22

 FAP 0.03 0.20

 TGFBI 0.03 0.20
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Interestingly, several of the proteins we found to have a 
significant relationship with post-stroke cognitive func-
tion have been previously reported to play a role in stroke 
outcome and cognition/neurodegeneration.

First, we focus on soluble dipeptidyl peptidase 4 
(s-DPP4) and C–C motif chemokine 11 (CCL11) as 
biomarkers and potential therapeutics for post-stroke 
cognition that have been previously reported on in 
the context of stroke and in cognition. Soluble DPP-4 
(s-DPP4) is well-known in the diabetes literature lead-
ing to the development of several inhibitors which 

help lower blood glucose levels. FDA-approved DPP4 
inhibitors typically block the membrane bound form 
of DPP4, which increases s-DPP4. In our current study, 
we studied the soluble form of DPP4 and found a posi-
tive correlation between intracranial s-DPP4 and dis-
charge MoCA scores indicating higher s-DPP4 was 
predictive of better cognitive function. DPP4 inhibitors 
have previously been administered in several rodent 
models of stroke and have demonstrated efficacy in 
reducing injury and enhancing functional recovery 
[5]. Further, these inhibitors have been associated with 
improvement in cognition in a diabetic rat model and 
have been suggested as a potential treatment for Alz-
heimer’s disease [1, 24]. Our findings that increased 
s-DPP4 (a potential consequence of DPP4 inhibition), 
was predictive of better cognitive function corroborate 
prior findings in the stroke and cognition literature. In 
our study, we also found that intracranial CCL11 was 
negatively correlated with 90-day MoCA scores. This 
finding is unsurprising as CCL11 has been shown to 
be a causative factor in the cognitive decline of aging 
[35]. CCL11 is a ligand for the chemokine receptor type 
3 (CCR3) receptor and, thus, CCR3 has been identified 
as a potential therapeutic target for Alzheimer’s disease 
that reduces amyloid beta deposition and tau phospho-
rylation [35]. Interestingly, DPP4 has been shown to 
cleave CCL11 and reduce its chemotactic interaction 
with CCR3 [29]. Taking previous finding into the con-
text of our current study, we postulate s-DPP4 exerts 
a beneficial effect on cognition after ELVO by cleaving 
and inactivating chemokines such as CCL11 that impair 
cognition through the CCR3 receptor pathway. This 
supports existing literature that DPP4 inhibitors may 
be useful in combatting cognitive decline and offers a 
specific human pathology for future application.

Fig. 1 illustrates the inter-protein relatedness among proteins predictive of both MoCA at discharge (A) and MoCA at 90-days (B). These graphics 
include both intracranial (green) and systemic (yellow) findings and allow for proteomic comparisons across outcome measures. For example, 
several of the systemic proteins predictive of MoCA at discharge are also significant in the intracranial blood (DNER, APOM, IGFBP3, s-DPP4), 
indicating a similar response at the site of infarction compared to blood that could be sampled systemically. These proteomic webs demonstrate 
network strength  (r2 value) and aids in the investigation of more complex protein–protein signaling pathways, rather than a singular protein at a 
specific timepoint

Table 3 Top 6 most significant intracranial and systemic proteins 
related to 90-day MoCA. Proteins were ranked by smallest 
p-values and largest  R2 values. Asterisks indicate negative 
correlation while proteins without asterisks indicate positive 
correlations

Proteins Significantly Correlated to 90-day MoCA Scores

Proteins P-value R2 value

Intracranial Samples

 ARTN* 0.002 0.59

 MCP-2* 0.003 0.57

 MCP-1* 0.003 0.56

 COMP* 0.007 0.46

 NRP1* 0.007 0.49

 CCL11* 0.01 0.46

Systemic Samples

 ARTN* 0.001 0.62

 IGFBP3 0.01 0.45

 LTBP2* 0.02 0.43

 TIE1 0.02 0.43

 IL7R 0.02 0.42

 MCP-2* 0.02 0.42
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Additional proteins which have been shown to be 
related to neurodegeneration include IGFBP3, DNER, 
and NRP1. Insulin-like growth factor-binding protein 
3 (IGFBP3) is one of six members of a family known to 
carry IGF-1. In our study, we found that intracranial 
IGFBP3 was positively correlated to discharge MoCA 
score and similarly systemic IGFBP3 was positively cor-
related to both discharge and 90-day MoCA scores 
indicating higher IGFBP3 were predictive of better cog-
nitive function. A prior study reported that low levels of 
IGFBP3 were predictive of worse functional outcome at 
one-year post-stroke based on modified Rankin scores 
[6]. Our findings align with and add to this study by 
including cognitive function metrics after stroke. A 
separate study investigating insulin-like growth factors 
and cognitive function in the aging male population 
reported increased IGFBP3 was significantly associated 
with greater cognitive decline in their studied population 
[10]. Interestingly, the directionality of our findings are 
opposite to this study, which may offer a unique relation-
ship between IGFBP3 and cognition in stroke patients 
specifically. Delta and Notch-like epidermal growth 
factor-related receptor (DNER) has been shown to acti-
vate the NOTCH1 pathway which has been reported to 
contribute to neurodegeneration and Alzheimer’s patho-
physiology [23]. In our study, both systemic and intrac-
ranial DNER were positively correlated with discharge 
MoCA scores but not at the later time point of 90-days, 
indicating a potential temporal change in the proteomic 
expression which may influence cognitive function in the 
sub-acute phase of recovery. Neuropilin-1 (NRP1) has 
been shown to be upregulated in patients with severe 
Alzheimer’s disease [14]. One study reported NRP1 to 
interact with APOE-e4 in cognition as higher levels of 
NRP1 correlated to cognitive decline in patients with 
the APOE-e4 gene [21]. NRP1 has been shown to have 
a role in mitochondrial dysfunction, atherosclerosis, 
and neurodegeneration as well as in brain microvascular 
endothelial inflammation and blood–brain-barrier func-
tion [2, 32]. Not surprisingly, vascular dysfunction and 
blood–brain-barrier disruption have both been shown 
to be directly related to VCID [7]. In our cohort, NRP1 
was found to be negatively correlated with 90-day MoCA 
scores indicating higher levels were associated with 
worse cognitive function as supported by prior literature.

Other proteins that stood out in our findings include 
MCP1 and COMP. A previously published meta-analysis 
reported increased circulating levels of monocyte chem-
otactic protein 1 (MCP1) was associated with increased 
long-term risk of stroke and that this protein may serve 
as a potential therapeutic target [9]. In our study, we 
add to the existing literature by reporting on MCP1 and 
cognitive outcome after stroke. Like the meta-analysis, 

we found that increased MCP1 levels were deleterious; 
specifically, intracranial MCP1 levels were negatively 
correlated with 90-day MoCA scores. A previous study 
reported cartilage oligomeric matrix protein (COMP) to 
be positively associated with worse plaque burden and 
plaques that were symptomatic in carotid atherosclero-
sis [11]. Again, our study adds to the existing literature 
by reporting on the relationship between COMP levels 
and cognitive function post-stroke. Like the prior study, 
we found COMP to be a negative factor; specifically, we 
report a negative correlation between intracranial COMP 
levels and 90-day MoCA scores indicating higher COMP 
levels predicted worse cognitive function at the 90-day 
time point. As many ELVO strokes are atherosclerotic 
in etiology, we find the relationship between COMP and 
MoCA to be of particular interest in future studies.

Several biomarkers related to dementia are also linked 
to the development or prediction of stroke-induced 
dementia. Plasma levels of Ab42/40-b  and ptau181 
and total tau have been reported to be involved in the 
development of post-stroke cognitive impairment [3, 4, 
31]. Both of these proteins are also associated with cer-
ebral microbleeds, which is a risk factor for dementia. 32 
Higher plasma NfL has been reported to be predictive of 
unfavorable functional outcomes after stroke. 33 GFAP 
has been reported to provide clinical information in dif-
ferential diagnosis of different types of strokes https:// 
doi. org/ 10. 1007/ BF032 56432.  These biomarker stud-
ies use patient data after the stroke and don’t differenti-
ate in the type of ischemic stroke. Additional studies are 
needed to determine if these biomarkers are present at 
the time of thrombectomy which is 3–12 h after the last 
known normal.

An existing limitation of BACT RAC  is the geographic 
location where samples were collected. Our study repre-
sents one population of the United States with limitations 
on diversity, mainly serving Caucasian individuals with 
homogenous comorbidities. However, a significant por-
tion of our stroke patients are from rural areas of Appa-
lachia, which represents a population with known health 
disparities. Access to this patient population will allow us 
to further study an underserved area where novel prog-
nostics and therapeutic interventions would be greatly 
valued. Proteomic relationships with stroke outcomes in 
Appalachia will be the focus of subsequent studies con-
ducted by our group. Another limitation of this study is 
the sample size of subjects with discharge and 90-day 
MoCA scores. The full MoCA is most appropriate for 
individuals with at most moderate impairment, as apha-
sia and other more severe impairments can interfere 
mask otherwise intact abilities (receptive language, verbal 
memory) on some items on the test. For such patients we 
collected a Mini-MoCA better suited to the population. 

https://doi.org/10.1007/BF03256432
https://doi.org/10.1007/BF03256432
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There remains a potential selection effect, as only those 
with a MoCA or MiniMoCA score were included in the 
analysis, and thus our findings may be limited to those 
without profound post-stroke impairment. Data reported 
here will be validated as BACT RAC  enrollment continues 
and larger analyses are conducted. Another constraint 
of this study is that it is limited to correlative analyses. 
For example, some proteins are elevated because of vas-
cular injury and contribute to the injury, however, some 
proteins are consequentially upregulated as a response/
protective/rescue measure. Further, some proteins may 
have high expression but lower activity or vice versa. 
However, these correlations still could serve as predic-
tive biomarkers for cognitive performance after stroke. 
It is also important to emphasize we are studying cogni-
tive decline secondary to ELVO treated by MT, which is a 
very specific pathophysiology in a very specific cohort of 
patients. ELVO injury is significantly different from other 
types of stroke and small vessel disease and the cogni-
tive decline after ELVO is likely different from cognitive 
decline secondary to dementias of varying etiologies. 
Lastly, proteins which have been shown to contribute to 
stroke severity focus on outcome metrics different from 
cognitive function tests, for example mRS. Here we pro-
vide preliminary but novel data on systemic and intrac-
ranial protein expression in ELVO subjects treated with 
MT and how those proteins related to cognitive function 
at the time of discharge as well as at 90-day follow-up.

Conclusion
In conclusion, we set out to identify proteomic predic-
tors and potential therapeutic targets related to cognitive 
outcomes in ELVO subjects undergoing MT. Here, we 
report several proteins which were found to be predictive 
of MoCA scores at discharge and at 90-days. Many pro-
teins reported here such as s-DPP4 and CCL11 have been 
studied in the context of cognition previously, however, 
our study investigates their role in a specific population 
after endovascular recanalization. These proteins serve as 
a springboard for future therapeutic applications to offset 
stroke-related cognitive decline.
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