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Background
Introduction
In recent years, increasing attention has been given to 
hypoxia-based treatment for persons with neurodegen-
erative and mitochondrial disease, as reflected by the 
significant rise in publications from basic [1], preclinical 
[2] and clinical [3, 4] research groups. Hypoxia treatment 
is based on the idea of hypoxic conditioning and adap-
tations induced by hypoxia. Recently, we published a 
protocol paper to assess the safety, feasibility, and acute 
symptomatic effects of single sessions of continuous 
and intermittent hypoxia (for 45 min, at FiO2 0.133 and 
0.163) in persons with Parkinson’s disease (PD) [3].

In Coste & Touitou’s recent correspondence [5] to our 
protocol [6], they highlighted the potential for circadian 
rhythm disturbances induced by hypoxia in PD. This 
interesting insight is based on their two different studies, 
in which a phase shift in circadian rhythm (as measured 
by cortisol and melatonin) was observed after eight-
hours-long ‘chronic’ exposure to hypoxia [7, 8]. Coste 

& Touitou [6] carefully considered that hypoxia-based 
interventions could therefore induce changes in circadian 
rhythm, and this may in turn affect the outcome of these 
interventions. Here, we discuss important differences 
between chronic hypoxia, which resembles hypoxia as a 
disease model for sleep apnea, and hypoxic conditioning.

Hypoxia: disease model or disease‑modifying potential?
Neurophysiological responses to hypoxia are com-
plex and vary depending on dose, duration and frequency 
(reviewed in [9]). The first important distinction between 
chronic hypoxia and hypoxia-based treatment is the dif-
ference in experimental design. While chronic hypoxia 
interventions induce hours-long hypoxia, therapeutic 
hypoxia-based interventions are based on the principle 
of hypoxic conditioning. Hypoxic conditioning effects are 
induced by moderate, relatively brief, and repeated expo-
sure to a hypoxic stimulus. This controlled administra-
tion is suggested to lead to the activation of antioxidant 
pathways through HIF-1-dependent and independent 
pathways, including the Nrf2-Keap1 signaling pathway. 
Importantly, activation of these pathways does not appear 
to cause significant enduring oxidative stress [10, 11]. 
Indeed, hypoxic conditioning might protect against oxi-
dative stress and subsequent neuro-inflammation from 
later stressors [12–14]. Nevertheless, it is likely that 
hypoxic conditioning interventions have a narrow thera-
peutic window, which has been reviewed comprehen-
sively previously [15]. We know of no published evidence 
that brief (< 60 min) exposure to IH causes enduring car-
diovascular adaptations or sleep disturbances in humans.

Chronic intermittent hypoxia (CIH) is the main 
experimental model used to investigate the effects of 
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obstructive sleep apnea (OSA) on neurodegeneration 
[16]. OSA is a disorder characterized by recurrent epi-
sodes of partial or complete airway obstruction, result-
ing in intermittent hypoxia during nocturnal sleep (thus 
typically imposed for 7–9  h) where oxygen saturations 
below 80% are common [17]. As suggested by Coste & 
Touitou [6], an hours-long experimental protocol may 
adversely affect the circadian rhythm, either by dis-
turbed sleep or due to persistent sympathetic activation 
[18, 19]. Although a causal relation between sleep apnea 
and PD has not been established in humans, associations 
between OSA incidence and PD risk have been reported 
[20]. Moreover, preclinical evidence is strongly suggestive 
of sleep apnea inducing nigrostriatal degeneration [21, 
22].

The disparity between chronic hypoxia and hypoxic 
conditioning might stem from differences at the molec-
ular level. Although both chronic hypoxia and hypoxic 
conditioning activate the HIF-1 pathway, chronic hypoxia 
induces enduring oxidative stress and sympathetic activa-
tion compared to hypoxia conditioning, adversely affect-
ing cardiovascular health [16, 23]. Furthermore, chronic 
hypoxia induces prolonged NFkB pathway activation, 
which is a primary driver of neuroinflammation. Indeed, 
NFkB and downstream pathways such as IL-6 and IL-1β 
are presumed instigators of sleep apnea-induced neuro-
degeneration [24].

Current trial experience
Based on preclinical evidence on the effects of hypoxic 
conditioning in neurodegenerative diseases [1, 4, 25], we 
initiated the first hypoxia trial in people with PD [3]. The 
aim of this currently ongoing double-blinded placebo-
controlled study is to assess the safety, feasibility and 
acute responses of hypoxic interventions in individuals 
with PD. For the first time, this will allow us to directly 
investigate the physiological, respiratory and symptom 
responses to hypoxia in this population. We investigate 
the acute and delayed response (up to three days post-
intervention) to four different hypoxia interventions 
and a placebo intervention, all with a 45-min duration. 
Hypoxia interventions are either continuous or intermit-
tent (5 min of hypoxia interspersed with normoxia), at a 
fraction of oxygen (FiO2) of 0.133 or 0.163. The trial is 
conducted in 20 individuals with Hoehn & Yahr stage 1.5 
to 3 and consists of multiple N-of-1 trials, which allows 
each participant to be his or her own control and thereby 
allows for intra-individual outcome analysis.

To address the remarks that were raised in the Comment 
by Coste & Touitou, we have investigated the amount of 
reported adverse events (AEs) to date in our study, as well 
as the nature of AEs per protocol [3]. Across four differ-
ent hypoxia protocols and one placebo, three sleep-related 

AEs occurred, two of which were related to restlessness 
and REM-sleep behaviour disorder. Sleep-related AEs 
occurred in three different protocols, one of which was a 
placebo. Therefore, the incidence of sleep-related AEs does 
not seem to be higher in hypoxia protocols in our study.

In addition to sleep-related AEs, we evaluated sleep 
quality in our study population as part of non-motor 
symptom severity scores on a 4-point Likert scale (zero 
indicating worst sleep quality). The mean sleep quality 
rating score in the week following a placebo intervention 
was 3.0 (SD 0.9) and there was no significant difference 
with hypoxia interventions (mean sleep quality rating 
score ranged between 2.9 and 3.2). We are not aware of 
any other studies reporting an association between the 
timing of hypoxia conditioning and subsequent circadian 
disturbances. A potential implication of Coste & Toui-
tou’s raised points is that hypoxia administration in the 
morning might be preferable. As this was also the case in 
our current study, we cannot draw conclusions on time-
dependent circadian disturbances. Taken together, our 
data do not show an adverse effect of hypoxia interven-
tions on sleep-related events or sleep quality.

Lastly, in our study we will also monitor vital param-
eters, including arterial blood gas, blood pressure, heart 
rate (variability), and serum cortisol in the acute phase of 
administering both intermittent and continuous hypoxia 
for 45 min. These data will provide insight into the influ-
ence of hypoxia on the acute and subacute sympathetic 
system activation and stress response. However, despite 
these measures, and in light of Coste & Touitou’s cor-
respondence [6], we think it is appropriate to include 
an exploratory outcome for sleep quality and circadian 
rhythm to any follow-up studies in PD hypoxia trials. 
Further safety and response-related results from this 
phase 1 study will be addressed in separate reports. Fol-
low-up trials will investigate the effects of hypoxia condi-
tioning, administered multiple times per week.

Conclusion
Hypoxia conditioning is a potentially novel treatment 
strategy for mitochondrial and neurodegenerative diseases 
and differs from hypoxia as a disease model for ischemia 
and obstructive sleep apnea in a number of key aspects. 
Importantly, these differences determine the molecular 
pathways that are induced at a clinically relevant level and, 
ultimately, the consequences of long-term application. For 
that reason, it is essential to carefully consider the hypoxic 
dose, duration and administration frequency when design-
ing clinical trials. Furthermore, monitoring of  physi-
ological parameters and induction of downstream target 
mechanisms is necessary to determine the therapeutic 
window. Although our preliminary results do not support 
an adverse effect of hypoxia interventions in persons with 
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PD, further exploration of the effects of hypoxia on circa-
dian rhythm may be warranted in future studies.
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