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Abstract
Background Autism spectrum disorder (ASD) affects 1 in 100 children globally with a rapidly increasing prevalence. 
To the best of our knowledge, no data exists on the genetic architecture of ASD in India. This study aimed to identify 
the genetic architecture of ASD in India and to assess the use of whole exome sequencing (WES) as a first-tier test 
instead of chromosomal microarray (CMA) for genetic diagnosis.

Methods Between 2020 and 2022, 101 patient-parent trios of Indian origin diagnosed with ASD according to the 
Diagnostic and Statistical Manual, 5th edition, were recruited. All probands underwent a sequential genetic testing 
pathway consisting of karyotyping, Fragile-X testing (in male probands only), CMA and WES. Candidate variant 
validation and parental segregation analysis was performed using orthogonal methods.

Results Of 101 trios, no probands were identified with a gross chromosomal anomaly or Fragile-X. Three (2.9%) and 
30 (29.7%) trios received a confirmed genetic diagnosis from CMA and WES, respectively. Amongst diagnosis from 
WES, SNVs were detected in 27 cases (90%) and CNVs in 3 cases (10%), including the 3 CNVs detected from CMA. 
Segregation analysis showed 66.6% (n = 3 for CNVs and n = 17 for SNVs) and 16.6% (n = 5) of the cases had de novo and 
recessive variants respectively, which is in concordance with the distribution of variant types and mode of inheritance 
observed in ASD patients of non-Hispanic white/ European ethnicity. MECP2 gene was the most recurrently mutated 
gene (n = 6; 20%) in the present cohort. Majority of the affected genes identified in the study cohort are involved in 
synaptic formation, transcription and its regulation, ubiquitination and chromatin remodeling.
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Background
Autism spectrum disorder (ASD) is a heterogeneous 
group of neurodevelopmental disorders (NDD) with a 
prevalence of approximately 1 in 160 children worldwide 
[1] and with variable clinical presentations and outcomes 
[2]. According to the latest version of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-5), 
it is characterized by impaired social communication 
along with repetitive behavior or restricted interests 
which can persist throughout lifetime [3, 4]. In addition 
to these core features, many affected individuals can be 
afflicted with comorbidities like intellectual disability 
and epilepsy. A review and meta-analysis of ASD in India 
reported low prevalence of only 0.0014 − 0.0012% in chil-
dren aged 1–18 years compared to developed countries 
like the United States and United Kingdom with a preva-
lence of 1-1.5% [5]. However, a review across the South 
Asian population reported its prevalence rate ranging 
from 0.09 to 1.07% which is similar to that observed in 
developed countries [6].

The etiology of ASD is not fully understood, although, 
similar to several neurodevelopmental disorders, genetic 
risk and environmental exposure appears to contribute 
to the pathogenesis of ASD [7, 8]. Data from twin stud-
ies suggest a strong genetic role and a quantitative meta-
analysis on all published twin studies in the context of 
ASD has estimated heritability component between 64 
and 91% [9]. Therefore, genetic testing is recommended 
in ASD patients and as of 2013, an etiology underlying 
ASD could be established in around 6–15% cases [10]. 
Guidelines put forth a decade ago by the American Col-
lege of Medical Genetics (ACMG) suggests using chro-
mosomal microarray (CMA) as a first line test in ASD 
since its diagnostic yield was estimated to be between 7 
and 9% [2, 10]. However, since then, studies using whole 
exome sequencing (WES) have evidenced sequence level 
contribution of de novo variants in the etiology of ASD 
and recent advancements in computational analyses of 
WES data suggests improvement in detection of copy 
number variants (CNVs) too. Indeed, two recent studies 
have shown that WES was able to detect nearly all clini-
cally relevant CNVs that were detected by CMA thereby 
increasing its diagnostic yield by approximately 1.6% [11, 
12]. In addition, a recent retrospective study using WES 
on clinically diagnosed 343 children with ASD from 
Spain suggested a diagnostic yield of ~ 14% with 75% of 

the cases harbouring a de novo variant [1]. It is predicted 
that nearly 85% of the disease causing variants reside in 
the protein coding and splice site regions of the genome, 
which are well covered by WES [13–15]. Various studies 
have repeatedly shown a better yield and utility of WES 
over CMA in NDD and thus, WES has now been sug-
gested as a first-tier test for patients with intellectual dis-
ability/ NDD [16, 17].

Selection and availability of a first-tier test with high 
diagnostic yield is desirable in low-middle income coun-
tries (LMICs) like India, since patients and families bear 
the cost of genetic testing. To our knowledge, no study 
to date has been performed in the Indian population to 
delineate the genetic architecture of ASD which can aid 
in the selection of first-tier genetic test. Here, we report 
the first systematic study to assess the genetic archi-
tecture and molecular diagnostic yields for karyotype, 
Fragile-X testing, CMA and WES in a population-based 
cohort of 101 patient-parent trios with ASD from India.

Materials and methods
Patient recruitment and sample collection
The study included consecutively recruited 101 children 
with a confirmed clinical diagnosis of idiopathic ASD 
based on the DSM-5 [3, 4]. Children with prominent 
syndromic features, isolated speech delay or isolated sen-
sory processing disorders were excluded from this study. 
Blood samples of the patient-parent trios were collected. 
The parents or guardians of all probands provided a writ-
ten informed consent as per the Helsinki Declaration and 
the study was approved by the research ethics commit-
tee at Foundation for Research in Genetics and Endocri-
nology, Ahmedabad (ID: FRIGE/IEC/19/2020). All the 
methods in the study were carried out as per the Helsinki 
Declaration. High molecular weight genomic DNA was 
extracted using desalting method [18] and was stored at 
-20 °C until molecular genetic testing was carried out.

Karyotyping and Fragile-X testing
Karyotyping was performed in all cases regardless of sex, 
whereas Fragile-X testing was performed only in male 
probands. Karyotyping was carried out using GTG band-
ing at 500 band resolution to check for gross chromo-
somal aberrations. Fragile-X testing was carried out by 
triplet repeat primed – polymerase chain reaction (TP-
PCR), that involved analyzing CGG repeat expansion in 

Conclusions Our study suggests de novo variants as a major cause of ASD in the Indian population, with Rett 
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the diagnostic yield between CMA (3%) and WES (30%) which supports the implementation of WES as a first-tier test 
for genetic diagnosis of ASD in India.
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the 5’ UTR of the FMR1 gene using method as previously 
described [19]. Children with a normal chromosomal 
constitution and showing no expansion of the CGG 
repeats in the 5’ UTR of FMR1 gene were subsequently 
assessed with CMA and WES.

Chromosomal microarray
CMA was carried out using CytoScan™ Optima array, 
GeneChip™ System 3000 and Affymetrix platform 
(Thermo Fisher Scientific, USA) as per the manufac-
turer’s instructions. Chromosome Analysis Suite Soft-
ware (ChAS) (Thermo Fisher Scientific, USA) was used 
to carry out the analysis of the data as per the manufac-
turer’s recommendations which suggested a minimum 
resolution of 1 Mb for losses, 2 Mb for gains and 5 Mb 
for copy neutral loss of heterozygosity. For all candidate 
CNVs, variants were primarily screened for population 
frequency and known disease associations using publicly 
available databases like gnomAD database [20], DGV 
[21] and DECIPHER [22] and OMIM [23]. Pathogenicity 
of CNVs were classified in accordance with ACMG and 
ClinGen classification system [24]. All candidate CNVs 
were validated in proband and parents using SYBR Green 
based quantitative PCR (Q-PCR) using ABI’s StepOne 
Real Time PCR system (Thermo Fisher Scientific, USA) 
(Supplementary Table 1).

Whole exome sequencing
Genomic DNA of the proband was subjected to selec-
tive capture and sequencing of the protein coding regions 
that included exons and exon-intron boundaries of genes 
using Agilent SureSelect v6 enrichment kit (Agilent, 
USA). The library prepared, was subjected to paired-end 
sequencing with a mean coverage of > 80-100x on the 
Illumina HiSeq or NovaSeq platform (Illumina, USA). 
Sequences obtained as FASTQ files were aligned to the 
human reference genome (GRCh37/hg19) using BWA 
MEM v0.7.12 [25]. SNVs and indels were called using 
GATK v4.12 Haplotype caller [26]. In addition to SNVs 
and small indels, copy number variants (CNVs) were 
detected from the data using the ExomeDepth v1.1.10 
[27].

Variant annotation, filtration and prioritization was 
performed using Exomiser v12.1.0 [28]. Exomiser uses 
the hiPHIVE prioritization method that incorporates 
protein-protein interaction networks and multi-species 
ontologies along with ranking candidate genes based 
on the predicted variant pathogenicity associated with 
the phenotype. The phenotype information was coded 
in uniform human phenotype ontology (HPO) termi-
nologies [29]. Common variants were filtered based on 
minor allele frequency in the 1000Genome Phase 3 [30] 
and gnomAD v2.1 [20] databases. The minor allele fre-
quency cut off was set at 0.02 (2%). The cut-off was set 

assuming ASD has a global prevalence of 1:100; the fre-
quency of major and minor alleles would be 0.9 (p) and 
0.1 (q), respectively, based on the Hardy-Weinberg equi-
librium. As ASD is caused by dominant de novo variants 
in majority of the cases (pq = 0.09) and the prior estimates 
suggests genetic diagnostic yield of approximately 33%, 
pq would be 0.027. Only non-synonymous variants in 
the coding region and canonical splice site variants with 
a depth of > 20x were used for analysis and clinical cor-
relation. Various in-silico prediction tools such as Poly-
Phen-2 [31], SIFT [32], MutationTaster2 [33], LRT [34], 
CADD [35] and MetaDome [36] were used to predict 
pathogenicity of non-synonymous and indel variants. A 
CADD_phred score of ≥ 15, slightly intolerant, intoler-
ant or highly intolerant predictions of MetaDome and 
at least two damaging predictions from the remaining in 
silico tools were used for selection of candidate variants. 
In-silico predictions along with available knowledge from 
various sources and databases as described below was 
used in prioritising the variant.

Post-gross filtering, variants were prioritized based 
on the following: (a) known disease causing variant 
previously reported in databases like ClinVar [37] and 
HGMD [38]; (b) novel variants in known genes based on 
the Z-score for missense and pLoF or LOEUF score for 
loss of function variants available in the gnomAD data-
base [20]; (c) variants in novel candidate genes wherein 
the respective gene was additionally evaluated for their 
function using UniProt [39] and Human Protein Atlas 
(proteinatlas.org) [40]. Tissue expression using GTEx 
database (gtexportal.org), association/ interaction with 
known ASD genes using STRING database [41] and, 
plausible phenotypic outcome in murine models based 
on the MGI database [42] were assessed. All candidate 
variants were assessed using IGV [43] to evaluate their 
quality.

In the case of candidate CNVs, variants were primar-
ily screened for population frequency and known dis-
ease associations using publicly available databases like 
gnomAD database [20], DGV [21], DECIPHER [22] and 
OMIM [23]. Pathogenicity of CNVs were classified in 
accordance with ACMG and ClinGen classification sys-
tem [24].

All candidate SNVs and indels were validated in pro-
band and parents using bi-directional Sanger sequencing 
using ABI’s SeqStudio platform (Thermo Fisher Scien-
tific, USA) whereas all candidate CNVs were validated 
using SYBR Green based quantitative PCR (Q-PCR) 
using ABI’s StepOne Real Time PCR system (Thermo 
Fisher Scientific, USA) (Supplementary Table 1). This was 
conducted to delineate mode of inheritance and reclas-
sify variant pathogenicity.

The classification of SNVs was carried out according to 
the American College of Medical Genetics – American 
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College of Pathologists (ACMG-AMP) guidelines [44] 
and ClinGen framework [24].

Results
Study cohort
The study cohort consisted of 101 well defined patient-
parent trios diagnosed with moderate to severe ASD of 
unknown etiology as per the DSM-5 criteria. The aver-
age age at recruitment was 5 ± 3 years and ranged from 
2 to 6 months to 16 years (Table 1). The average mater-
nal and paternal age at the time of conception was 28 ± 4 
years and 30 ± 4 years, respectively. The cohort included 
72 males (71%) and 29 females (29%), suggesting a male 
to female ratio of approximately 3:1. Five families had 
more than one child diagnosed with ASD (Supplemen-
tary Information 1). Consanguinity was noted in 8 fami-
lies (7.9%), whereas non-consanguinity and endogamy in 
31 (30.7%) and 62 (61.4%) families, respectively. All 101 
probands with ASD also had developmental delay and 
intellectual disability with some of them having subtle 
dysmorphism (large and/ or cupped ears, long eyelashes, 

telecanthus, thin upper lip) (n = 28/101; 27.7%) and epi-
lepsy (n = 28/101; 27.7%) (Supplementary Table 2).

Outcomes from karyotype and fragile X testing
Sequential genetic testing was performed in all 101 
patients which began with karyotyping and were fol-
lowed by fragile X testing (only in male probands), CMA 
and WES. None of the probands showed gross chromo-
somal aberrations or had expanded triplet repeat tracks 
(full-mutation alleles with > 200 CGG repeats) in the 
5’-UTR region of the FMR1 gene. Therefore, all probands 
were subsequently tested using CMA and WES.

Outcomes from chromosomal microarray
From the 101 probands in whom CMA was performed, 
pathogenic CNVs were detected in 3 cases (2.9%) includ-
ing two deletions and one duplication (Table 2). Proband 
ASD-076 had an 8  Mb deletion at the 15q11.2 locus 
which encompassed 20 OMIM genes and is known to 
cause 15q11.2 deletion syndrome (OMIM#615,656) or 
Angelman syndrome (OMIM#105,830). Compared to 
the individuals with class II deletions (BP2-BP3; ISCA-
37,478), individuals with large class I deletions (BP1-BP3; 
ISCA-37,404) at the 15q11.2 region are observed to have 
a high likelihood of language impairment and autistic 
traits, similar to that seen in the proband in our study 
[45]. Patient ASD-103 was detected with a deletion of 
0.19  Mb size at the 9q34.3 locus which encompassed 6 
OMIM genes and is associated with Kleefstra syndrome 
I (OMIM#610,253). Individuals with > 1  Mb deletion of 
the 9q34 locus have a severe phenotype such as congeni-
tal anomalies including heart defects, limb anomalies, 
seizures and respiratory distress. In contrast individuals 
having < 1  Mb deletion are observed with a milder phe-
notype, which in part could explain the phenotype in the 
proband in the current study such as bruxism, drooling, 
subtle facial dysmorphism and recurrent episodes of 
vomiting [46, 47]. Lastly, proband ASD-050 was detected 
with a 0.52 Mb duplication on the 1q22 locus which con-
sists of 8 OMIM genes. This is a rare CNV which has 
previously only been reported in a boy with intellectual 
disability and psychiatric disturbances [48]. Multiple 
individuals in this family were affected and the duplica-
tion variant segregated with the neurological features in 
all family members with this variant. All CNVs in our 
cohort were de novo in origin and were observed exclu-
sively in male probands.

Outcomes from whole exome sequencing
WES was carried out in 99 of 101 cases, as the cohort 
contained two monozygotic twin pairs and only one pro-
band from each twin pair was processed for WES. The 99 
cases also included the three cases that yielded a result 
by CMA to assess the sensitivity of WES to detect CNVs. 

Table 1 Demographics of 101 patient-parent trios
Variable Whole 

Sample 
(N = 101)

Gender, n (%)
Male 73 (72)

Female 28 (28)

Male-female ratio 2.6:1

Age, years (SD)
Age at diagnosis of probands 5 (3)

Maternal age at conception 28 (4)

Paternal age at conception 30 (4)

Type of Marriage, n (%)
Consanguineous 8 (8)

Non-consanguineous 31 (31)

Endogamous 62 (61)

Phenotype, n (%)
Developmental delay 101 (100)

Speech delay 101 (100)

Intellectual disability 101 (100)

Epilepsy/ seizures 28 (27.7)

Subtle facial dysmorphism 28 (27.7)

Regression (social/ speech) 55 (54.4)

Genetic testing receiveda, n (%)
Karyotype 101 (100)

Fragile-X (FMR1 triplet repeat expansion) 73 (72)

Chromosomal microarray 101 (100)

Whole exome sequencing b 99 (98)
a Genetic testing was carried out in proband only. In cases with a candidate 
variant, orthogonal testing approaches (Sanger sequencing and/or Q-PCR) 
were used to assess and validate the variant in the parents
b Whole exome sequencing was carried out in 99 of 101 cases, as the cohort 
contained two monozygotic twin pairs and only one proband from each twin 
pair was processed
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On an average, approximately 3 candidate gene(s) or 
variant(s) were identified per proband (Supplementary 
Table 3).

From the 101 patients, pathogenic and/ or likely patho-
genic variants were identified in 30 cases (29.7%), of 
which, SNVs were detected in 27 cases (90%) and CNVs 
in 3 cases (10%) (Table 3). Interestingly, 3 CNVs detected 
by CMA were also identified by WES, however, a 0.8 Mb 
de novo deletion encompassing the BP1 region of the 
15q11.2 locus was detected by WES alone (Table 2). On 
further analysis, the lack of detection of the aforemen-
tioned CNV by CMA was due to the lack of probes cov-
ering this region on CytoScan™ Optima array.

Segregation analysis revealed that approximately 
66.6% (n = 3 for CNVs and n = 17 for SNVs) of the cases 
were caused due to a de novo variant. De novo SNVs 
were found primarily in previously known ASD genes- 
MECP2, SCN2A, KCNQ2, TBL1XR1, CNTNAP2, TCF4, 
CAMK2A, NF1, AUTS2, FOXP2 and NLGN3. Of 17 de 
novo variants, 6 were predicted to be loss of function 
(pLOF) variants (35.2%) whereas the remaining were mis-
sense variants. Remarkably, 6 of the 17 patients had a de 
novo SNV in the MECP2 gene, which is associated with 
Rett syndrome (OMIM#312,750). Of these, 5 were female 
and 1 was a male proband. Interestingly, in a rare case 
of the male proband aged 2.5 years with Rett syndrome, 
we observed that the variant c.538  C > T (p.Arg180Ter) 
in the MECP2 gene originated through a post-zygotic de 
novo event which led to somatic mosaicism in the pro-
band (Table 3) [49].

In our cohort of patients with pathogenic/ likely 
pathogenic variants, 5 probands (n = 5/30; 16.6%) 
were observed with biallelic or hemizygous variants 
in genes associated with NDD or metabolic disorders 
with a recessive mode of inheritance (Table  3). Specifi-
cally, biallelic variants were detected in (i) ALDH4A1 
gene which is associated with hyperprolinemia type II 
(OMIM#239,510), (ii) NEUROG1 gene which is associ-
ated with congenital cranial dysinnervation disorder and 
autism spectrum disorder [50], (iii) KDM6A gene which 
is associated with Kabuki syndrome 2 (OMIM#300,867), 
(iv) LMAN2L gene which is associated with mental retar-
dation 52 (OMIM#616,887) and, (v) ALDH7A1 gene 
which is associated with pyridoxine dependent epilepsy 
(OMIM#266,100).

In addition, 4 probands were identified with patho-
genic/ likely pathogenic heterozygous variants, which 
were inherited from one of their parents. In 2 cases, the 
variants were inherited from unaffected mother and in 1 
case the variant was inherited from an unaffected father. 
In the 4th case, pLOF variant c.202 C > T (p.Gln68Ter) in 
the RORB gene was inherited from father who also had 
a clinical history of seizures (Supplementary Table  2; 
Supplementary Information 1). Of note, in one case 

(ASD-003), paternal sample was un-available, hence the 
mode of inheritance couldn’t be deduced. Interestingly, 
ASD probands with epilepsy had a higher diagnostic yield 
(n = 15/28; 53.6%) compared to ASD probands without 
epilepsy (n = 15/73; 20.5%) (χ2 = 10.6, p = 0.001), however, 
no such association was observed for facial dysmorphism 
(χ2 = 0.67, p = 0.41) and social/ speech regression pheno-
types (χ2 = 0.53, p = 0.47).

Lastly, WES identified 22 VUS variants in 21 patients 
(n = 21/101; 20.8%; Supplementary Table  4). The vari-
ants were identified in genes that have previously been 
associated with or implicated in ASD etiology as per the 
Simons Foundation Autism Research Initiative (SFARI) 
Gene Database and Autism Database (AutDB). Of these, 
majority of the probands were detected with heterozy-
gous variants (66.6%) which were inherited from either 
of the unaffected parents with equal distribution. Of 
note, 3 of the 21 patients following segregation analy-
sis were detected with missense variants in the KMT2C 
gene (Kleefstra syndrome 2; OMIM#617,768) which were 
inherited from a healthy parent. Whilst the majority of 
the cases have been reported with a de novo variant in the 
KMT2C gene, 4 reports observed variants being inher-
ited from a healthy parent suggesting a potential oligo-
genic mode of inheritance [51–54].

Discussion
Almost a decade ago, the ACMG published guidelines 
recommending CMA as a first tier test for delineating 
the genetic cause of ASD and other NDDs [2, 10]. Since 
then, WES coupled with advancements in computational 
analyses has led to simultaneous detection of SNVs and 
CNVs. Studies carried out in multiple ethnic populations 
since 2015 have shown an increased diagnostic yield 
from WES compared to CMA in ASD [1, 2, 55, 56]. This 
outcome is supported by the observation of a high pro-
portion of de novo SNVs in ASD patients which are not 
detectable by CMA. To our knowledge, we here report 
the first description of the genetic architecture of ASD 
and simultaneously carry out diagnostic yield compari-
sons of karyotype, FMR1 triplet repeat expansion, CMA 
and WES in a cohort of 101 patient-parent trios of Indian 
origin.

Our data is in congruence with prior reports and sup-
ports the utility of WES as a primary genetic diagnostic 
method for ASD. In the present cohort, WES detected 
pathogenic/ likely pathogenic variants causative of the 
ASD phenotype in 29.7% of the cases in contrast with 
2.9%, 0% and 0% from CMA, FMR1 triplet repeat expan-
sion and karyotype testing, respectively. Indeed, all three 
CNVs detected by CMA were also detected by WES 
together with a fourth CNV which was detected by WES 
alone. Interestingly, the low yield of CMA in the present 
cohort can be attributed to two potential reasons. First, 
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gross dysmorphism was an exclusion criteria during 
recruitment of cases for the study. Prior study by Tam-
mimes et al., has shown a higher diagnostic yield of CMA 
in children with ASD and major congenital anomaly 
compared with children with minor physical anomaly [2]. 
Two, Affymetrix CytoScan Optima oligonucleotide array 
was used in the current study. The platform consists of 
315,608 probes and requires at least 25 probes to call a 
loss or gain of approximately 100 kb in size. Prior study 
has shown a trend for differential diagnostic yield with 
CMA based on both platform resolution and pheno-
typic manifestation in ASD patients [2]. A higher resolu-
tion microarray (1 million probes or more) had a higher 
diagnostic yield in ASD patients with minor physical 
anomalies compared to low resolution microarray (44k 
platform), however, this difference was abated when the 
test was carried out in ASD patients with major congeni-
tal anomalies [2]. It is therefore plausible that the cur-
rent platform may have missed CNVs that are beyond its 
detection limit, which could have been picked up with 
a higher resolution microarray platform. The diagnos-
tic yield in the present cohort is concordant with those 
reported previously from individual cohort studies [1, 2, 
55, 56]. Indeed, a recent meta-analysis in patients with 
NDD i.e. global developmental delay, intellectual disabil-
ity and ASD showed diagnostic yield of WES to range 
from 31 to 53% in contrast to CMA with yield ranging 
15–20% [16]. Based on these results, Srivastava et al. out-
lined a consensus statement and a stepwise algorithm for 
NDD diagnosis whereby WES is presented as the first-
tier test followed by CMA and/or other orthogonal tests.

Interestingly, we observed that in 66.6% and 16.1% of 
the cases with a genetic diagnosis for ASD, the mode of 
inheritance for the variant was de novo and recessive, 
respectively. This is in congruence with prior patient-par-
ent trio cohort studies whereby similar rates for variant’s 
mode of inheritance was observed [1, 2, 57]. All genes 
identified carrying potential causative variants were sub-
jected to STRING analysis v11.5 (Fig.  1). The network 
statistics consisted of 37 unique proteins resulting in 67 
various protein-protein interactions (PPI) amongst them-
selves. In comparison, a random set of same number of 
proteins, would result in only 12 different interactions. 
With a p-value of < 1.0e-16, a statistically significant 
enrichment of PPI in the present cohort indicated a bio-
logical connection amongst these proteins. Majority of 
these proteins are involved in synaptic formation, tran-
scription and its regulation, ubiquitination and chroma-
tin remodeling, as have been observed in prior studies 
[58]. This leads to a plausible hypothesis that the genetic 
architecture and etiopathogenesis of ASD is similar 
across ethnicities and an introduction of a uniform step-
wise genetic testing algorithm would yield similar diag-
nostic yields.

In our cohort, three genes (LRFN1, UNC13A and 
UNC79) were identified as potential novel candidates for 
ASD. The variant in the LRFN1 gene was a result of a de 
novo event. LRFN1 interacts with DLG4, a known ASD 
gene vital in the formation of the post-synaptic complex 
required for signal transduction [59]. DLG4 is classed 
under a high confidence category with a gene score of 1 
in the SFARI database and has an Evaluation of Autism 
Gene Link Evidence (EAGLE) score of 2.45, which sug-
gests limited but no contradicting evidence of its role 
in ASD. Due to the direct interaction between the two 
genes, LRFN1 could be considered as a potential candi-
date for ASD, although functional validation is required 
and was beyond the scope of the current study. The vari-
ants in the UNC13A and UNC79 genes were inherited 
from likely asymptomatic parents and classed as VUS. 
Both these genes have been listed in the AutDB and 
SFARI database and have been considered novel due to 
the absence of an associated phenotype in the OMIM 
database. A patient with developmental delay, dyskinetic 
movement disorder and autism has been previously iden-
tified with a de novo variant in the UNC13A gene [60]. 
Additionally, experimental evidence suggests its direct 
interaction with a known ASD associated gene, STXBP1. 
Only recently, UNC79 gene has also been associated with 
neurodevelopmental features including autism [61].

With an increasing awareness of ASD amongst the 
general populous, there is a high likelihood of increase 
in demand for genetic testing in children with ASD. In a 
survey of parents having a child with ASD in USA, 80% 
of the parents indicated that they would pursue genetic 
testing to identify risk of ASD in the younger sibling [62]. 
However, financial concerns, not being offered genetic 
testing by a physician or a geneticist and lack of aware-
ness are amongst the most common reasons for not opt-
ing for genetic diagnosis [63]. In addition, with the advent 
of development and deployment of new treatments such 
as trofinetide for Rett syndrome, there is likely to be 
increase in uptake for genetic testing [64]. This suggests 
that adoption of a uniform genetic testing algorithm 
coupled with educating primary care physicians and non-
genetic specialists could improve rates of genetic testing 
and diagnosis in children with ASD.

Limitations
The limitations of our study include a relatively small 
sample size, possible ascertainment bias related to 
patients having primarily non-syndromic form of ASD 
without gross congenital dysmorphism, carrying out 
WES and CMA in the proband only followed by segre-
gation analysis by orthogonal approaches on prioritized 
variants and absence of detailed cost-effectiveness assess-
ment. Despite this, we observe similar diagnostic yields 
to that observed in other cohorts [1, 2, 55]. Additionally, 
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there are technical and interpretation limitations to the 
identification and prioritization of variants which were 
classified as VUS. Delineation of pathogenicity of these 
variants is often challenging because of their incom-
plete penetrance, variable expressivity and/or sex specific 
bias [65]. This however would require re-assessment of 
WES data every 2–3 years as per the consensus state-
ment by Srivastava et al. using updated datasets and new 
computational tools [16]. Lastly, WES and CMA due to 
their inherent technical limitations are unable to resolve 
complex structural re-arrangements (e.g. inversions and 
translocations) which could play role in the pathogene-
sis of NDD [66], although, newer genomic technologies 
such as long-read whole genome sequencing could help 
to assess their role in the etiology of ASD.

Conclusion
Data from large scale genomic and transcriptomic stud-
ies have helped to delineate the genetic architecture of 
ASD in European/ non-Hispanic white populations. 
To the best of our knowledge, this is the first study to 
delineate the genetic architecture of ASD in the Indian 
population, with de novo variants in genes involved in 
synaptic formation, transcription and its regulation, 
ubiquitination and chromatin remodeling as the primary 
cause. In congruence with data from other ethnic popu-
lations, the current study provides evidence supporting 

the implementation of WES as the first-tier test in the 
genetic diagnosis of ASD.
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