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Abstract
Background Intellectual disability (ID) is a condition that varies widely in both its clinical presentation and its genetic 
underpinnings. It significantly impacts patients’ learning capacities and lowers their IQ below 70. The solute carrier 
(SLC) family is the most abundant class of transmembrane transporters and is responsible for the translocation of 
various substances across cell membranes, including nutrients, ions, metabolites, and medicines. The SLC13A3 gene 
encodes a plasma membrane-localized Na+/dicarboxylate cotransporter 3 (NaDC3) primarily expressed in the kidney, 
astrocytes, and the choroid plexus. In addition to three Na + ions, it brings four to six carbon dicarboxylates into the 
cytosol. Recently, it was discovered that patients with acute reversible leukoencephalopathy and a-ketoglutarate 
accumulation (ARLIAK) carry pathogenic mutations in the SLC13A3 gene, and the X-linked neurodevelopmental 
condition Christianson Syndrome is caused by mutations in the SLC9A6 gene, which encodes the recycling 
endosomal alkali cation/proton exchanger NHE6, also called sodium-hydrogen exchanger-6. As a result, there are 
severe impairments in the patient’s mental capacity, physical skills, and adaptive behavior.

Methods and results Two Pakistani families (A and B) with autosomal recessive and X-linked intellectual disorders 
were clinically evaluated, and two novel disease-causing variants in the SLC13A3 gene (NM 022829.5) and the 
SLC9A6 gene (NM 001042537.2) were identified using whole exome sequencing. Family-A segregated a novel 
homozygous missense variant (c.1478 C > T; p. Pro493Leu) in the exon-11 of the SLC13A3 gene. At the same time, 
family-B segregated a novel missense variant (c.1342G > A; p.Gly448Arg) in the exon-10 of the SLC9A6 gene. By 
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Introduction
Intellectual disability (ID) refers to a range of neurode-
velopmental abnormalities, and about 2% of children or 
young people have ID, which is described as having sig-
nificant deficits in intellectual functioning and adaptive 
behavior and is associated with an IQ below 70 [1]. Chro-
mosomal abnormalities, such as pathogenic deletions, 
duplications, or single-gene deficiencies with recessive, 
X-linked, or autosomal-dominant inheritance, can lead to 
moderate to severe forms of ID [2]. Mendelian types of 
ID have been linked to more than 500 genes [3].

ARLIAK (acute reversible leukoencephalopathy with 
elevated urine alpha-ketoglutarate) is an autosomal 
recessive condition causing acute reversible neurologic 
degeneration during a febrile illness. On brain imaging, 
the disease is associated with transitory leukoencepha-
lopathy and consistently elevated excretion of dicarbox-
ylic acids, particularly alpha-ketoglutarate. The Na+/
dicarboxylate cotransporter 3 (NaDC3) gene encodes the 
Na+/dicarboxylate cotransporter 3 (SLC13A3), found on 
the plasma membrane and carries necessary metabolic 
intermediates into cells [4, 5]. Aside from citric acid cycle 
intermediates such as succinate and ketoglutarate [6], 
SLC13A3 transports additional critical metabolic chemi-
cals into the cell, such as glutathione [7], mercapto suc-
cinate, and N-acetyl aspartate (NAA) [8]. SLC13A3 is 
essential for cell nutrition and detoxification. Pathogenic 
SLC13A3 mutations cause acute reversible leukoenceph-
alopathy (a heterogeneous set of disorders characterized 
by developmental defects or white matter degeneration) 
and ketoglutarate accumulation (ARLIAK) [9].

Christianson syndrome (CS) is a neurodevelopmen-
tal and progressive neurodegenerative disorder char-
acterized by moderate to severe intellectual disability, 
epilepsy, mutism, truncal ataxia, hyperkinesis, happy 
demeanor, and postnatal microcephaly. It is often accom-
panied by one or more secondary symptoms (such as 
autistic behavior, eye movement dysfunction, hypoto-
nia, gastroesophageal reflux, low height and weight, high 
pain threshold, motor regression, cerebellar vermis, and 
brain stem atrophy as well as neuronal cell loss) [10–12]. 
SLC9A6 is one of the most frequently mutated genes con-
nected to X-linked intellectual disability (XLID) [13–15]. 
The prevalence of CS among X-linked developmental 

brain disorders is estimated to be between 1% and 2% [12, 
16, 17]. Males are disproportionately affected by SLC9A6 
mutations, as with most X-linked disorders, while female 
carriers typically show no symptoms or a milder pheno-
type [10, 12, 18]. One of the common pathways to which 
both genes (SLC9A6 and SLC13A3) are related is the 
“Transport of inorganic cations/anions and amino acids/
oligopeptides” [19].

Molecular dynamics (MD) simulations have emerged 
as a valuable tool for understanding the effects of muta-
tions on protein structure, function, and dynamics [20–
24]. By employing MD simulations, it is possible to gain 
insight into the structural and functional consequences 
of the identified mutations in SLC13A3 and SLC9A6, thus 
elucidating the potential molecular mechanisms under-
lying the development of ID in the affected families. In 
addition, these simulations can provide detailed infor-
mation about changes in protein conformation, stability, 
and interactions with other cellular components, offering 
valuable clues about how the mutations may impair pro-
tein function [25, 26]. In this study, we performed long-
run MD simulations to examine the impact of the novel 
missense variants found in the SLC13A3 and SLC9A6 
genes. Our analysis aims to shed light on the likely 
molecular consequences of these mutations and how 
they could contribute to the pathogenesis of ID, thereby 
broadening our understanding of the genotype-pheno-
type relationship in the context of these neurodevelop-
mental disorders.

Methods
Sample collection
Two families (A and B) with autosomal recessive intel-
lectual disability and X- linked intellectual disability were 
sampled from Billitang, Kohat, and North Waziristan 
of Khyber Pakhtunkhwa Province, Pakistan. Four avail-
able members were recruited in family A, including one 
affected and three unaffected individuals. Similarly, six 
available members were investigated, including three 
affected and three phenotypically unaffected individuals 
from family B. Information was collected from the adults 
in both families regarding their family histories, and the 
pedigrees were constructed using the information pro-
vided by the families. No evidence of a family history 
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(both families) of intellectual impairment was found in 
the pedigree analysis (Fig.  1). After receiving informed 
written consent, blood samples were collected in BDA 
vacutainer tubes and stored. DNA was extracted from 
blood samples using the usual phenol-chloroform pro-
cedure and was quantified up to 40ng. The institutional 
ethical review board of Kohat University of Science and 
Technology, Kohat, Pakistan, approved the study proto-
cols, and all methods were carried out, strictly following 
the recommendations of the Declarations of Helsinki.

Exome sequencing
Genomic DNA was extracted from the patient’s blood 
samples of both families. First, the exonic regions of all 
22,000 human genes were captured by the xGen Exome 
Research Panel v2 (Integrated DNA Technologies, 
Coralville, Iowa, USA). After capture, Novaseq 600 was 
used to sequence all captured regions (Illumina, San 
Diego, CA, USA). We acquired ≥ 20X coverage in > 98.9% 
and ≥ 10X coverage in > 99.4% of target sequences. Fol-
lowing the sequencing, the data was analyzed using open-
source bioinformatics tools and proprietary software. 
bcl2fastq v2.20.0.422 (https://emea.support.illumina.
com/downloads/bcl2fastq-conversion-software-v2-20.
html) was used to convert and demultiplex base call 
(BCL) sequence files to FASTQ files. Variant calling and 
annotation followed the alignment of the sequencing data 
to the GRCh37/hg19 human reference genome was car-
ried out using BWA-mem 0.7.17 (arXiv:1303.3997 [q-bio.
GN]) to generate BAM files. BAM files were processed 

using GATK best practices (GATK v.3.8, broadinstitute.
org) for single nucleotide variants (SNV) and small inser-
tions/deletions (indel) variant calling to generate VCF 
files [27, 28]. For copy number variant (CNV) calling 
based on depth-of-coverage (DOC) data, Conifer [29] 
and 3bCNV (https://3billion.io/resources) are used. The 
Homozygosity (ROH) regions were mapped from the 
VCF file using AutoMap v1.2 [30].

One of the in-house tools, EVIDENCE, was designed 
to select variants based on ACMG guidelines and each 
patient’s phenotype. Variant filtration, categorization, 
and similarity score for the patient’s phenotype are three 
significant steps in this approach. For allele frequency 
estimation, a genome aggregation database (gnomAD, 
http://gnomad.broadinstitute.org/) and a 3-billion 
genome database were utilized in the first step. Accord-
ing to ACMG guidelines, gene variations with more than 
5% allele frequency were filtered out. Next, the VarSome 
[31], Human Gene Mutation Database (HGMD) Profes-
sional 2022.1, Database of Single Nucleotide Polymor-
phisms (dbSNP), and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar/) were utilized for the evaluation of vari-
ants. Then, each variant concerning disease phenotype 
was assessed using the ACMG guidelines [32]. Finally, 
in the third step, the patient’s clinical phenotypes were 
converted to standardized human phenotype ontology 
terms (https://hpo.jax.org/) and retrieved to determine 
the degree of similarity [33, 34] with each of 7,000 rare 
genetic diseases (https://omim.org/ and https://www.
orpha.net/consor/cgi-bin). According to the ACMG 

Fig. 1 (a) Pedigree of Family A showing the autosomal recessive pattern of ID and presenting the unaffected and affected individuals of the family (A) (b) 
Pedigree of Family B showing the X-linked pattern of ID and presenting the unaffected and affected individuals of the family (B) Arrows are representing 
the DNA samples of the individuals submitted for exome sequencing
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guideline, the similarity score between each patient’s 
phenotype and symptoms related to that disease caused 
by priority variations varied from 0 to 10. Medical geneti-
cists and physicians then manually evaluate probable 
alterations and related disorders. Bidirectional Sanger 
sequencing is used to confirm single nucleotide variants 
and all indels.

Segregation analysis
The filtered variants were then subjected to Sanger 
sequencing to validate the segregation of the genetic 
variants in the families. The online Primer3 software 
designed the primers (flanking the variant regions). Two 
sets of primers were designed:

SLC13A3_Forward 5ˊCACACATGCATGGGACTC 3ˊ,
SLC13A3_Reverse 5ˊCACTGTGCAGAGAGTGCAG 

3ˊ.
SLC9A6_Forward 5ˊ GAAGCTGTTAGGGGAAAT 3ˊ,
SLC9A6_ Reverse 5ˊ CACTTATCTTTTGGGGTTGG 

3ˊ,

Molecular modeling and protein stability predictions
We utilized homology modeling to generate the pro-
tein structures without available crystal structures for 
the proteins of interest. The SWISS-MODEL server 
was employed for this purpose [35]. For SLC9A6, the 
CryoEM structure of the horse sodium/proton exchanger 
NHE9 in an inward-facing conformation (PDB ID: 6z3y) 
[36] was selected as the template, while the structure of 
the NaCT-Citrate complex (PDB ID: 7jsk) was used as 
the template for SLC13A3 [37]. Both wild-type (wt) and 
mutated (mut) structures were generated for subsequent 
analysis. Model evaluation was performed using MolPro-
bity [38], and a short molecular dynamics (MD) simula-
tion was executed to optimize the structures. To assess 
the functional consequences and stability changes upon 
substitution (ΔΔG), we employed the DUET server [39, 
40], which combines two complementary approaches 
(mCSM and SDM). Furthermore, we predicted the ther-
mal stability changes (ΔΔG) arising from vibrational 
entropy changes (ΔΔS) using the Elastic Network Con-
tact Model (ENCoM) server [41].

To investigate the effect of mutations on the overall 
structural dynamics of the proteins in comparison to 
their wild-type counterparts, we conducted MD simula-
tions in two steps: a 100 ns MD simulation for refining 
and optimizing the models (wt and mut), followed by 
another 100 ns MD simulation to analyze the residual 
fluctuations with or without the reported mutations. All 
simulations were executed using AMBER 20 [42] follow-
ing the same protocol as described elsewhere [20, 43].

Results
Clinical features of family A
Members of Family A resided in the Billitang area of 
Kohat, Khyber Pakhtunkhwa. The family was from Pash-
tun ethnic group that traditionally favours marriages 
between first or second cousins. One affected family 
member (V:2) was born to first cousins in the fifth gen-
eration of the presented family pedigree (Fig. 1a).

The affected family member in Family A presented 
with clinical features associated with various physical and 
mental impairments, including short stature, unusual 
facial features, and enlarged thumbs and first toes. 
Besides vision problems, heart disease, kidney failure, 
tooth decay, and obesity are also indicators of the condi-
tion. Short and broad hands are typically associated with 
a large, sometimes spatulated thumb (Fig. 2a, b & c). In 
newborns, the palpebral fissures close in a highly distinc-
tive way, creating a smiling appearance known as a “gri-
macing smile.“ On the other hand, no cases of spasticity, 
hypotonia, spasms, hypotonia, or deep tendon reflexes 
were observed. The CT scan revealed the presence of sev-
eral large CSF spaces both inside and outside of the brain 
(Fig. 2d). The additional clinical description of patient in 
family A is summarized in table S1.

Clinical features of family B
The members of Family-B lived in the North Waziristan 
region of Khyber Pakhtunkhwa. The family’s ethnic-
ity was Pashtun, and they followed the cultural norm 
of marrying within the family. Two affected individuals 
(V:3 and V:4) were born to first-cousin parents, making 
this the fifth generation in the family’s pedigree. Before 
our first visit for sampling, patient IV:7 appeared in 
the fourth generation and had already passed away for 
unknown reasons. No history of a genetic disorder had 
been detected in the family (Fig. 1b).

All the affected members of Family-B exhibited clini-
cal features consistent with ID ranging from moderate 
to severe, including a large nose, disorganized speech, 
an open mouth, uncontrollable drooling, and abnor-
mal eye movements. Affected kids usually have a bright 
disposition, with lots of smiles and giggles. The patients 
exhibited bizarre behaviour, developmental delay and 
deep tendon reflexes. However, no spasticity hypoto-
nia and epileptic fits were observed. The patients’ dys-
morphic facial features included an elongated, narrow 
face, a pointed chin, and a prominent nose, jawline, and 
ears (Fig.  2e & f ). The additional clinical description of 
patients in Family B is summarized in table S2.

Mutational analysis
Genetic analysis using whole exome sequencing per-
formed on DNA from an affected individual (V:2) from 
family-A revealed a novel homozygous missense variant 



Page 5 of 11Hussain et al. BMC Neurology          (2023) 23:353 

(c.1478 C > T; p. Pro493Leu) in the exon-11 of SLC13A3 
gene (NM_022829.5). The segregation of this variant with 
disease phenotype was confirmed by Sanger sequenc-
ing. Zygosity analysis found both unaffected parents 
(IV:1 as well as IV:2) heterozygous carriers (c.1478 C/T), 
unaffected sibling (V:1) to be homozygous wild-type 
(c.1478  C/C), and the affected individuals (V:2) to be 
homozygous affected (c.1478T/T) for missense variant as 
mentioned earlier (Fig. 3a, b and c).

In family-B whole exome sequencing identified a 
novel missense variant (c.1342G > A; p. Gly448Arg) in 
the exon-10 of SLC9A6 gene (NM_001042537.2). Sanger 
sequencing validated and confirmed the segregation 
of the variant with the disease phenotype in the family. 
Furthermore, the zygosity analysis determined that both 
the affected individuals (V:3 and V:4) were hemizygous 
affected (c.1342 A), mother and sister (IV:2 and V:1) were 
heterozygous carriers (c.1342G/A). At the same time, the 
father and phenotypically unaffected brother (IV:1 and 
V:2) were hemizygous wild-types (c.1342G) for the iden-
tified missense variant (Fig. 3d, e and f), consistent with 
an X-linked mode of inheritance.

Structural elucidation
In our study, we identified the mutations Gly448Arg 
in SLC9A6, denoted as ‘SLC9A6_G448R mutant’, and 
Pro493Leu in SLC13A3, denoted as ‘SLC13A3_P493L 

mutant’. To investigate the structural implications of these 
mutations, homology models of SLC9A6 and SLC13A3 
were generated using the SWISS-MODEL server. The 
SLC9A6 model exhibited 68.47% sequence identity and 
0.66 query coverage with the cryo-electron micros-
copy (cryo-EM) structure of NHE isoform 9 (SLC9A9) 
from Equus caballus (PDB ID: 6Z3Y). Both proteins 
share a conserved domain architecture, including a core 
ion-transport domain that is open toward the intracel-
lular side. Near the base of the cavity lies the strictly con-
served aspartate residue, Asp244 in SLC9A6 (Asp292 in 
SLC9A9), which is crucial for ion-binding and transport 
[44]. The ion-binding site and the negatively charged fun-
nel are highly conserved across all NHE family members. 
Notably, the Gly448Arg mutation is located within the 
core ion-binding site, where key conserved residues such 
as Thr262, Asp263, Glu287, Ser288, Asn291, Asp292, 
Arg457, and Arg490 are present (Fig. 4).

On the other hand, the SLC13A3 model displayed 
49.27% sequence identity and 0.91 query coverage with 
the cryo-EM structure of human NaCT in complex with 
citrate or a small-molecule inhibitor (PDB ID: 7JSK). 
The Pro493Leu mutation is positioned close to the sub-
strate and Na+ binding sites. The Na1 is coordinated by 
conserved residues such as Ser139, Trp141, Gly252, and 
Asn144. Whereas, Na2 is surrounded by Thr479, Ala482 
(Thr463 in SLC13A5), Ser526 (Ala507 in SLC13A5), and 

Fig. 2 (a, b, c) Physical features presented by affected individual (V-2) of family A and (d) Computed tomography (CT) scan image of the affected 
individual (V-2) of family A indicative of multiple large CSF spaces within and around the brain suggestive of cerebral atrophy, (e, f) physical features 
presented by affected individuals (V-3 and V-4) of family B
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Asn484. The proximity of the Pro493Leu mutation to the 
sodium-binding site suggests a possible impact on the 
transporter’s function (Fig. 4).

Subsequently, the homology models were refined and 
optimized through 100 ns molecular dynamics (MD) 
simulations. The evaluation of the final models showed 
that 90.30% and 90.54% of the residues were in Ramach-
andran favoured regions for SLC13A3 and SLC9A6 mod-
els, respectively, indicative of reliable structural models.

Protein stability predictions
The protein stability predictions for the mutated mod-
els of SLC9A6_G448R and SLC13A3_P493L, derived 
from the combined computational approach of mCSM 
and SDM, provided insights into the possible structural 
consequences of these mutations and their potential 
impact on the development of intellectual disability. For 
the SLC9A6_G448R mutation, the consensus prediction 
revealed a destabilizing effect on the protein structure, 
with a ΔΔG value of -0.138 kcal/mol. Conversely, in the 
case of the SLC13A3_P493L mutation, the consensus 
prediction from mCSM and SDM indicated a stabiliz-
ing effect on the protein structure, with a ΔΔG value of 
0.446  kcal/mol. However, the Elastic Network Contact 
Model (ENCoM) server predicted a decrease in molec-
ular flexibility for both mutations (ΔΔSvib of -1.523 for 
SLC9A6_G448R and − 0.583 for SLC13A3_P493L), 

leading to contrasting effects on thermal stability (ΔΔG 
of 1.215  kcal/mol for SLC9A6_G448R, and 0.466  kcal/
mol for SLC13A3_P493L). The SLC9A6_G448R mutation 
lies within the core ion-binding site, while the SLC13A3_
P493L mutation is located close to the sodium binding 
pocket. These locations and the observed contrasting 
effects on protein stability and flexibility might poten-
tially influence ion transport efficiency, thereby affecting 
the protein’s function and ultimately contributing to the 
development of intellectual disability. These preliminary 
findings were further investigated and validated through 
Molecular Dynamics (MD) simulations by analyzing 
the impact of these mutations on the overall structural 
dynamics and residual fluctuations.

Molecular dynamics simulations interpretations
A comprehensive 300 ns molecular dynamics (MD) sim-
ulations were conducted on the wild-type and mutant 
(SLC9A6_G448R and SLC13A3_P493L) protein models. 
Snapshots were taken every 30 ns throughout the simu-
lation period to monitor the evolution of the protein 
structure and dynamics (Fig. 5). The initial phase of the 
simulation revealed a pattern of convergence for both the 
wild-type and mutant proteins, demonstrating consis-
tent stability up to the 300 ns mark. This structural con-
vergence provided a robust foundation for subsequent 
comparative analysis. Intriguingly, as the simulation 

Fig. 3 (A) Representing the location of SLC13A3 (q13.12) at chromosome 20. (B) representing typical structure of the SLC13A3 gene comprising 13 exons 
and also indicating the location of the missense variant (c.1478 C > T; p. Pro493Leu) in exon-11 (C) Chromatograms of homozygous unaffected son (V-1), 
heterozygous carrier father (IV-1) and homozygous affected son (V-2) of family A. (D) Location of SLC9A6 (q26.3) at chromosome X. (E) the typical struc-
ture of SLC9A6 gene comprising 16 exons, indicating the location of the missense variant (c.1342G > A; p. Gly448Arg) in exon-10. (F) Chromatograms of 
hemizygous unaffected father (IV-1), heterozygous carrier mother (IV-2) and hemizygous affected son (V-3) of family B
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progressed, the SLC9A6_G448R and SLC13A3_P493L 
mutant models displayed increased stabilization com-
pared to their wild-type counterparts. These mutants 
maintained high stability throughout the simulation 
period, with minor fluctuations within an angstrom 
range. The enhanced structural stability could be indica-
tive of significant functional changes. As the simulation 
advanced, the SLC9A6_G448R and SLC13A3_P493L 
mutant models showcased distinct stabilization patterns 
compared to their wild-type counterparts. Specifically, 
the ion-binding site in SLC9A6_G448R remained intact 
and stable over the simulation, while the regions around 
the Na+- and substrate-binding sites in SLC13A3 exhib-
ited more pronounced fluctuations (Fig. 5).

Detailed structural insights revealed that substituting 
glycine for arginine at position 448 in SLC9A6_G448R 
led to more interactions due to a longer and more flexible 
side chain in arginine (Figure S1). The positively charged 
arginine guanidinium group can form hydrogen bonds 

and salt bridges with nearby residues, stabilizing the local 
environment around the mutation site. Similarly, substi-
tuting proline with leucine at position 493 in SLC13A3_
P493L resulted in more interactions than proline in the 
wild-type protein (Figure S2). It can be attributed to leu-
cine’s larger hydrophobic side chain, which promotes van 
der Waals interactions and hydrophobic packing with 
neighboring residues. These interactions remained con-
sistent throughout the MD simulation time, explaining 
the increased stability in the mutant proteins compared 
to their wild-type counterparts. The mutations led to a 
more intact ion binding site, which may alter ion bind-
ing affinities or transport kinetics, impacting the overall 
function of the proteins. Consequently, this alteration 
in protein function due to the increased stability of the 
ion binding site establishes a potential link to the devel-
opment of intellectual disability in the context of these 
mutations.

Fig. 4 Comparative Binding Site Representations of SLC9A6 and SLC13A3. (A) Ribbon depiction of the SLC9A6 ion-binding site in the 6-transmembrane 
(TM) core transport domain, superimposed on NHE9 (PDB ID: 6Z3Y). A detailed view of the predicted ion-binding site of SLC9A6, with crucial residues 
displayed as yellow sticks and labeled accordingly. Corresponding residues in the NHE9 structure are indicated in orange. (B) Ribbon depiction of the 
SLC13A3 sodium and substrate binding site, superimposed on SLC13A5 (PDB ID: 7JSK). A detailed view of the predicted binding site of SLC13A3 is shown, 
with crucial residues represented as yellow sticks and labeled. Corresponding residues in the SLC13A5 structure are shown in orange
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Discussion
Solute carriers, or SLCs, are the most prominent family 
of transmembrane transporters responsible for the diffu-
sion of nutrients, ions, metabolites, and drugs across cell 
membranes [45, 46] About 287 SLC genes are present in 
the human brain, and mutations or the resulting dysfunc-
tions of 71 SLC genes have been linked to various neu-
rodevelopmental disorders [47]. ARLIAK is an autosomal 
recessive condition that causes acute reversible neuro-
logic degeneration during a febrile illness. Pathogenic 
SLC13A3 mutations cause acute reversible leukoenceph-
alopathy (a heterogeneous set of disorders characterized 
by developmental defects or white matter degeneration) 
and ketoglutarate accumulation (ARLIAK) [9]. Dewulf et 
al. (2019) reported two patients with biallelic SLC13A3 
variants. After a bout of fever caused by a respiratory 
tract infection, one patient exhibited symptoms of acute 
neurological deterioration, including drowsiness, ataxia, 
and dysarthria. The other patient had febrile tonsillitis 
and relapsed six years later due to a febrile respiratory 
tract infection, presenting with drowsiness, poor con-
tact, dysarthria, peripheral motor abnormalities, and 
global hypotonia. After a short supportive treatment, 
they returned to nearly complete health. It is the first 
study to link a-ketoglutarate accumulation and revers-
ible leukoencephalopathy to biallelic variants of SLC13A3 
[9]. Proximal tubule cells express NaDC3 mostly at their 

basolateral membrane, which is thought to be important 
in importing dicarboxylates from the interstitial space 
[48]. Previous functional studies of SLC13A3 variants 
significantly reduced the capacity of NaDC3 to transport 
the three substrates due to loss of function that may lead 
to physiological conditions [9].

Christianson syndrome (CS) is a neurodevelopmen-
tal and degenerative X-linked intellectual disability dis-
order with a growing number of confirmed cases. The 
enzyme NHE6 controls the pH balance and trafficking 
of recycled endosomes [49]. Since this ion transporter is 
highly expressed in the brain, it may help to explain the 
wide variety of neural phenotypes seen in CS. Therefore, 
the discovery of specific NHE6-dependent receptors 
contributes to our understanding of the mechanism of 
neuronal dysfunction in CS. Transport of vesicles con-
taining AMPA receptors to and from the postsynaptic 
membrane may be disrupted if endosomal acidification 
is impaired or absent due to a SLC9A6 gene mutation 
[50]. A large number of CNS neurons rely on the brain-
derived neurotrophic factor (BDNF)/tropomyosin recep-
tor kinase B (TrkB) neurotrophic signaling pathway for 
proper dendrite development [51]. This over-acidifica-
tion, in conjunction with the accelerated degradation 
of TrkB, can disrupt endosomal BDNF/TrkB signaling, 
leading to the death of neuronal axons and dendritic 
branches [52]. Microtubule-associated proteins (MAP) 
are crucial to average brain growth and development. 
Mature neurons rely profoundly on tau protein primar-
ily associated with microtubules. Different tau isoforms 
are expressed at specific times and places during brain 
development [53], indicating that tau isoform regulation 
is crucial for proper brain development [54]. The NHE6 
protein, encoded by SLC9A6, is primarily found in early 
and recycling endosomes, where it participates in endo-
somal trafficking, signaling, and the regulation of luminal 
pH [18, 55–57]. In a previous study, western blot analy-
sis of two variants (p.T521Yfs*23, p.H203Lfs*10) revealed 
significantly decreased mRNA levels and normal NHE6 
protein [58, 59]. Western blot analysis of these variants 
further revealed that both variants caused the total loss 
of function of NHE6 protein and confirmed that CS is 
mainly caused by NHE6 loss of function [59].

Our current genetic study enrolled two consanguin-
eous Pakistani families with Pashtun ethnicity seg-
regating intellectual disability. Genetic analysis in 
family-A revealed a novel homozygous missense variant 
(c.1478  C > T; p.Pro493Leu) in the exon-11 of SLC13A3 
gene (NM_022829.5), while in family-B, a novel missense 
variant (c.1342G > A; p.Gly448Arg) in the exon-10 of the 
SLC9A6 gene (NM_001042537.2) was identified.

NaDC3 is a plasma membrane cotransporter encoded 
by the SLC13A3 gene and found in the kidney, brain, 
liver, placenta, and eye [60, 61]. It is essential for cell 

Fig. 5 Structural Evolution of Wild-Type and Mutant Proteins Over 300 
ns MD Simulations. The comparative progression of the wild-type and 
mutant protein models (SLC9A6_G448R and SLC13A3_P493L) during the 
300 ns Molecular Dynamics (MD) simulation is illustrated. Snapshots taken 
every 30 ns offer a visual representation of changes in protein conforma-
tion and dynamics throughout the simulation period. Affected mutation 
sites are distinctly highlighted: for SLC9A6_G448R, the focus is on the intact 
ion-binding site, while for SLC13A3_P493L, it’s on the regions around the 
Na+- and substrate-binding sites, showcasing their dynamic fluctuations
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nutrition and detoxification because it transports citric 
acid cycle intermediates (succinate and a-ketoglutarate) 
and other critical metabolic compounds (glutathione, 
mercapto succinate, and NAA) into the cell [6, 7]. Abnor-
malities found in the central nervous system (CNS) may 
have a genetic basis, as pathogenic variants in SLC13A3 
are known to reduce the transport capacity for a-keto-
glutarate, succinate, and NAA, suggesting a loss-of-func-
tion mechanism [9]. NaDC3 is localized in the kidney’s 
luminal membrane by absorbing dicarboxylates from the 
glomerular filtrate. Therefore, urinary a-ketoglutarate 
accumulation may result from impaired NaDC3 func-
tion. As a result of the c.1478  C > T missense variant, a 
corresponding substitution was found in our patient 
(p.pro493leu). These variants may cause disease by alter-
ing the structure and function of NaDC3 [48].

Clinical manifestations attributable to SLC9A6 muta-
tions mirror developmental and progressive pathophysi-
ology [11]. SLC9A6 knockout mouse models revealed 
abnormalities in endosomal-lysosomal function and cho-
lesterol accumulation in specific neuronal populations, 
similar to those in primary lysosomal storage diseases 
[62]. In addition, the epileptic phenotype and decreased 
seizure threshold were observed in SLC9A6/ mutant 
female mice and SLC9A6−/0 mutant male mice [18]. 
Failure of axonal and dendritic branching, resulting in 
impaired neuronal connectivity, may contribute to cogni-
tive and language impairment in children with SLC9A6 
mutations [63]. Putative protein-truncating early frame-
shift, nonsense, or splicing mutations, as well as some 
missense or intra-frame deletions that may be residual 
protein, appear to be the most common types of SLC9A6 
mutations in CS patients [11].

Through state-of-the-art in silico studies, we explored 
the impact of these mutations, G448R in SLC9A6 and 
P493L in SLC13A3, on protein stability and function and 
their potential link to the development of intellectual dis-
ability. Protein flexibility plays a crucial role in determin-
ing the functional properties of a protein, as it is often 
associated with conformational changes and dynamic 
interactions required for proper function, ligand bind-
ing, and protein-protein interactions [64, 65]. Altera-
tions in protein flexibility can lead to changes in protein 
function, either by affecting the binding affinity for sub-
strates, modulating the protein’s activity, or impact-
ing its interactions with other proteins or molecules 
[66]. In our study, the consensus stability predictions 
for the SLC9A6_G448R and SLC13A3_P493L muta-
tions revealed contrasting effects on protein stability, 
with SLC9A6_G448R showing a destabilizing effect and 
SLC13A3_P493L displaying a stabilizing effect. However, 
both mutations were predicted to decrease molecular 
flexibility, potentially leading to functional consequences. 
It has been reported that proteins’ stability and flexibility 

changes can affect protein function and be involved in 
disease development [67]. Molecular dynamics simula-
tions provided further insights into the structural effects 
of these mutations. The mutants exhibited increased 
stability compared to their wild-type counterparts, par-
ticularly in the regions around the binding pockets. This 
increased stability can potentially impact ion binding and 
transport, as a more rigid binding site might alter the 
protein’s ability to undergo the conformational changes 
required for efficient ion transport [64, 68]. It’s essential 
to address a pivotal observation regarding the seeming 
discrepancy between the protein stability predictions 
from mCSM, SDM, and the insights gained from MD 
simulations. While mCSM and SDM offered a destabiliz-
ing perspective for the SLC9A6_G448R mutation, MD 
simulations portrayed increased stability. This difference 
can be attributed to the inherent methodologies of the 
predictive tools versus the dynamic temporal representa-
tions given by MD simulations. Based on vast datasets, 
mCSM and SDM’s generalized predictions might not 
capture the unique, localized interactions evident in a 
more fluid MD environment. The arginine substitution 
in SLC9A6_G448R led to specific stabilizing exchanges 
in MD simulations, highlighting the importance of using 
diverse methods for comprehensive understanding. This 
observed stability might impact protein function even if 
the overall stability is decreased, underscoring that sta-
bility only sometimes translates directly to functional 
efficacy.

These observed stability and molecular flexibility 
changes could be linked to either gain or loss of function 
in the proteins. In intellectual disability, both gain and 
loss of function can potentially contribute to the disease’s 
development by disrupting normal cellular processes or 
signaling pathways [69]. Therefore, the mutations inves-
tigated in this study could impact protein function by 
altering the ion binding or transport dynamics, ultimately 
leading to intellectual disability. Future experimental 
studies should be conducted to validate these in silico 
findings and further investigate the molecular mecha-
nisms underlying the link between these mutations and 
intellectual disability.
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