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Abstract 

Background The exact pathophysiology of TS is still elusive. Previous studies have identified default mode networks 
(DMN) abnormalities in patients with TS. However, these literatures investigated the neural activity during the tic sup-
pression, not a true resting-state. Therefore, this study aimed to reveal the neural mechanism of Tourette’s syndrome 
(TS) from the perspective of topological organization and functional connectivity within the DMN by electroencepha-
lography (EEG) in resting-state.

Methods The study was conducted by analyzing the EEG data of TS patients with graph theory approaches. Thirty 
children with TS and thirty healthy controls (HCs) were recruited, and all subjects underwent resting-state EEG data 
acquisition. Functional connectivity within the DMN was calculated, and network properties were measured.

Results A significantly lower connectivity in the neural activity of the TS patients in the β band was found 
between the bilateral posterior cingulate cortex/retrosplenial cortex (t = -3.02, p < 0.05). Compared to HCs, the TS 
patients’ local topological properties (degree centrality) in the left temporal lobe in the γ band were changed, 
while the global topological properties (global efficiency and local efficiency) in DMN exhibited no significant dif-
ferences. It was also demonstrated that the degree centrality of the left temporal lobe in the γ band was positively 
related to the Yale Global Tic Severity Scale scores (r = 0.369, p = 0.045).

Conclusions The functional connectivity and topological properties of the DMN of TS patients were disrupted, 
and abnormal DMN topological property alterations might affect the severity of tic in TS patients. The abnormal topo-
logical properties of the DMN in TS patients may be due to abnormal functional connectivity alterations. The findings 
provide novel insight into the neural mechanism of TS patients.
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Introduction
Tourette’s syndrome (TS) is a childhood-onset neurode-
velopmental movement disorder characterized by multi-
ple motor and vocal tics lasting more than a year prior 
to the age of 18 years old [1]. TS, once considered a rare 
condition, is now considered relatively common, and the 
prevalence of TS in school-age children worldwide is 0.3 
to 0.9% [2]. Men are 3–4:1 times more likely to suffer 
from TS than women [3]. TS patients often have coex-
isting conditions such as attention-deficit/hyperactivity 
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disorder (ADHD), obsessive–compulsive disorder (OCD) 
or obsessive–compulsive behavior, sleep disorders, and 
depression disorders [4]. TS may even lead to persistent 
social problems (e.g., bullying or isolation) [5].

At present, the etiology of TS is unclear, and its patho-
genesis may be related to various factors. The abnormal 
brain structure and function of TS patients are thought 
to be one of the biological causes [6–8]. Previous stud-
ies found that this impaired brain activity might impact 
behavior, leading to motor, cognitive [9], and social 
problems [10]. With the development of neuroscience 
research, many noteworthy clues have been revealed in 
recent decades. Neurobiological models of TS suggest 
that abnormal connectivity of the prefrontal cortical-
striatal-thalamic-cortex circuit may play a vital role in 
the course of the disease [11]. Functional magnetic res-
onance imaging (fMRI) studies have also found abnor-
malities in brain function in TS patients. For example, a 
recent resting-state fMRI study found that, compared to 
controls, patients with TS exhibited increased connectiv-
ity between the temporal gyri, insula, and putamen and 
between the orbitofrontal cortex and cingulate cortex 
[12]. In addition, other resting-state fMRI studies have 
identified alterations in brain networks, including default 
mode network (DMN) and frontal-parietal network in TS 
patients [13, 14], and abnormal alterations in brain func-
tion in the resting-state that may related to the severity 
of tic.

The DMN is one of the most active elements during the 
resting-state [15]. An increasing number of researchers 
have used the DMN to study the neural mechanism of 
neuropsychological diseases due to its distinctive features 
in the resting-state [16]. DMN is predominantly detected 
when a person becomes more concentrated internally 
rather than externally or on their internal mental-state 
processes, such as self-referential processing, theory of 
mind, autobiographical memory retrieval, self-process-
ing, and emotion regulation [17]. The DMN has been 
conceptualized as a distributed brain network composed 
of several brain regions, including the anterior cingulate 
cortex (ACC), posterior cingulate/retrosplenial cortex 
(PCC/Rsp), medial prefrontal cortex (mPFC), and tem-
poroparietal junction (TPJ). These brain regions showed 
high neural activity and temporal synchrony in the rest-
ing-state [15].

Neurological alterations within the DMN have been 
found in a variety of psychiatric disorders, such as ADHD 
[18], autism [19], and major depression [20]. For TS, a 
study based on fMRI found functional connectivity dis-
ruptions in the inner DMN region [21]. Additionally, 
functional connectivity within the DMN correlated nega-
tively with tic severity [13]. Further, Openneer et al. [14] 
showed lower local efficiency and clustering coefficient 

values in DNM of TS patients, specifically for TS without 
comorbid ADHD, compared to healthy controls (HCs). 
They also observed a negative association between tic 
severity and local efficiency and clustering coefficient in 
the DNM. Moreover, a previous study has found abnor-
mal brain regions involved in DMN of TS patients [22]. 
However, these literatures investigated the neural activ-
ity during the tic suppression, and the findings reflected 
an effect of tic suppression rather than a true resting-
state. Therefore, the main aim of the present study was to 
investigate the alterations in DMN in a true resting-state.

Electroencephalography (EEG) is a low-cost, nonin-
vasive method of measuring brain activity. As a simple 
millisecond-resolution readout of brain activity, this 
technique, when combined with standardized analyti-
cal techniques, can be used not only to understand the 
physiological function of subjects but also to reflect path-
ological alterations. Although several theories have been 
proposed about the causes of TS, little is known about 
how TS is explained at the neural level. One way to solve 
this problem is to study how the brain activity in patients 
with TS’s DMN nodes communicates via EEG during the 
resting-state.

Previous studies have identified abnormalities in func-
tional brain activity and interactions between some 
brain regions in TS patients using EEG. Although these 
findings have shed some light on the abnormal central 
mechanisms of TS, they do not provide information on 
large-scale neuronal communication in the human brain 
because they are based on brain activation patterns to 
find abnormal activities in individual brain regions rather 
than on the central mechanisms of the disease at the 
systemic level. Suppose the human brain is studied as 
an integrated network of functionally interacting brain 
regions. In that case, it can further reflect alterations in 
the brain’s communicative activity as a complex system 
at different spatial scales by exploring how its functional 
connectivity and information integration interrelate with 
human behavioral activities.

Given the diversity and complexity of brain networks, 
graph theory, as a data-driven technique, is particularly 
well suited for comprehensive studies that reveal inher-
ent functional connectivity patterns and complex brain 
network features [23, 24]. A recent study used graph 
theoretical analysis to examine brain networks in TS and 
found that topological properties might serve as a reli-
able biomarker to differentiate TS patients from healthy 
controls [25]. This suggests that graph theory analysis 
can provide researchers with a good understanding of 
the neural basis of TS. Therefore, the main objective of 
our study was to investigate whether DMN connectivity 
was altered in TS patients. Subsequently, graph theory-
based analysis was used to investigate whether the DMN 
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topological properties of TS patients had abnormal alter-
ations. We hypothesized that in patients with TS, the 
DMN functional connectivity and topology had altered, 
and these alterations might be associated with the sever-
ity of TS. According to previous studies, we used two 
methods (lagged phase synchronization [LPS] and graph 
theory) for assessing the DMN [26, 27].

Materials and methods
Participants
Thirty children with TS were recruited from West China 
Second University Hospital. Eligible participants were 
identified using the Diagnostic and Statistical Manual 
of Mental Disorders, Fifth Edition (DSM-5). Additional 
inclusion criteria were: (1) normal vision and hearing; (2) 
Han Chinese ethnicity. The exclusion criteria included 
(1) one or more comorbid mental disorders (e.g., ADHD, 
OCD, intellectual disability, learning disability, or con-
duct disorder); (2) severe physical disease or brain injury; 
(3) past or present use of any psychotropic substance, 
including stimulants and other drugs; and (4) inability to 
cooperate with EEG acquisition for any reason. Mean-
while, thirty age and biological sex-matched HCs were 
included in the study as a control group. Written consent 
was obtained from participants and their parents. The 
protocol for the study was carefully reviewed, accepted, 
and approved by the local Medical Research Ethics 
Committee of West China Second University Hospital, 
Sichuan University.

Clinical assessment
The severity of tics was assessed by the Yale Global Tic 
Severity Scale (YGTSS) [28]. This clinician-rated, semi-
structured interview provides a quantitative measure of 
tic severity. The YGTSS rates movement and vocal tics on 
dimensions such as number, frequency, intensity, com-
plexity, and interference. Each dimension is scored on a 
five-point scale. The total severity scores are obtained by 
summing all scores across vocal and motor tics. It also 
includes a separate impairment rating. The sum of the 
total tics and impairment scores determines the global 
severity scores (YGTSS scores).

EEG Acquisition
The EEG recordings were made using 19 Ag/AgCl elec-
trodes placed on the scalp at Fp1, Fp2, Fz, F3, F4, F7, F8, 
Cz, C3, C4, Pz, P3, P4, T3, T4, T5, T6, O1, and O2 elec-
trodes sites, following the 10/20 international electrode 
placement [29]. EEG data were sampled at 500 Hz and 
bandpass filtering of 0.3–70  Hz. Electrode impedance 
was always kept below 5 kΩ [30]. Subjects were asked to 
sit on chairs in a quiet room, close their eyes, and stay 
awake. During this period, EEG datasets were collected 

for 15 min. Subjects were not asked to suppress their tics 
while EEG was recorded. Meanwhile, a trained EEG tech-
nician performs quality control over EEG acquisition in 
the next room.

If the technicians noted a significant deviation from the 
study protocol (e.g., non-tic-induced finger tapping, look-
ing from side to side, eyebrow raising, etc.), the task was 
paused and the participant was provided verbal feedback 
regarding adherence to the instructions. In cases where 
the participant failed to follow instructions, data acquisi-
tion was stopped, and the participant was re-instructed 
to perform the task before resuming data acquisition. If 
the participant required multiple re-instructions, data 
acquisition was suspended, and the participant was 
excluded from further data analysis.

EEG Preprocessing
The EEGLAB toolbox [31] (available at sccn.ucsd.edu/
eeglab) based on MATLAB was used to preprocess the 
collected EEG data. First, an expert EEG technician 
reviewed the data and excluded blink, muscle, and elec-
trocardiograph artifacts by visual inspection. In addi-
tion, EEG data with artifacts due to movements during 
tic expression were also excluded from collection. The 
lengths of EEG epochs free of artifacts were varied from 
36 to 92 s. Then, the remaining preprocessing steps 
included averaging referencing, 0.5–45 Hz bandpass fil-
tering [32], 4 s data segmentation [33, 34], and artifact 
removal by independent component analysis decomposi-
tion [35].

EEG Source Localization
To search for the active sources of the scalp potentials, 
Exact Low Resolution Electromagnetic Tomography 
(eLORETA) (http:// www. uzh. ch/ keyin st/ loreta. htm) was 
used to perform a source localization analysis of all fre-
quency oscillations in the resting-state. The LORETA 
mechanism is a discrete, three-dimensional distributed, 
linear, weighted minimum norm inverse solution and has 
the ability to reconstruct intercortical activity with cor-
rect localization from scalp EEG data [36, 37]. Moreover, 
LORETA has no localization bias, even in the existence 
of noise. Most of all, although clinical EEG assessments 
typically use 19 scalp electrodes, the LORETA software 
benefits from its excellent localization agreement and 
is therefore also considered suitable for studying DMN 
when using the standard 19-electrode EEG [38]. For the 
present study, 19 electrode coordinates were first cre-
ated. Then, an average head model was interpolated on 
this basis, which was necessary to calculate the "conver-
sion matrix" for the conversion of the electrical potential 
differences recorded at the scalp level into "current den-
sity." The pre-processed EEG is converted and imported 

http://www.uzh.ch/keyinst/loreta.htm
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into LORETA to create an "EEG cross-spectrum." Corre-
sponding functional images of the cortical distribution of 
different frequency bands of the generators of oscillatory 
electrical activity were then calculated and elaborated. 
According to the difference in the frequency, the follow-
ing frequency bands were defined: δ (0.5–4 Hz); θ (4–8 
Hz); α (8–13 Hz); β (13–30 Hz); and γ (30–45 Hz) [39].

Functional connectivity analysis
Seed-based functional connectivity has been widely used 
[40]. To evaluate the connectivity in the DMN, accord-
ing to a previous study [41], 12 regions of interest (ROIs) 
were defined, as shown in Supplement Table 1. The inter-
cortical surfaces were parcellated into 15,000 anatomical 
vertices based on Montreal Neurological Institute tem-
plates [42]. Because the single centroid voxel (the closest 
to the center of the ROI) is an excellent representative of 
the corresponding ROI, for the analysis of connectivity 
between ROIs, a method using a single voxel at the cen-
troid of each ROI was chosen.

The method of connectivity analysis was based on 
the LPS. The LPS quantifies the nonlinear relationship 
between ROIs after excluding the instantaneous zero-lag 
contribution. Zero-lag synchronization is usually caused 
by non-physiological artifacts such as volume conduc-
tion and low spatial resolution, which usually affect other 
connection indices[43]. Therefore, this correction is 
important.

Network measures
Based on the network constructed above, we analyzed its 
characteristics. For this purpose, we calculated the aver-
age connectivity matrix for all subjects. To compare with 
previous literature about TS [14, 44], four metrics were 
chosen to measure the network properties of all sub-
jects (2 global topology parameters and 2 node topology 
parameters) using the GRETNA toolbox (https:// www. 
nitrc. org/ proje cts/ gretna). An extended description of 
the topological parameters of the brain network used in 
this study can be found in this article [24].

Global efficiency: global efficiency measures the global 
efficiency of parallel information transfer in a network. 
The shorter the shortest path length, the higher the global 
efficiency of the network, and the faster the information 
transfer rate between network nodes.

Local efficiency: the local efficiency of the network 
measures how efficient communication is among the first 
neighbors of a given node when it is removed.

Clustering coefficient: the clustering coefficient of a 
given node measures the likelihood of its neighbors being 
connected to each other, which is equal to the ratio of the 
number of edges actually connected between the neigh-
bors of that node to the maximum number of possible 
connected edges.

Degree centrality: the nodal degree for a given node 
reflects its information communication ability in the 
functional network. Degree centrality demonstrates the 
total strength of direct functional connections between 
local brain regions and the whole brain. Regions with 
high degree centrality values often represent the core 
nodes of brain networks to each other.

Statistics
To analyze potential between-group differences in 
demography, two-sample t-tests were conducted. Tests 
were performed to compare the LPS values and topo-
logical properties (global efficiency, local efficiency, clus-
tering coefficient, and degree centrality) between TS 
patients and HCs in every frequency band. EEG func-
tional connectivity data were compared using the sta-
tistical nonparametric mapping (SnPM) method based 
on Fisher’s permutation [45] provided by the eLORETA 
software. This method is based on Fisher’s permutation 
test: a subset of nonparametric statistics. Specifically, 
using this approach, significant differences (p < 0.05) were 
identified by comparing the distribution of permutated 
values at the voxel level using a nonparametric permuta-
tion procedure [46]. Correction for multiple comparisons 
in SnPM with random permutations (5000 in the current 
study) has been shown to yield results similar to those 
obtained from statistical parametric mapping with a gen-
eral linear model with multiple comparison corrections 
derived from random field theory [46]. Since comparing 
networks consisting of different numbers of edges may 
lead to pseudo-differences due to differences in network 
topology [47], we binarized the connectivity matrix using 
different thresholds to compare graphs with a fixed net-
work density. The integrated area under the curve (AUC) 
is very sensitive to alterations in the topological proper-
ties of the brain network [48]. Therefore, the AUC was 
used to identify the significant between-group differences 
in the topological properties of the DMN between the TS 
and HC groups. We calculated the AUC of each topologi-
cal property metric over the range of 0.05 to 0.50 with an 
interval of 0.01. Bonferroni-corrected two-sample t-tests 
were conducted to analyze the differences in topological 
properties.

Table 1 Demographic characteristics

TS HC p

Age (year) 7.08 ± 2.36 7.73 ± 3.15 0.37

Male (%) 22(73.33%) 22(73.33%) 1

YGTSS scores 32.23 ± 13.29

https://www.nitrc.org/projects/gretna
https://www.nitrc.org/projects/gretna
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Moreover, Pearson correlations were computed 
between the YGTSS scores and brain activity to inves-
tigate the relationship between the YGTSS scores and 
these EEG metrics with significant between-group differ-
ences. p < 0.05 was considered statistically significant.

Results
Demographics
As shown in Table  1, TS patients (22 males and 8 
females) had a mean age of 7.08 years (standard deviation 
[SD]: ± 2.36) and a YGTSS scores of 32.23 (SD: ± 14.81). 
The HCs (22 males and 8 females) had a mean age of 7.73 
years (SD: ± 3.15).

Functional Connectivity
The functional connectivity analyses were performed 
based on LPS. There were statistically significant altera-
tions in LPS values in patients with TS compared to HCs 
for β band activity in the DMN. More specifically, greater 
connectivity was found between the bilateral PCC/Rsp 
across both hemispheres in the β band of the TS patients 
(t = 3.581, p < 0.05). (Fig. 1).

Topological Properties
The global efficiency and local efficiency were used to 
measure the global properties. However, the global and 
local efficiency showed no significant difference between 
the two groups in the five frequency bands (Supplemen-
tary Fig. 1).

Two network parameters, nodal clustering coeffi-
cients and nodal degree centrality, were used to meas-
ure the nodal properties of the functional brain network 
in both groups of subjects. Compared to the HC group, 

TS patients showed increased clustering coefficient val-
ues in the δ band in the left ACC and the right mPFC, 
while decreased in the right temporal lobe and the rightt 
TPJ. In addition, TS patients showed decreased cluster-
ing coefficient value in the left PCC in the β band and 
increased clustering coefficient value in the left PCC in 
the γ band. However, after correction for multiple com-
parisons, these differences in clustering coefficients were 
non-significant (see Supplementary Table  2 for the sta-
tistical values). As for the degree centrality, TS patients 
showed increased value in the left temporal lobe in the γ 
band (t = 2.845, p = 0.004), and the difference still existed 
after correction for multiple comparisons.

Association between YGTSS and EEG Metrics
Pearson correlation was used to evaluate the linear cor-
relation between the YGTSS scores and these EEG met-
rics with significant between-group differences. Only the 
degree centrality was associated with total YGTSS scores. 
Specifically, YGTSS scores were positively related to the 
degree centrality in the left temporal lobe in the γ band 
(r = 0.369, p = 0.045, Fig. 2).

Discussion
This cross-sectional study aimed to elucidate further 
functional network alterations in children with TS at the 
source level using brain network analysis utilizing EEG 
techniques. A strong increase in the neural connectivity 
of the TS patients in the β band was found between the 
bilateral PCC/Rsp. Furthermore, the topological proper-
ties of the DMN have altered. Specifically, the local top-
ological properties in DMN of TS patients were altered 
(TS patients showed increased degree centrality value 

Fig. 1 Abnormal DMN interregional functional connectivity between patients with TS and HCs
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in the left temporal lobe in the γ band). In contrast, the 
global topological properties (global and local efficiency) 
exhibited no significant differences. In addition, the 
degree centrality of the left temporal lobe was positively 
correlated with YGTSS scores.

Consistent with our expectations and a prior neuro-
imaging report[13], our findings revealed greater con-
nectivity within the DMN in TS patients. The DMN is 
thought to be involved in processes related to self-aware-
ness, such as self-reference and autobiographic memory 
retrieval[49]. The result indicated that a network known 
to underlie self-referential processing might also con-
tribute to the neural mechanism of TS. Increased con-
nectivity within the DMN may thus represent a neural 
correlate of self-referential thinking related to tics, e.g., in 
the context of the premonitory urge feeling [50]. In addi-
tion, the increased connectivity was found between the 
bilateral PCC/Rsp. The PCC/Rsp was an important hub 
in DMN and plays a vital role in cognitive control [51, 
52]. Previous studies concluded that TS patients accom-
plish various cognitive tasks through enhanced cognitive 
control because of their chronic need to cope with physi-
cally generated unwanted behaviors, specifically motor 
and vocal tics[53, 54]. Therefore, we speculated that the 
increased bilateral PCC/Rsp functional connectivity in 
TS patients found in the present study might be related 
to a compensatory cognitive mechanism that develop in 
TS patients due to long-term tic suppression. However, 
since this is a cross-sectional study, and the compensa-
tory process cannot be directly tested, this speculation 
has yet to be confirmed.

Moreover, this result was found in the β band. Consist-
ent with our findings, Zapparoli et al. [55] also found that 
the abnormal modulation of the EEG rhythm in TS was 
specific for the β frequency. In fact, it has been hypoth-
esized that β oscillations may represent a specific ten-
dency of the sensorimotor system to maintain the "status 
quo" and represent the "idle rhythm" of the motor system. 
And the β oscillations and/or coupling in the β band are 
expressed more strongly if the maintenance of the status 
quo is intended or predicted than if a change is expected 
[56]. This hypothesis is strongly supported by studies 
related to movement disorders (e.g., Parkinson’s disease) 
in which people with Parkinson’s disease have difficulty 
initiating or changing their movements, which is signifi-
cantly associated with higher levels of β oscillations [57]. 
Although there was no evidence for this, we speculated 
that an increase in β bands was observed because TS 
patients try to inhibit involuntary movements for long 
periods in their daily lives.

This study also investigated the nodal topological 
characteristics of functional network alterations in TS 
patients. Degree centrality measures the number of 
instantaneous functional connections (or correlations) 
between a given voxel (node) and the rest of the brain, 
rather than with specific nodes or networks [58]. Thus, 
this metric allows us to quantify the importance of a 
node to the rest of the brain. The brain network consid-
ers nodes with a high degree centrality “hubs”. In this 
study, we found that TS patients in the γ band showed 
increased degree centrality values in the left temporal 
lobe, meaning that the left temporal lobe was hyperactive 

Fig. 2 In TS patients, the LPS in the right temporal lobe in the γ band showed a positive correlation with YGTSS scores
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in the γ band. The temporal lobe has previously been 
implicated in TS. A previous study also found a thinner 
cortex of the temporal lobes of TS subjects [59], and the 
author interpreted it as a cortical folding abnormality. 
The temporal lobe is part of the limbic system, i.e., amyg-
dalae and hippocampus. A previous study found that TS 
patients showed stronger activity within the amygdala/
hippocampus complex during spontaneous than volun-
tary tics, suggesting that activity in these regions may 
represent features of the premonitory urges that generate 
spontaneous tic behaviors [60]. Combined with our find-
ings, this further suggested that the temporal lobe might 
be an important brain region associated with the etiology 
of TS.

This study also found a correlation between tics severity 
and EEG metrics with significant intergroup differences 
in patients with TS. Specifically, YGTSS scores were posi-
tively correlated with the value of degree centrality in the 
left temporal lobe in the γ band. This study’s results fur-
ther confirm the temporal lobe’s role in TS. The literature 
suggested that the temporal lobe was associated with the 
direct control of urge inhibition [61]. As mentioned pre-
viously, we speculated that TS patients need to continu-
ously and consciously suppress involuntary body tics in 
their daily life, resulting in enhanced temporal lobe func-
tion and increased connectivity with other brain regions. 
The more severe the tics symptoms, the more the tempo-
ral lobes are activated and the stronger the connections 
with other brain regions. In future research, examining 
correlations between the brain activity reported here 
and premonitory urge scores will directly assess this 
hypothesis. Previous studies found that insula [62], sup-
plementary motor area [63], and regions of the cingulate 
[64] were most commonly implicated in premonitory 
urge. Therefore, the temporal lobe may play a “hub” role 
in communicating with these brain regions. However, to 
date, it is not clear whether the temporal lobe is involved 
in the pathogenesis of TS. If so, the findings would help 
improve targeted therapy in the future. For example, 
some treatments used to improve local brain function 
can be used in TS patients, such as transcranial magnetic 
stimulation, deep brain stimulation, and transcranial 
direct current stimulation. These therapies can provide 
compensatory improvement to localized functionally 
enhanced or weakened brain areas and promote localized 
brain area functional recovery [65].

The clustering coefficient is equivalent to the frac-
tion of nodal neighbors that are also neighbors to each 
other [66]. Thus, the higher clustering coefficient indi-
cates high local efficiency, more stability, and increased 
functional segregation in the disrupted brain regions. 
In this study, we found that compared to the HCs, the 

clustering coefficients of the right mPFC, the left ACC, 
the right temporal lobe, the left PCC, and the right TPJ 
demonstrated a trend of change in certain bands. These 
nodes, especially the mPFC, are essential nodes within 
the DMN and play central roles in the neuropathol-
ogy of TS. Similarly, studies based on the brain struc-
ture of TS patients also found the prefrontal area to be 
involved in the onset of tics [67], and the increase in 
prefrontal cortical thickness was correlated positively 
with tic severity [59]. Brain networks are thought to 
evolve to maximize the cost efficiency of parallel infor-
mation processing (i.e., high efficiency of parallel infor-
mation transfer at low costs) [68]. Although not yet 
confirmed, we speculated that the symptoms associated 
with TS disease may place abnormal demands on brain 
function to work as efficiently as possible. This may 
lead to alterations in the topological properties of spe-
cific networks.

The strength of this study is that the included sub-
jects with TS did not have other comorbid neuropsy-
chological disorders, such as ADHD or OCD. In 
addition, none of the subjects included in the study had 
any treatment before this research, including pharma-
cological and psychologically assisted treatment. This 
ensured that the sample for this study was homogene-
ous, and the selection of a homogeneous group ensured 
that potential confounders minimized the impact of 
the results. Although selecting a homogenous group 
assured minimal influence of potential confounders on 
results, our findings may not be generalizable to chil-
dren with comorbid disorders such as OCD or ADHD, 
both of which are very common in patients with TS 
[69]. Therefore, future studies using similar techniques 
should be carried out in TS patients with comorbidi-
ties and also OCD and ADHD patients without TS for 
comparison.

There are some other limitations must be acknowl-
edged in our study. First, gender and handedness may 
influence the results; however, due to the relatively 
small sample size, it was impossible to standardize gen-
der and handedness. Second, although EEG may have 
some advantages over fMRI, such as direct measure-
ment of neural oscillations, better temporal resolution, 
and high feasibility of use in TS patients, a known limi-
tation of EEG is its reduced spatial accuracy. Finally, 
a relatively simple methodological approach was 
adopted. This study adopted a semirealistic head model 
with individual electrodes and sensor locations rather 
than a realistic head model. Therefore, in future stud-
ies, both EEG and other brain imaging techniques (for 
example, MRI, X-ray, and CT) should be performed on 
the subjects, combining these two examination meth-
ods to improve the study’s precision [70].
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Conclusion
To sum up, we used a graph theory approach to inves-
tigate the topological reorganization of the DMN in TS 
patients. Subjects with TS exhibited abnormal func-
tional connectivity and topological properties (nodal 
topology parameters) within DMN in specific fre-
quency bands. In addition, abnormal functional con-
nectivity and topological properties were associated 
with the severity of tics in patients with TS. Therefore, 
we assumed that abnormal functional connectivity and 
topological properties might be potential biomarkers 
for objective diagnoses of TS. Furthermore, the find-
ings gave a novel insight into the neural mechanism of 
TS patients.
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