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Abstract
Purpose  Tremor is one of the hallmarks of Parkinson’s disease (PD) that does not respond effectively to conventional 
medications. In this regard, as a complementary solution, methods such as deep brain stimulation have been 
proposed. To apply the intervention with minimal side effects, it is necessary to predict tremor initiation. The purpose 
of the current study was to propose a novel methodology for predicting resting tremors using analysis of EEG 
time-series.

Methods  A modified algorithm for tremor onset detection from accelerometer data was proposed. Furthermore, 
a machine learning methodology for predicting PD hand tremors from EEG time-series was proposed. The most 
discriminative features extracted from EEG data based on statistical analyses and post-hoc tests were used to train the 
classifier for distinguishing pre-tremor conditions.

Results  Statistical analyses with post-hoc tests showed that features such as form factor and statistical features were 
the most discriminative features. Furthermore, limited numbers of EEG channels (F3, F7, P4, CP2, FC6, and C4) and EEG 
bands (Delta and Gamma) were sufficient for an accurate tremor prediction based on EEG data. Based on the selected 
feature set, a KNN classifier obtained the best pre-tremor prediction performance with an accuracy of 73.67%.

Conclusion  This feasibility study was the first attempt to show the predicting ability of EEG time-series for PD hand 
tremor prediction. Considering the limitations of this study, future research with longer data, and different brain 
dynamics are needed for clinical applications.

Highlights
	• The potential of EEG for tremor prediction was investigated.
	• Complexity of EEG time-series in delta band was discriminative for tremor prediction.
	• Statistical features in gamma band were discriminative for tremor prediction.
	• EEG biomarkers are suitable for predicting PD resting tremor with accuracy up to 73%.
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Introduction
Background, aim and objective
Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disease worldwide [1]. In the 
advanced stage of PD, movement disorders such as 
tremors in the hands, legs, or trunk may appear. Other 
movement complications such as dyskinesia, bradykine-
sia, freezing of gaits, and balance problems can also be 
observed in PD patients [2, 3]. Among these symptoms, 
tremors respond to conventional medications in a vari-
able manner [4]. Furthermore, tremor is the most visible 
symptom of PD and reduces significantly the quality of 
life for such patients. In this regard, several non-pharma-
cological interventions were proposed for tremor reduc-
tion or suppression. Physical activity intervention [5], 
electrical [6], or magnetic stimulation [7] of muscles or 
nerves, light therapy [8] or acoustic vibration therapy are 
among non-invasive methodologies for tremor suppres-
sion. Other invasive techniques such as deep brain stimu-
lation (DBS) [9] were also used for tremor suppression in 
some severe PD cases.

Detecting tremor onset is a critical step in any tremor 
suppression strategy since applying the intervention in 
electrical, magnetic, acoustic, or any other form just 
before tremor initiation reduces the energy consumption 
of the stimulation device, reduces the total stimulation, 
and mitigates the side effects such as speech impairments 
[10] when compared with continuously applied stimula-
tions. As an example, in adaptive deep brain stimulation 
(aDBS), which is an enhanced version of traditional DBS, 
delivering stimulation pulses to the deep brain area is 
controlled by motor symptoms such as tremor initiation 
[11]. For suppressing PD tremors through external inter-
vention, the initial step is to detect the onset of tremors. 
Different methodologies were proposed for detecting 
PD tremors. Some methods focused on data collected 
by accelerometer and gyro sensors attached to the body 
surface [12–16]. Some others utilized electromyography 
(EMG) data [17], while other methods were focused on 
the neural data acquired from brain [18–22]. The latter 
methods typically use data from electrodes implanted in 
deep brain areas through an invasive procedure.

In this study, we aimed to test the feasibility of pre-
dicting hand tremors using dynamical changes in elec-
troencephalography (EEG) rather than relying on data 
obtained from attached accelerometer sensors, EMG, or 
implanted electrodes. EEG reflects the real-time manifes-
tation of numerous motor and psychological functions, 
making it suitable for the automatic detection of such 
functions. In the case of tremor suppression based on 
accelerometers or EMG sensors, first, the tremors should 
initiate, recorded data be processed and hand movement 
characteristics satisfy tremor-specific characteristics, 
then the intervention be applied. This introduces a delay 

between the tremor onset and intervention that reduces 
the effectiveness of tremor suppression. Furthermore, 
invasive methodologies for tremor suppression, such as 
DBS, may cause complications such as the risk of intra-
cranial hemorrhage [23]. EEG signals can be recorded 
non-invasively, and because they originate from the 
nervous system, we hypothesized that they can provide 
useful information for predicting tremors before tremor 
manifestation.

Related works
EEG signals were successfully utilized for the diagnosis of 
PD patients from healthy subjects [24, 25]. Furthermore, 
EEG signals were used to characterize the electrical 
activities of the brain in PD patients and to highlight the 
differences with healthy individuals [26, 27]. Such stud-
ies assisted researchers to investigate the neural mecha-
nisms underlying PD. For predicting movements, EEG 
signals were used extensively. Movement-related cortical 
potentials (MRCP) are positive or negative deflections in 
EEG data that appear just before the onset of intentional 
movements. The Bereitschaftspotential component of 
MRCP was proposed as a biomarker for the prediction 
of movement intention [28]. The time-frequency charac-
teristics of EEG data were used to predict different hand 
movements with moderate accuracy [29]. Single-trial 
EEG signals were also employed for the prediction of 
hand movement speed and force [30].

While strategies such as analysis of local field potentials 
recorded by deep brain implanted electrodes [16, 21, 22], 
assessing hand movement using inertial sensors [15, 31], 
or analysis of hand movement with electromyography 
[17] were proposed for predicting PD tremor, to the best 
of the authors’ knowledge, there is no study using EEG 
signals to predict tremor onset in PD patients. Therefore, 
the current study focused on the feasibility of using EEG 
signals to predict resting hand tremors in such patients. 
Additionally, it was also of special interest to check if lim-
ited number of EEG recording channels could achieve 
predictive capabilities.

Materials and methods
Dataset description
EEG dataset
The association between EEG dynamics and tremors 
requires a dataset that include simultaneous recording of 
EEG and hand movement data. To address this, a publicly 
available dataset provided by the University of New Mex-
ico was utilized in which synchronized EEG and hand 
movement data were accessible (available from: http://
predict.cs.unm.edu/downloads.php under the Parkin-
son’s Rests project). This is a multimodal dataset includ-
ing multi-channel EEG data, 3-axis accelerometer data 
(in the x, y, and z direction) and vertical eye movement 
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profiles. Twenty-seven PD cases in two conditions (ON 
medication: continuation of dopaminergic medication; 
OFF-medication: withdrawal of dopaminergic medica-
tions 15  h prior to recording) visited the lab in a coun-
terbalanced manner across ON and OFF-medication 
conditions. Two participants were excluded due to the 
lack of hand movement data. The time interval between 
data recording sessions for the ON and OFF-medication 
conditions was one week. This dataset also includes data 
from 25 age- and sex-matched healthy participants. In 
the PD group, participants underwent a battery of behav-
ioral tests, including Mini Mental State Exam (MMSE), 
Beck Depression Inventory (BDI) test, North American 
Adult Reading Test (NAART), and Unified Parkinson’s 
Disease Rating Scale (UPDRS) test (for more details, refer 
to [32]). All included participants had enough high cog-
nitive score  (MMSE > 26). EEG data were recorded using 
a 64-channel EEG recorder in accordance with the 10–20 
standard and digitized at a sampling rate of 500 Hz. For 
two resting-state brain conditions, eyes-open and eyes-
closed, 1-minute data was recorded, simultaneously ver-
tical eye movements data using EMG electrode and hand 
motions using a 3-axis accelerometer was captured [33].

Accelerometer data
In the current study, a modified algorithm for automatic 
tremor detection from accelerometer data of PD patients 
was proposed. To evaluate the performance of the tremor 
detection algorithm, it was essential to have a ground 
truth data where tremor onsets were accurately labeled. 
For this purpose, the hand movement data labeled with 
tremor onset time from three PD patients was recorded 
using an IMU sensor (BWT901CL, Wit motion, China). 
The IMU sensor was attached to the most affected hand 
of each PD patient. Using a customized code that was 
developed based on the provided source codes and sen-
sor driver (available at: https://github.com/WITMO-
TION), tremor data was recorded during the hand 
resting state. During recording, each participant was 
instructed to sit in a relaxed position in a chair with both 
hands on the armrest. An expert supervisor identified 
tremor onset and end time during recording by pressing 
prespecified keys on the computer keyboard, guided by 
visual inspection. The sensor’s sampling frequency was 
set to 100 Hz, and the recording duration was 5 min. If 
the handshake persisted for more than 30s, the supervi-
sor asked the participant to perform a voluntary move-
ment in order to terminate the resting tremor. This was 
done for increasing the number of tremors for statistical 
analysis purposes. Data from a 3-axis accelerometer (in 
x, y, and z directions) and the tremor onset time for each 
subject were recorded in an Excel file for further analysis. 
Real tremor onset times and the detected tremor times 

were compared to assess the performance of the pro-
posed tremor detection algorithm.

The block diagram of the proposed methodology is 
shown in Fig. 1. In summary, the hand accelerometer data 
in three directions (  x, y and z) were filtered and time-
frequency representation was calculated. To account for 
hand vibrations in all directions, the multiplication of 
accelerometer data across the three directions ( x, y and 
z) was calculated. Using a thresholding strategy, tremor 
onset and endpoint times were found. After preprocess-
ing the EEG data (including trend removal, filtering, and 
artifact removal), tremor onset time and tremor endpoint 
time were used for extracting three segments or epochs 
(pre-tremor, tremor, and non-tremor segments) from the 
EEG time series. Notably, EEG time series and acceler-
ometer data were recorded simultaneously. From each 
EEG extracted epoch, several features were extracted and 
the best discriminative sets were used for tremor predic-
tion. More details can be found in sections  2–2, 2–3, and 
2–4.

Tremor onset detection algorithm
For tremor detection, we used the modified version of the 
algorithm proposed by Salarian et al. [16]. The acceler-
ometer data in each axis (x, y, and z) was analyzed sepa-
rately. The following steps were performed consecutively: 
(1) Drift of each channel was removed using a moving 
average filter. (2) To eliminate very slow and fast non-PD 
tremor fluctuations, the accelerometer data was filtered 
using a bandpass finite impulse response (FIR) filter with 
cut-off frequencies of 1 and 30  Hz [14]. (3) The filtered 
data was segmented using 3-second sliding overlapped 
Hamming windows (90% overlap ratio) to emphasize the 
samples in the center of the window. (4) For each win-
dow, an all-pole sixth-degree autoregressive model using 
the Berg method calculated the frequency spectrum of 
the signal. The peak power frequencies of the calculated 
spectrum were found. If the spectrum exhibited peak 
powers in 3–8  Hz range (slightly wider than the fre-
quency range of PD tremors), the window was labeled 
as a tremor window and the maximum peak frequency 
of the windowed data within the 3–8 Hz span was con-
sidered for that window. Otherwise, the windowed seg-
ment was labeled as non-tremor and the frequency of 
that segment was considered to be 1. The reason for allo-
cating the value of one (rather than zero) is that in the 
final stage, the processed accelerometer data of the x, y, 
and z axes were multiplied. Tremors are heterogeneous 
events that appear in different directions (i.e. x, y, and 
z axes). Therefore, combining tremor detection across 
multiple axes using multiplication and assigning a value 
of 1, even when tremor isn’t observed in all axes, helps 
preserve the tremor profile in the overall calculation. (5) 
To avoid capturing very low-amplitude hand vibrations, 
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the tremor-labeled window needed to exhibit a peak fre-
quency greater than T, where T is a threshold calculated 
by dividing the maximum peak power of accelerometer 
data by 10. (6) The values of dominant peaks from suc-
cessive overlapping windowed segments were obtained. 
To estimate the start and endpoint of the tremor event, 
the result of the above procedure was upsampled to 
match the length of the original accelerometer data and 
time series. This resulted in a time-frequency representa-
tion of the accelerometer data across the x, y, and z axes. 
(7) To eliminate the effect of unwanted transient pertur-
bations in the upsampled data, it was smoothed. (8) Since 
the tremors can occur in any direction (x, y, and z-axis), 
to preserve the tremor information, the combination of 
all three axes was considered [16]. In contrast to Sala-
rian et al., who summed up the results for accelerometer 
data from x, y, and z axes, we multiplied the profiles for 
different axes. This multiplication approach highlighted 
the tremor event compared to summation. (9) Since 
PD resting tremor frequency is mainly concentrated in 
3.5–7.5  Hz range [16], in case of the presence of hand 
tremors in at least one axis, the multiplication of time-
frequency profiles should be larger than 3.5 Hz. A thresh-
old was applied to the multiplication and a rectangular 
pulse waveform was obtained which contained rectangu-
lar pulses according to the number of dominant tremors. 
The edge and duration of rectangular pulses were used 
for detecting tremors and the duration of each tremor. 
The tremor was acceptable if the hand vibration was 
non-transient and persisted for more than 3 s. The proce-
dure outlined above identifies dominant resting-state PD 
tremors. The block diagram for tremor-onset detection 
algorithm is presented in Fig. 2.

EEG data preprocessing
For EEG data preprocessing, the baseline of each chan-
nel was removed using a moving average filter. A linear 
phase FIR filter was used to remove unwanted fluctua-
tions outside the frequency range of classical EEG waves 
(i.e. 0.5–50  Hz). Using the linear phase filter prevents 
the phase distortion of data. In order to remove non-
EEG fluctuations with the overlapped frequency content 
with EEG (for example EMG or eye movement patterns), 
independent component analysis (ICA) was employed 
using ADJUST plugin (version 1.1.1). The infected ICA 
components were removed and the pure data was recon-
structed using the remaining ICA components. EEG data 
were segmented for eyes-open and eyes-closed condi-
tions according to the provided data labels.

Feature extraction
By detecting tremor onset, a 3-second segment of EEG 
data before tremor onset and 3-second of data after 
tremor onset were extracted as ‘Pre-tremor’ and ‘Tremor’ 

Fig. 1  Block diagram of the proposed methodology. Accelerometer raw 
data (panel A, upper), filtered accelerometer data (panel A, middle) and its 
time-frequency profile (panel A, lower). Multiplication of time-frequency 
profile of x, y and z-axis accelerometer data (B). According to a threshold-
ing strategy, pre-tremor, tremor and non-tremor (control) segments were 
detected (C). Based on the onset time of tremor, pre-tremor and non-
tremor segments, related EEG segments were extracted by windowing 
(D). Preprocessing and analyses blocks (E)
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segments for further analysis. Additionally, a non-over-
lapping 3-second segment of data with the ‘Pre-tremor’ 
and ‘Tremor’ segments was extracted and labeled as the 
‘Control’ or ‘non-tremor’ segment for statistical analyses. 
For each segment of EEG data, various types of features 
were extracted. These features are described in Table  1. 
Extracted features were related to both time and fre-
quency domain characteristics of the EEG time-series (63 
channels of EEG data and 25 patients) as well as entropy 
as a useful measure of information retrieval in EEG time-
series [34]. The feature set was extracted for two different 
brain resting-state conditions (i.e. eyes-closed and eyes-
open) and two conditions of OFF- and ON-medication 
states.

Statistical analysis for feature selection
The normality distribution of each feature among 
patients was checked using the Lilliefors test [38] with 
a significance level of 0.05. This two-sided test checks 
the goodness-of-fit to the normal distribution for sam-
ples from an unknown distribution. To check if each 
extracted feature could distinguish pre-tremor condition 
from tremor and non-tremor control conditions, in the 
case of normal distribution of a feature, one-way analy-
sis of variance (ANOVA) was used, while for non-nor-
mal distributed features, Kruskal-Wallis non-parametric 
test was used. These tests assessed whether the mean or 
median values of a feature among our three groups (i.e. 

‘Pre-tremor’, ‘Tremor’, and ‘Non-tremor control’) were 
significantly different. To identify specific difference 
between the ‘Pre-tremor’ group and two other groups, 
the post-hoc multiple-comparison test was conducted 
using the Tukey-Kramer method to the obtained p-val-
ues. In order to select the most discriminative features, 
the significant level was adjusted to 0.01. Statistical anal-
yses were conducted using MATLAB 2017a and its Sta-
tistical toolbox.

Classification strategy
The classification step aimed to assess the performance 
of the most discriminative features in distinguishing 
between pre-tremor and tremor/control conditions. 
The extracted and selected features were fed to differ-
ent types of classifiers, including k-nearest neighbor 
(KNN), decision tree, multi-class support vector machine 
(SVM), Naïve Bayes, and discriminant analysis. For 
the multi-class SVM classifier, an error-correcting out-
put codes (ECOC) model with a one-versus-all coding 
design was used that changed the multi-class classifica-
tion problem to a set of binary classifications [39]. The 
hyperparameters for SVM were RBF kernel function, an 
Iterative Single Data Algorithm as optimization routine, 
a box constrain (parameter for controlling the maximum 
penalty on margin-violating observations) of 10, and a 
gamma parameter (kernel scale parameter) of 1. For the 
multi-class KNN classifier (k = 3 neighbors), the nearest 

Fig. 2  Block diagram of the proposed tremor-onset detection algorithm
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neighbors were found using an exhaustive search algo-
rithm and Minkowski distance. The automatic parameter 
optimization for KNN classifiers was used by the built-
in functions of MATLAB. For decision tree classifier, 
Maximum tree depth was set to 10, maximal number of 
decision splits was set to 5, and a Gini’s diversity index as 
splitting criterion was used. For the Naïve Bayes classifier, 
a Gaussian kernel smoothing type, and an unbounded 
Kernel smoothing density support were used. Since fea-
tures were labeled as “Pre-tremor”, “Tremor” and “Con-
trol”, the classification procedure was a kind of supervised 
classification. The classification performance was evalu-
ated using sensitivity (SE), specificity (SP), and accuracy 
(ACC) calculated with the following formula:

	
SE =

TP

TP + FN
� (1)

	
SP =

TN

TN + FP
� (2)

	
ACC =

TP + TN

TP + TN + FP + FN
� (3)

In Eqs. (1–3), TP, FN, TN, and FP represent true positive, 
false negative, true negative, and false positive, respec-
tively. To check the sensitivity of the performance met-
rics to the input feature space, K-fold cross-validation 
was used. Furthermore, area under the receiver operating 
curve (AUC) was calculated for each classifier. The clas-
sification was performed using “Statistics and Machine 
Learning toolbox” of MATLAB 2017a.

Results
Tremor detection from accelerometer data
The results of the proposed modified tremor detection 
algorithm are reported in Table  2. These results were 
obtained according to the hand tremor data recorded 
from 3 PD patients in 5 min recording duration using a 
3-axis accelerometer. In order to investigate the effect of 
non-tremor events on the performance of the proposed 
algorithm, the results were reported for both low and 
high SNR accelerometer data. For the low SNR data, the 
patient was instructed to perform some voluntary hand 
motions when the hand was on the arm of the chair. In 
contrast, for high SNR data, participant was asked to 
avoid voluntary movement. In Table 2, performance was 
evaluated according to accuracy and false alarm rate. 

Table 1  Extracted features from EEG time-series (X) for tremor 
prediction
Feature name Category Description
Entropy(E) Time-domain Shannon entropy for wavelet 

coefficients in each decom-
position node of wavelet 
packet. The final entropy is 
calculated by the summation 
of entropy values for all nodes 
of wavelet packet.
E =

∑
i E (si)

Where si is the vector of 
wavelet coefficients in i-th 
node and E is the entropy.
E (si) = si

2logsi
2

L-moments (L-
scale, L-skew-
ness, L-kurtosis)

Time-domain L-moment are statistics calcu-
lated by linear combination of 
conventional moments [35]. 
L-moments are more robust 
against outliers compared 
with conventional moments.

Form Factor (FF) Time-domain The ratio of the mobility of 
the first derivative of the sig-
nal to the mobility of the sig-
nal [36], where mobility is the 
ratio of standard deviation for 
first derivative of time-series 
and the time-series itself:
FF =

σX′′/σX′
σX′/σX

Sample Entropy 
(Sen)

Time-domain Negative logarithm of 
conditional probability of 
the successive segmented 
time-series samples. It is 
an indicator of time-series 
complexity [37]

Root mean 
square (RMS)

Time-domain
XRMS =

√
1
N

∑N
n=1 |Xn|2

Conventional 
statistics (me-
dian, mean, vari-
ance, skewness, 
kurtosis, higher 
order statistics 
(5th and 6th 
momentums)

Time-domain The mean value, median 
value, variance, kurto-
sis, skewness and 5th and 
6th order statistics. These 
statistics are dependent to 
the distribution of data points 
of time-series.

Peak frequency 
(Hz)

Frequency-domain The frequency in which maxi-
mum value of power spectral 
density was observed.

Band power (Hz) Frequency-domain The average power in the 
input signal.

Power band 
width (Hz)

frequency-domain 3dB bandwidth (half power 
bandwidth). Using the 
peridogram power spectrum 
estimate by a rectangular 
window, the frequency dif-
ference between points in 
which the spectrum is at least 
3dB lower than the maximum 
point of spectrum.

Table 2  Performance of the proposed tremor detection 
algorithm

Accuracy (%) False alarm rate (%)
High SNR 97.22 ± 0.23 1.28 ± 0.2

Low SNR 89.17 ± 2.30 4.33 ± 1.78



Page 7 of 13Farashi et al. BMC Neurology          (2023) 23:420 

Accuracy measures the proximity of detected tremor 
onset time to the true value (100 ms threshold) and false 
alarm rate shows the probability of incorrect tremor 
detection.

It should be noted that for some patients, the acceler-
ometer data indicated continuous hand tremor through-
out EEG recording. Furthermore, for a few patients, no 
tremor was observed during EEG recording in eyes-
closed or eyes-open conditions. These patients were 
excluded for the analyses because it was not possible to 
identify the pre-tremor or tremor segments.

Discriminative features
The results in Table 2 indicated that the modified tremor 
detection algorithm achieved acceptable accuracy and 
a relatively low false alarm rate. Table 3 showed the fea-
tures, frequency bands, and EEG recording locations 
where pre-tremor status was distinguished from tremor 
and no-tremor conditions (multiple comparisons cor-
rected, p < 0.01). These results were obtained under dif-
ferent conditions including eyes-closed, eyes-open, 
ON-medication, and OFF-medications.

According to the results reported by Table 3, EEG fea-
tures, frequency bands, and channel locations in which 
pre-tremor condition was significantly differed from 
tremor and control conditions were specified (p < 0.01). 
However, in real situations there is no label on EEG 
data for pre-tremor or tremor conditions; therefore, it is 
important to find a way to relate discriminative features 
to the tremor events. One hypothesis was that the tem-
poral change of features during time-evolution might 
provide an alert for tremor onset prediction. To inves-
tigate this hypothesis, EEG data in a 3-second window 
before tremor onset, after tremor onset and during the 
control condition were segmented to 500ms overlapped 
subsections (98% overlap ratio) and the feature was recal-
culated in successive windowed segments. This obtained 
the time-evolution of the feature during pre-tremor, 
tremor, and control conditions with the aim of identi-
fying a distinctive pattern between pre-tremor, tremor 
and control conditions. In this regard, the feature can be 
used for tremor prediction. According to this analysis, 
no clear pattern for the temporal change of none of the 
features during the pre-tremor condition was observed. 
As an alternative strategy, constructing a classifier using 
the most discriminative features (refer to Table 3) to dif-
ferentiate between the three conditions (i.e. Pre-tremor, 
Tremor, and Control) was considered. Such a trained 
classifier could be employed for real-time tremor predic-
tion. As Table  3 showed, the feature sets were different 
across different brain dynamics (i.e. resting-state eyes-
open or eyes-closed conditions and ON-medication or 
OFF-medication conditions). For classification, features 
and frequency bands for different dynamics obtained by 

Table 3  Features that discriminate Pre-tremor condition from 
Tremor and Control conditions (multiple comparisons corrected 
p-value < 0.01)
Condition Feature EEG 

fre-
quency 
band

EEG 
channel

Description

Off-med-
ication, 
eyes-closed

Form factor Delta F7, FC5, 
FC1, PZ, 
O1, P4, P8, 
CP6, CP2, 
C4, CP3, 
P1, P5, 
PO3, POZ, 
PO8, P2, 
CP4, TP8, 
FT8

The feature 
value for 
pre-tremor 
is signifi-
cantly higher 
compared 
with tremor 
and control 
conditions 
(p < 0.01) in 
3-s window.Peak frequency Gamma FC6

ON-med-
ication, 
eyes-closed

Form factor Delta F4, P4 Significantly 
larger value 
for 3-s 
pre-tremor 
segment 
compared 
with the 
same dura-
tion of tremor 
and control 
conditions 
(p < 0.01).

Alpha C3, CP5, 
CP1, CP2, 
CP3

HOS5 Gamma F3

Skewness Gamma F3

Kurtosis Gamma FC2, FT7, 
FCZ

HOS6 Gamma FC5, FC6, 
FC2, FT7, 
FCZ

L-skewness Gamma F7

L-kurtosis Gamma C4, FT10

ON-med-
ication, 
eyes-open

Form factor Theta C2 Significantly 
larger value 
for 3-s 
pre-tremor 
segment 
compared 
with the 
same dura-
tion of tremor 
and control 
conditions 
(p < 0.01).

Alpha CP2

HOS5 Gamma FZ, F3, F5

HOS6 Gamma FC5, FC6, 
FC2, F1, 
FC3, FT7, 
FCZ

Kurtosis Gamma FC6, FC3, 
FT7, P1

Skewness Gamma F3, F5

OFF-med-
ication, 
eyes-open

Form factor Delta FZ, F3, F7, 
FC5, C3, 
TP9, CP5, 
CP1, PZ, 
P3, O1, 
O2, P4, P8, 
CP6, CP2, 
CZ, C4, 
FC2, F1, 
TP7, P1, 
P5, PO3, 
POZ, PO4, 
PO8, P6, 
P2, CP4, 
TP8, C6, 
C2, F2, AF4

Features for 
pre-tremor 
value are 
signifi-
cantly larger 
compared 
with tremor 
and control 
conditions 
(p < 0.01) in 
3-s window.
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Table 3 were accumulated (feature set No.1), focusing on 
restricting the number of EEG channels. For example, the 
form factor feature in the delta-band calculated from P4 
location was discriminative for OFF-medication eyes-
closed, OFF-medication eyes-open and ON-medication 
eyes-closed conditions. In this regard, the form factor in 
the delta-band calculated from P4 channel was selected 
as a feature for classification, even though it was not 
discriminative for the ON-medication eyes-open con-
dition. In this manner, the following feature set (feature 
set No.1) were selected for classification: ([Form factor, 
delta, P4],[ Peak frequency, Gamma, FC6], [Form factor, 
Alpha, CP2], [HOS5, Gamma, F3], [Skewness, Gamma, 
F3], [Kurtosis, Gamma, FC6], [HOS6, Gamma, FC6], 
[L-skewness, Gamma, F7], [L-kurtosis, Gamma, C4]). To 
explore the possibility of reducing the number of features 
(and EEG channels) while maintaining acceptable clas-
sification results, the neighborhood component analysis 
(NCA) was also performed. NCA reduced the Feature set 
No.1 to Feature set No.2. It was observed that feature set 
No.2 varied across different runs of the algorithm based 
on the training and test sets; therefore, it was not possible 
to report Feature set No.2 in a unique manner.

Classification results
Results for classification were reported in Table  4. The 
input of the classifiers included different brain dynamics 
including eyes-open, eyes-closed resting states,  ON and 
OFF-medication states.

Effect of window size on the results
In a pilot study, very short (1 s), medium (4 s) and very 
long (10  s) segments were tested. However, the results 
indicated that very short or very long segments were 
not good choices for our analysis in terms of classifica-
tion accuracy or real-time feasibility. It should be noted 
that for a short length window, the calculation of features 
such as sample entropy or features extracted from power 
spectrum might not be reliable. Furthermore, for a longer 
window length, the computational and time complexity 
might increase. This degrades the real-time feasibility of 
the algorithm. For medium length EEG segments, two 
different length of segments (3 and 5  s segments) were 
also tested. In Table 5, the effect of window size on the 
classification result was reported. Comparing 3 and 5  s 
windows, it was observed that for 5  s window, none of 
the features were discriminative for eyes-open and eyes-
closed ON-medication conditions. For 5s windows, only 
‘Form factor’ feature in the delta band was discriminative 
(at C3, P6, PO4, P3, PZ and CP1 for eyes-open and at PZ, 
CP1, C3, and C3 for eyes-closed condition, respectively). 
In Table  5, the best classification performance of the 
proposed methodology for pre-tremor prediction was 
compared for 3 and 5  s windows. For a 5s window, the 
discriminative features for all dynamics (i.e. eyes-open, 
eyes-closed; ON-medication and OFF-medication) were 
[Form factor, Delta, C3];[Form factor, Delta, CP1];[Form 
factor, Delta, Pz];[Form factor, Delta, P3];[Form factor, 
Delta, PO4];[Form factor, Delta, P6];[Form factor, Delta, 
C1]. According to Table  5, a trade-off between accu-
racy and lower computational complexity for real-time 

Table 4  Classification results for tremor prediction applying different feature sets and classifiers. The results were mean ± std for a 
10-fold cross validation
Feature 
set

Classifier Accuracy 
(%)

Sensitivity Specificity AUC

Feature 
set No.1

KNN 73.67 ± 9.56 70.90 ± 14.89 87.18 ± 10.00 61.52 ± 14.53 90.54 ± 8.92 92.50 ± 6.10 79.4 ± 9.30 0.74 ± 0.09
Multi-class SVM 45.44 ± 7.96 42.31 ± 30.09 67.37 ± 25.56 20.57 ± 23.33 72.19 ± 11.93 65.8 ± 35.3 74.4 ± 16.31 0.45 ± 0.08

Decision tree 63.62 ± 8.32 55.25 ± 17.38 82.22 ± 15.40 61.92 ± 14.46 83.81 ± 12.62 89.74 ± 5.25 72.66 ± 12.27 0.64 ± 0.08

Nave Bayes 61.85 ± 13.25 74.68 ± 30.19 74.37 ± 28.23 63.63 ± 38.91 89.62 ± 8.44 92.76 ± 6.54 72.53 ± 16.50 0.62 ± 0.13

Discriminant 
analysis

54.78 ± 5.85 59.67 ± 31.05 85.65 ± 15.10 41.78 ± 13.10 70.17 ± 8.11 80.01 ± 8.11 90.23 ± 11.31 0.55 ± 0.06

Feature 
set No.2

KNN 81.29 ± 9.19 79.15 ± 11.38 84.86 ± 11.53 83.94 ± 20.93 90.37 ± 10.33 95.62 ± 6.29 86.57 ± 4.50 0.81 ± 0.09
Multi-class SVM 51.64 ± 8.97 51.71 ± 30.99 64.55 ± 24.15 23.10 ± 29.89 71.68 ± 12.46 88.17 ± 7.71 78.48 ± 15.71 0.52 ± 0.09

Decision tree 65.96 ± 4.41 66.85 ± 6.62 72.95 ± 13.55 59.93 ± 17.38 86.57 ± 5.05 82.72 ± 4.83 79.62 ± 5.44 0.66 ± 0.04

Nave Bayes 71.49 ± 11.44 85.98 ± 14.09 76.62 ± 22.58 67.84 ± 19.76 82.81 ± 5.98 91.67 ± 8.55 86.74 ± 12.66 0.71 ± 0.11

Discriminant 
analysis

56.32 ± 3.69 81.67 ± 21.08 71.31 ± 10.16 47.63 ± 6.02 67.51 ± 7.08 87.06 ± 8.16 88.85 ± 10.69 0.56 ± 0.04

Table 5  Comparison between different window lengths for tremor prediction based on EEG data processing
Feature set Classifier Accuracy (%) Sensitivity Specificity AUC
Feature set No.1 3-s KNN 73.67 ± 9.56 70.90 ± 14.89 87.18 ± 10.00 61.52 ± 14.53 90.54 ± 8.92 92.50 ± 6.10 79.4 ± 9.30 0.74 ± 0.09

5-s Nave Bayes 73.82 ± 18.78 78.61 ± 24.47 88.45 ± 15.04 69.90 ± 29.16 92.80 ± 10.45 85.58 ± 14.05 86.00 ± 13.36 0.75 ± 0.18

Feature set No.2 3-s KNN 81.29 ± 9.19 79.15 ± 11.38 84.86 ± 11.53 83.94 ± 20.93 90.37 ± 10.33 95.62 ± 6.29 86.57 ± 4.50 0.81 ± 0.09

5-s Nave Bayes 66.70 ± 17.00 66.58 ± 27.93 74.96 ± 25.17 65.39 ± 21.25 90.86 ± 10.72 85.69 ± 13.97 75.02 ± 19.88 0.67 ± 0.17
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implementation of the proposed tremor detection algo-
rithm led us to choose 3 s segments as the optimal length.

Effect of PD symptom dominant side on the obtained 
results
Studies showed that left-dominant and right-dominant 
PD patients exhibited different electrical activity in the 
basal ganglia [40]. Additionally, structural deteriora-
tions in PD, for example, the reduced fiber integrity in 
the nigrostriatal pathway are associated with the more 
affected side [41]. This might influence the observed EEG 
pattern for left and right-dominant PD patients. How-
ever, it is unclear how the differences in electrical activ-
ity or structure of the brain for left or right-dominant PD 
patients affect the observed EEG time-series at the scalp. 
To investigate the sensitivity of the results in the current 
study to dominant side, selected features that achieved 
the best classification accuracy (Feature set No.1) were 
compared between left and right-dominant PD patients. 
The results for different brain dynamics (i.e. eyes open, 
eyes closed, ON medication or OFF-medication) had 
been reported in Table 6. It is important to note that the 
sample size was different for each category, as it was not 
possible for some patients to detect tremor during some 
conditions due to either the absence of tremor or the 
tremor onset was outside 1-minute EEG recording span.

Comparison with other state-of-the-art methodologies
In this study, for the first time, the potential of EEG 
time-series for predicting PD tremor was evaluated. Our 
proposed methodology achieved an accuracy rate of 
73.67% in tremor prediction. While this might be lower 
compared to other methods (see Table 7), most of these 
methods require the tremors to be initiated, whereas our 
proposed method was a predictive methodology that 
anticipated tremors before the initiation. Furthermore, 
against invasive DBS-based predictive systems, our pro-
posed methodology is non-invasive and there are no con-
cerns for physical damage to participants.

Discussion
In this study, the potential of EEG time-series was evalu-
ated for the prediction of PD tremors. Before this, only 
a limited number of studies proposed methodologies for 
tremor onset prediction using invasive modalities such as 
deep brain electrode insertion [22]. According to Table 3, 
the discriminative feature in the low-frequency region of 
EEG (delta, theta, and alpha) was mainly the form fac-
tor. This result indicated that the overall complexity of 
the low-frequency content of EEG increased significantly 
before tremor initiation. Furthermore, the results indi-
cated that statistical features in the gamma band signifi-
cantly increased before tremor initiation. However, our 
analysis did not show any observed trend for discrimina-
tive features during time evolution before tremor onset. 
According to the literature, different neural circuits 
including basal ganglia and cerebello-thalamo-cortical 
circuits are engaged in resting tremors [47]. Considering 
the dimmer-switch model, a successive activity starting 
from the internal pallidal globus in basal ganglia, propa-
gates to the cerebello-thalamo-cortical and then to the 
thalamus and cerebellum [48]. This cascade of activities is 
observed in different periods of EEG time-series and not 
concentrated in a limited duration segment. This might 
be the reason that no observable trend was seen for the 
change of feature values before tremor initiation.

According to Table  5, increasing the analysis window 
size did not enhance the prediction accuracy significantly 
(note the higher standard deviation for 10-fold cross-
validation results for 5 s windows) and also increased the 
computational complexity. In this regard, for EEG fea-
ture extraction from pre-tremor, tremor, and non-tremor 
events, 3-s windowed segments were used. The reason 
for such selection was that for a shorter length window, 
the calculation of features such as sample entropy or fea-
tures extracted from the power spectrum might not be 
reliable. Furthermore, for a longer window length, the 
computational and time complexity might increase that 
affected the real-time feasibility of the algorithm.

Table 6  P-values for differences between discriminative features (Feature set No.1) among left-dominant and right-dominant PD 
groups. Significant level was adjusted to 0.05 (LD: left-dominant, RD: right-dominant)
Feature OFF-medication, eyes-

closed (RD = 8, LD = 12)
OFF-medication, 
eyes-open
(RD = 9, LD = 7)

ON-medication, 
eyes-closed
(RD = 10, LD = 7)

ON-medica-
tion, eyes-open
(RD = 11, LD = 7)

Form factor, delta, P4 0.79 0.6 0.06 0.05

Peak frequency, Gamma, FC6 0.34 0.34 0.09 0.05

Form factor, Alpha, CP2 0.31 0.56 0.15 0.08

HOS5, Gamma, F3 0.94 0.93 0.35 0.19

Skewness, Gamma, F3 0.77 0.8 0.34 0.18

Kurtosis, Gamma, FC6 0.27 0.36 0.79 0.91

HOS6, Gamma, FC6 0.95 0.99 0.36 0.22

 L-skewness, Gamma, F7 0.72 0.88 0.17 0.08

 L-kurtosis, Gamma, C4 0.24 0.22 0.42 0.33
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The tremor prediction ability for PD patients is useful 
since it can reduce the number of stimulations in DBS or 
electrical or magnetic stimulations of nerves and muscles 
to disrupt the tremor signals [6, 7, 49] and hence save 
the battery power [22]. The results of this preliminary 
study showed that a combination of time and frequency 
domain extracted features from EEG time-series of lim-
ited numbers of EEG channels could be considered as a 
useful strategy for predicting tremor onset. According 
to Table 4, a KNN classifier obtained a predicting accu-
racy of 73.67 ± 9.56% and the area under ROC curve of 
0.74 ± 0.09 for the pre-tremor recognition. This result 
was obtained for six EEG recording locations (P4, FC6, 
CP2, F3, F7, and C4). Reducing the feature set using NCA 
even increased classification accuracy to 81.29 ± 9.19% 
and area under ROC curve to 0.81 ± 0.09. However, the 
detection accuracy using EEG biomarkers was smaller 
than the accuracy obtained by local field potentials 
(89.91%) [22]. Surprisingly, the main locations in which 
pre-tremor condition was distinguished from tremor or 
non-tremor conditions consisted of motor function area 
in the right brain lobe (FC6, C4, CP2 and P4), and the left 
dorsolateral prefrontal cortex (F3, F7). Previous studies 
highlighted the activation of dorsolateral prefrontal cor-
tex in self-initiated movements [50]. Furthermore, the 
posterior parietal cortex contains neural pathways for 
voluntary hand movements [51]. Studies suggested that 
gamma oscillatory activity increased near the triggering 

of movement [52]. In this regard, increasing gamma con-
tent in the movement control regions of the brain (pre-
frontal and centroparietal parts as specified by F3/F7 
and FC6/C4/CP2/P4 EEG channels, respectively) before 
tremor initiation can be justified. In future studies, the 
discriminative capability of prefrontal and centroparietal 
areas for tremor prediction should be studied more pre-
cisely. The results reported in Table  6 also showed that 
there were no significant differences between discrimi-
native features for right-dominant and left-dominant PD 
patients (p > 0.05).

How to use the proposed methodology in a real 
application?
The proposed methodology can be implemented in a 
system consisting of an EEG recorder, an accelerometer, 
and a controller. For an individual participant, according 
to the results of this study, EEG data should be recorded 
from selected channels (F3/F7/P4/C4/CP2/PC6). Fea-
tures according to the proposed discriminative features 
should be calculated for consecutive, overlapped 3-s EEG 
time-series. For characterizing, “Tremor” and “Non-
tremor” conditions, a trained observer can label data by 
an external trigger (for example by pressing a button, 
mouse keys or a key on computer keyboards when hand 
tremor event observed) based on visual inspection. This 
can be repeated for a pre-specified training duration. A 
simple code can refine the pure tremor and non-tremor 

Table 7  Comparison between the proposed methods and other methods
Reference Method Features Performance (%)
This work EEG data analyses Time and frequency domain features 73.67

(accuracy)

 [42] IMU placed on hand and analyzing data using deep neural 
network

Automatically learn features about data 97
(accuracy)

 [43] Wrist-worn 3D accelerometers and Deep learning: Convolu-
tional neural networks

Non-negative factorization of frequency features 95

 [31] Bi-axial gyroscope data analyzed by adaptive Kalman filter 
and a wavelet transform

Spectral-temporal features 95.63

 [44] Features extracted from LFP from the subthalamic nucleus Power in frequency bands 78
(accuracy)

 [15] Inertial sensors (accelerometer and gyroscope) attached to 
the index finger and wrist and SVM classifier

Root mean square, average peak power, standard 
deviation

88.9
(accuracy)

 [45] Accelerometer and gyroscope and bagged ensemble of 
decision trees

 Sum of absolute differences and sums of squared 
magnitudes of accelerometer data

82

 [17] Surface electromyogram and acceleration signals Power at peak frequency, energy of selected 
wavelet coefficients, Shannon entropy, recurrence 
quantification parameters

80.2
(accuracy)

 [46] Accelerometers and surface electromyography placed on 
forearm and shank and dynamic neural network algorithms

Evolving temporal characteristics (energy, 
autocorrelation)

94.9 (sensitivity)
97.1 (specificity)

 [21] Local field potentials obtained from a DBS system Energy, variance, zero crossing rate, autocorrela-
tion, information theory, power spectral density 
magnitudes

86
(accuracy)

 [22] Radial basis function neural network and particle swarm 
optimization technique based on local field potentials

 Frequency changes between pre-tremor and 
tremor conditions

89.91
(accuracy)

 [16] Miniature gyroscopes placed on forearm  Hilbert transform and instantaneous frequency 99.5 (sensitivity)
94.2 (specificity)
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windows by analyzing accelerometer data, tremor start 
and end time. Furthermore, by analyzing accelerometer 
data, a customized code can easily label “Pre-tremor” 
conditions. For several iterations, the feature space for 
“Tremor”, “Pre-tremor” and “Control” conditions is con-
structed. According to these labeled data, a classifier is 
trained. In the real situation, when most discriminant 
EEG channels, frequency bands and features were con-
sidered and calculated for ongoing EEG time-series, the 
classifier determines to which class the current condition 
belongs. According to the classifier output, in the case 
of the Pre-tremor condition, a stimulus for tremor sup-
pression can be applied. The decision can be rechecked 
by accelerometer data analysis. In the case of an incor-
rect decision (false alarm for tremor initiation or missed 
tremor events), the applied stimulation (for example elec-
trical or magnetic stimulation) can be stopped. It should 
be noted that the purpose of integrating EEG data and 
accelerometer data analysis was to increase the chance of 
tremor suppression before its initiation. Since the tremor 
characteristics may be different between PD patients, it is 
suggested to train the predictor for each participant.

Study limitations and future works
Tremor in PD patients is a very complicated phenome-
non. Considerable clinical heterogeneities were observed 
for PD tremors [53] in a way that the characteristics of 
tremor such as amplitude, frequency, and inter-tremor 
intervals are completely different between PD patients. 
In order to limit the possible biases in the obtained 
results due to inherent inter-subject or intra-subject 
heterogeneities, long recorded data analysis for tremor 
is needed. Unfortunately, the available data for the cur-
rent study consisted of very short recordings (1 min for 
eyes-open or eyes-closed resting-state conditions). Such 
short length data contained a limited number of tremors. 
This limitation precluded a through exploration of intra-
subject variability in measures derived from EEG time-
series before tremor onset. Furthermore, tremors are 
highly coupled with brain dynamics. For example, cogni-
tive stress or the level of hormones affects significantly 
tremor characteristics [53]. In the current study, only two 
specific brain dynamics, i.e. eyes-open and eyes-closed 
conditions were considered; however, in real life, subjects 
may be involved with various brain processing activities, 
including problem-solving, visuospatial processing, or 
auditory tasks. This is the next limitation of the current 
study in which the obtained results may be restricted to 
only brain resting-state conditions. In fact, in the cur-
rent study, only the potential of EEG time-series for 
tremor anticipation was evaluated, and the results were 
promising. In other words, this study should be consid-
ered preliminary. To fully assess the clinical significance 
of these findings, longer tremor data and EEG recordings 

during various brain activities are needed. In addition, 
using EEG recording units (electrodes and an amplifier 
unit) may be considered inconvenient for a long time. 
However, the use of a non-invasive EEG set is probably 
more favorable than invasive deep-brain implanted elec-
trodes for PD people with tremors. Increasing the predic-
tion potential of the current work using more advanced 
EEG signal processing strategies such as adaptive signal 
decomposition and processing strategies [54, 55] should 
be considered for future.

Conclusion
Reducing the power consumption of the stimulating 
device and mitigating the side effects are among the 
most important advantages of tremor prediction. In the 
current study, the potential of EEG for tremor predic-
tion was investigated. Results showed that EEG might be 
a useful tool; however, due to the complexity of tremor 
events, and unknown relationships between different 
brain dynamics and tremor characteristics, it is necessary 
to check the proposed methodology for tremor predic-
tion in a wide range of brain dynamics. Furthermore, a 
longer dataset for considering heterogeneous and intra-
subject variability characteristics of tremor is demanded 
for future studies.
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