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mental resources that are proportional to the difficulty of 
a cognitive task [2]. Therefore, quantifying the amount of 
energy the brain consumes to meet cognitive demands is 
one way to measure mental workload.

Many traditional neuroimaging techniques, such as 
electroencephalography (EEG) and functional mag-
netic resonance imaging (fMRI), permit the measure-
ment of the neural substrates of mental workload [3, 4]. 
Although these techniques have enabled an understand-
ing of how the brain interacts with cognitive demands, 
they are unsuitable for use in ecological contexts. Spe-
cifically, subjects must lie motionless and supine during 
data collection because fMRI is susceptible to a variety 

Background
It is crucial to understand how the brain allocates mental 
resources according to cognitive demands for cognitive 
intervention as an increase in mental workload during 
challenging cognitive demands can result in poor perfor-
mance [1]. The concept of mental workload assumes that 
task-related brain activity consumes a certain amount of 
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Abstract
Background Functional near-infrared spectroscopy (fNIRS) is a tool to assess brain activity during cognitive testing. 
Despite its usefulness, its feasibility in assessing mental workload remains unclear. This study was to investigate the 
potential use of convolutional neural networks (CNNs) based on functional near-infrared spectroscopy (fNIRS)-derived 
signals to classify mental workload in individuals with mild cognitive impairment.

Methods Spatial images by constructing a statistical activation map from the prefrontal activity of 120 subjects 
with MCI performing three difficulty levels of the N-back task (0, 1, and 2-back) were used for CNNs. The CNNs were 
evaluated using a 5 and 10-fold cross-validation method.

Results As the difficulty level of the N-back task increased, the accuracy decreased and prefrontal activity increased. 
In addition, there was a significant difference in the accuracy and prefrontal activity across the three levels (p’s < 0.05). 
The accuracy of the CNNs based on fNIRS-derived spatial images evaluated by 5 and 10-fold cross-validation in 
classifying the difficulty levels ranged from 0.83 to 0.96.

Conclusion fNIRS could also be a promising tool for measuring mental workload in older adults with MCI despite 
their cognitive decline. In addition, this study demonstrated the feasibility of the classification performance of the 
CNNs based on fNIRS-derived signals from the prefrontal cortex.

Keywords Classification, Workloads, Functional neuroimaging, Cognitive impairment, Deep learning

Mental workload classification using 
convolutional neural networks based 
on fNIRS-derived prefrontal activity
Jin-Hyuck Park1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-023-03504-z&domain=pdf&date_stamp=2023-12-14


Page 2 of 8Park BMC Neurology          (2023) 23:442 

of motion-induced artifacts due to head and/or body 
movements [2]. On the other hand, the advent of wear-
able EEG devices has notably overcome the limitations 
associated with immobility. Nevertheless, traditionally 
EEG measurements were confined to a motionless supine 
position [5]. Thus, there is a need for ecological measure-
ments that can distinguish between various mental work-
load levels.

Functional near-infrared spectroscopy (fNIRS) is an 
emerging and promising imaging technique that satis-
fies ecological requirements and has the crucial benefit of 
portability. fNIRS permits in-vivo imaging under ecologi-
cal conditions that allow free movement, in contrast to 
traditional neuroimaging techniques [6]. This technique 
has been shown to distinguish between levels of mental 
workload by measuring the hemoglobin in the blood sup-
ply of the brain [6].

To date, fNIRS has been widely used in clinical and 
aging studies to estimate mental workload [7, 8]. In a 
related study, consistent changes in oxygenated hemo-
globin (HbO2) in the prefrontal cortex (PFC) were found 
with working memory loads [6]. Another study reported 
a linear increase in brain activity as working memory 
loads increased in the PFC [9]. Taken together, increased 
cognitive demands are coupled with increased prefrontal 
activity. However, research on this relationship in sub-
jects with cognitive impairment is still lacking despite 
being fairly well-characterized in healthy subjects [6, 10]. 
In particular, mild cognitive impairment (MCI) repre-
sents a critical stage between normal age-related cogni-
tive decline and more severe conditions like Alzheimer’s 
disease. Indeed, subjects with MCI consistently showed 
different neural responses depending on the cognitive 
load to compensate for cognitive declines based on the 
PFC’s distinctly impaired function [11, 12]. Consequently, 
investigating prefrontal activity in this population could 
offer a unique opportunity to understand early-stage cog-
nitive changes, potentially enabling early intervention 
strategies.

Therefore, this study was designed to further under-
stand how brain activity is related to mental workload. 
The purpose of this study was two-fold. Firstly, it aimed 
to investigate the potential use of fNIRS to estimate men-
tal workload by examining workload-related changes 
in brain activity in subjects MCI. Secondly, it aimed to 
construct a classification model using convolutional 
neural networks (CNNs) for mental workload using 
fNIRS-derived spatial information on PFC activity dur-
ing memory testing. Since the classification of spatial 
information based on fNIRS-derived signals requires an 
ability to solve high-dimensional pattern problems with 
a relatively small number of training patterns, conven-
tional classification methods requiring an a priori fea-
ture selection process which introduces the possibility 

of overfitting could not be suitable. However, deep neu-
ral networks, in particular CNNs, could bypass the need 
for feature selection, which has the benefit of enabling 
learning even in cases where feature selection is not fully 
optimized [13]. This study hypothesized that increasing 
the difficulty of a cognitive task would be associated with 
increased HbO2 in the PFC by compensatory mecha-
nisms to enhance neural recruitment to respond appro-
priately to increased cognitive demands in older adults 
with MCI [11, 12]. Therefore, CNNs based on the fNIRS-
derived spatial information could differentiate the diffi-
culty levels of a cognitive task.

Methods
All data were collected from a new cohort and had no 
overlap with the author’s previous study data. This study 
measured brain activity in subjects performing a cogni-
tive task using fNIRS, and images from the brain activity 
of each subject were constructed. The accuracy of CNNs 
based on the images was analyzed. This study was imple-
mented with the approval of the Institutional Review 
Board of Soonchunhyang University (202,204-SB-056).

Participants
The original data set consisted of 120 subjects with MCI. 
All subjects were older than 65 years of age and recruited 
from local senior centers in Asan-si, South Korea. Based 
on an earlier study [10], the inclusion criteria for MCI 
were as follows: (1) a subjective memory complaint; (2) 
an objective memory impairment confirmed by perfor-
mance on neuropsychological assessments (below 1.5 
standard deviations); (3) intact global cognitive function 
confirmed by the Korean version of the Mini-Mental 
State Examination (MMSE); (4) intact activities of daily 
living; and (5) without dementia confirmed by a phy-
sician. The exclusion criteria were as follows: (1) the 
presence of psychiatric disorders such as depression or 
schizophrenia and (2) the presence of neurological disor-
ders such as stroke or traumatic brain injury. These cri-
teria were based on amnestic-MCI, which is a subtype of 
MCI [14, 15].

This study used the authorized Korean translation of 
the MMSE supplied by the author’s institution. All sub-
jects completed an informed consent form before partici-
pating in this study and all experiments were conducted 
in the laboratory setting.

Procedures
fNIRS measured changes in blood flow in the PFC of 
each subject while performing the computerized N-back 
task. All subjects were asked to take a rest for 5 min while 
sitting on a chair in front of the computer monitor and 
staring at the black cross shape on the white screen of 
the monitor before the fNIRS measurement. After rest, 
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each subject performed the computerized N-back task, 
and a keyboard was used as an input device. Blood flow 
changes in the PFC were measured both at rest and dur-
ing the N-back task. During the measurement, each sub-
ject was instructed not to speak as much as possible and 
to minimize his/her body movement except for using the 
input device.

Before the start of the study, all subjects were required 
to perform the N-back task for practice using the key-
board to adapt to the computerized test. In addition, to 
ensure clear fNIRS measurements of the PFC areas, all 
subjects wiped their forehead with alcohol swabs and had 
their hair trimmed.

Apparatus
The visual N-back task programmed in Unity was used 
in this study. This version of the N-back task consisted 
of three difficulty levels: 0-back, 1-back, and 2-back. 
Numbers from 0 to 9 were used as stimuli. Stimuli were 
presented one by one in the center of the screen. On the 
0-back task, subjects had to compare the current number 
to the target number. On the 1-back condition, subjects 
had to compare the current stimulus to the previous one. 
On the 2-back condition, subjects had to compare the 
currently shown number to the one presented two trials 
before. Each level of the N-back task included 20 trials 
and was separately conducted.

Subjects were asked to press the “Y” key only when 
the comparison numbers were the same, otherwise, they 
were to press the “N” key. A total of 30 target stimuli were 
presented while 70 non-target stimuli were shown. Each 
stimulus appeared on the screen for 300ms, followed by a 
screen that remained blank for another 2,700ms.

The accuracy rate was calculated by dividing the num-
ber of correct responses by the total number of target 
stimuli. To prevent frustration, the task was finished 
when subjects did not reach a correct percentage of 60%.

To measure hemodynamic responses, the fNIRS device 
(OctaMon, Artinis, Netherlands) with 8 light sources 
and 2 light detectors was used at a sampling rate of 
10  Hz [16]. The source-detector distance was 30  mm. 
In this study, only HbO2 which is sensitive to cognitive 
responses was measured at 760 and 850 nm wavelengths, 
respectively. According to the international 10–20 EEG 
placement system, inter-optode distances were set at 
3 cm and a total of 8 channels were distributed to target 
the PFC [17]. All emitters and detectors were mounted 
on an elastic band to ensure that subjects’ foreheads 
made good contact with the 10-optode.

Data preprocessing
All fNIRS data were collected using OxySoft software 
(version 3.0.52. Artinis Medical Systems BV, Elst, The 
Netherlands). The concentration changes of HbO2 were 
computed using the Modified Beer-Lambert Law and 
then HbO2 data from each hemisphere (4 channels for 
each hemisphere) were averaged [11, 18]. Channels with 
large spikes (standard deviation of 300µM/mm) were 
considered noisy and then were excluded from the analy-
sis [11, 19]. This study used all channels without chan-
nel selection as they were all targeting the PFC, which 
is already widely known to be strongly related to the 
N-back task. HbO2 data were filtered by a fourth-order 
Butterworth band-pass filter at a cut-off frequency of 
0.1 Hz to remove artifacts such as breathing, blood pres-
sure, and heartbeat [11]. In addition, motion artifacts 
were removed by a wavelet-based algorithm [20]. Filtered 
HbO2 data were normalized within the 0–1 range.

Dataset
To use CNNs, the fNIRS signals needed to be converted 
to data that could be fed into CNNs. Therefore, the aver-
aged time series data were converted to 2D images. 2D 
representations of the recorded time series based on the 
spatial coordinates of the 8 channels on the scalp were 
built. Specifically, the image construction was conducted 
using a statistical activation map. A statistical t-value was 
obtained to compare the mean of HbO2 from 8 chan-
nels between the baseline and the N-back testing peri-
ods using a paired t-test [21]. The location of each fNIRS 
channel was assigned to the prefrontal layer according to 
the international 10–20 EEG placement system and then 
the t-value at each channel was applied to the prefrontal 
layer (Fig. 1) [22]. The images for 120 subjects were clas-
sified into three classes based on the three levels of dif-
ficulty of the N-back task including 20 trials, resulting in 
a total of 7,200 images. The file size of all images was set 
at 68 × 36.

Fig. 1 t-activation map using oxygenated hemoglobin values from the 
prefrontal cortex
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CNN model
CNNs were applied to classify mental workloads. The 
experiment was implemented in Python using the Keras 
package, with Tensorflow. In this study, CNNs with three 
convolutional layers including max pooling layers after 
each convolutional layer and two fully connected layers 
were adopted. To avoid overfitting, a drop layer was intro-
duced between fully connected layers. The output layer 
consisted of three units given the dataset (three classes of 
the N-back task), with a softmax activation. There were 
32 convolutions with 3 × 3 kernels with a stride of 1, and 
zero-padding was applied to maintain spatial dimensions. 
The two fully connected layers had 256 and 128 neurons, 
respectively. The dropout rate in the dropout layer was 
set to 0.5. The rectified linear unit (ReLU) function was 
used as an activation function (Fig. 2). This CNN model 
was established according to a previous study [23].

Model training was conducted to increase accuracy 
and its validation for a maximum of 10 epochs, and the 
batch size was set to 32. To maximize the validating pro-
cess, early stopping was arbitrarily applied based on the 
validation accuracy curve. Categorical cross-entropy 
was used as a loss function, and the Adam optimizer was 
used. The ratio of training and test dataset was assigned 
as 8:2 and k-fold cross-validation was used. The data were 
divided into k partitions of equal folds, and CNN training 
and validation were performed in k iterations. For each 
iteration, one fold was used for testing and k-1 folds were 
utilized in the training phase. This approach systemati-
cally partitions the dataset into k subsets, allowing the 
model to be trained and validated on different portions of 
the data. By averaging performance across multiple folds, 
the findings are more reliable, reducing the impact of 
dataset-specific characteristics (overfitting) and enhanc-
ing the generalizability of the findings. Subsequently, the 
trained model was applied to the test dataset to evaluate 
the CNN model’s performance, and metrics (accuracy, 
sensitivity, and specificity) were calculated.

Neural efficiency
The accuracy across the three difficulty levels of the 
N-back task and the PFC HbO2 values were each nor-
malized to a range from 0 to 1. Afterward, the neu-
ral efficiency index was defined as the value obtained 
by subtracting the normalized PFC HbO2 values from 

the normalized accuracy rate by three difficulty levels 
[2]. The higher the neural efficiency index indicates the 
higher the neural efficiency.

Statistical analyses
The accuracy across the three difficulty levels of the 
N-back task, HbO2 in the PFC, and neural efficiency 
index were presented using descriptive statistics. A 
repeated measure analysis of variance was conducted to 
confirm differences in outcomes by the difficulty levels 
of the N-back task. Post-hoc was analyzed using multiple 
paired t-tests. To investigate the correlation between the 
neural efficiency index and accuracy across the difficulty 
levels, Spearman’s correlation analysis was performed.

Results
General characteristics of subjects
Gender, age, education level, and scores of the Korean 
version of the Montreal Cognitive Assessment (MoCA-
K) [24] were investigated. Sixty-two (51.7%) of the sub-
jects were female, and the average age was 74 years. The 
average education level was 5.5 years, and the average 
score of the MoCA-K was 22.62 points (Table 1).

Performance on the N-back task and PFC activity
There was a significant difference in accuracy accord-
ing to the difficulty levels of the N-back task (p < 0.001) 
(Fig.  3a; Table  2). Specifically, as the difficulty level 
increased, the accuracy decreased. In addition, there 
was a significant difference in PFC activity across the dif-
ficulty levels of the N-back task. Specifically, as the dif-
ficulty level increased, PFC activity increased (p < 0.001) 
(Fig.  3b; Table  2). In sum, increased mental workload 
induced a decrease in accuracy and an increase in brain 
activity.

Table 1 General characteristics of subjects (N = 120)
Characteristics Subjects
Age (years) 74.97 ± 6.12

Sex Male 58 (48.3%)

Female 62 (51.7%)

Education periods (years) 5.55 ± 4.37

MoCA-K (scores) 22.62 ± 1.95
Shown are mean value ± standard deviation. MoCA-K, the Korean version of the 
Montreal Cognitive Assessment

Fig. 2 The proposed convolutional neural network model for classifying three levels of mental workload
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CNN classification accuracy
The accuracy of CNNs across fold numbers ranged from 
0.83 to 0.96. k-fold cross-validation with k = 10 had the 
best accuracy, sensitivity, and specificity (Table 3).

Neural efficiency index
There was a significant difference in the neural efficiency 
index across the difficulty levels of the N-back task (F(2, 

78) = 7.195, p = 0.001) (Table  4). Specifically, the neural 
efficiency index of the 0-back and 1-back tasks was sig-
nificantly higher than that of the 2-back task (p’s < 0.05). 
The neural efficiency index of the 0-back task was higher 
than that of the 1-back task, but there was no significant 
difference between them (p = 0.727). These findings sug-
gested that neural efficiency decreases as the task dif-
ficulty level increases. On the other hand, the neural 

efficiency index and accuracy across the three difficulty 
levels of the N-back task showed a considerable positive 
correlation (Table 5), suggesting that the neural efficiency 
was consistent across the three difficulty levels of the 
N-back task. Taken together, the neural efficiency index 
may be a reliable indicator to assess mental workload.

Discussion
This study aimed to validate the feasibility of fNIRS to 
measure mental workload and to better understand the 
correlation between PFC activity and cognitive perfor-
mance. The findings of this study revealed that CNNs 
based on fNIRS-derived PFC activity during cogni-
tive testing can classify mental workload. Moreover, 
an increased task difficulty was closely correlated with 
degraded performances and increased HbO2 in the PFC, 
resulting in decreases in neural efficiency.

Related studies have consistently reported that oxy-
genation increases during cognitive tasks such as video 
games and neuropsychological tests [25–28], which is 
consistent with the findings of the current study. Notably, 

Table 2 Accuracy and brain activity across the difficulty levels of 
the N-back task
0-back 1-back 2-back
Accuracy HbO2

(µM/mm)
Accuracy HbO2

(µM/mm)
Accuracy HbO2

(µM/
mm)

0.952
± 0.033

0.914
± 0.072

0.754
± 0.077

1.040
± 0.950

0.487
± 0.068

1.289
± 0.201

Shown are mean value ± standard deviation. HbO2: Oxygenated Hemoglobin.

Table 3 Cross-validation testing for fNIRS-derived spatial images
Approach Accuracy (%) Sensitivity (%) Specificity (%)
5-fold 91.25 91.29 95.62

10-fold 93.33 93.33 96.66

Table 4 Neural efficiency index across the difficulty levels of the N-back task
0-backa 1-backb 2-backc F p a,b > c

Neural efficiency index 0.070 0.275 -0.352 7.195 0.001
Shown are mean value ± standard deviation. HbO2: Oxygenated Hemoglobin

Table 5 Correlation between neural efficiency index and 
accuracy of the N-back task
Characteristics Neural efficiency index

0-back 1-back 2-back
Accuracy 0-back 0.953*** -0.093 -0.015

1-back 0.045 0.910*** -0.008

2-back -0.078 0.067 0.861***

***p < 0.001

Fig. 3 Accuracy and hemodynamic response across the three levels of the N-back task
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despite using only eight fNIRS channels to monitor PFC 
activity, this study managed to replicate consistent find-
ings from previous studies. A previous study reported 
that HbO2 concentration in the PFC responds differently 
according to the difficulty levels of a cognitive task, which 
further supports the current findings [3]. On the other 
hand, most previous studies focused on the mental work-
load of healthy subjects [2, 23, 29], leaving the question 
of whether fNIRS could be used to measure the mental 
workload of individuals with cognitive impairment. How-
ever, this study measured the mental workload of older 
adults with MCI using fNIRS-derived spatial informa-
tion, and the significance of this study was that it con-
firmed similar findings as healthy people, even though 
patients with MCI have been identified to show different 
neural responses to cognitive load compared to healthy 
people [11, 12]. In other words, fNIRS could be still use-
ful for objectively measuring mental workload in patients 
with MCI.

The current findings imply that HbO2 concentrations 
in the PFC from fNIRS can objectively measure mental 
workload in a laboratory environment. Accordingly, the 
CNNs based on PFC activity could sensitively classify the 
difficulty levels of the N-back task. Considering that an 
indicator based on machine learning techniques could be 
more sensitive than statistical analysis [15, 30], this study 
proposed a more optimized index to differentiate mental 
workload. On the other hand, while prior studies have 
emphasized temporal information from fNIRS, spatial 
information analysis with CNN has received less atten-
tion [31]. However, in a previous study, CNNs with spa-
tial features showed a considerable improvement in the 
classification accuracy for mental workload, compared 
to existing deep neural network methods, supporting the 
promise of spatial information from fNIRS as proposed 
by this study [31]. Indeed, in a previous study, CNNs 
based on fNIRS-derived spatial information achieved 
97% accuracy in discriminating mental workload, which 
supports the findings of this study. However, compared 
to the findings of this study, the previous study showed 
higher accuracy, which might be due to the difference in 
the amount of information collected by fNIRS. The previ-
ous study used fNIRS with more channels than this study, 
measuring not only the PFC area but also the parietal and 
occipital regions to build CNNs. This disparity suggests 
the need to observe more brain regions to improve the 
accuracy of future classification [23]. On the other hand, 
considering that previous studies that applied traditional 
machine learning models to fNIRS-derived signals and 
attempted to classify them for various clinical purposes 
have reported classification accuracy of less than 85% 
[32, 33], the high accuracy over 90% of CNNs applied to 
fNIRS-derived spatial information could support the fea-
sibility of CNNs for fNIRS-derived signals.

On the other hand, monitoring of mental workload 
by fNIRS could be used for clinical purposes. Real-time 
monitoring of mental workload could be beneficial to 
clinicians interacting with subjects performing cognitive 
tasks, by presenting instant feedback and allowing adjust-
ments to difficulty levels. This would be useful for tai-
lored cognitive training. Indeed, in a prior study, tailored 
cognitive training using monitoring of mental workload 
by fNIRS led to a significant improvement in executive 
function [28]. This customized system could supple-
ment the current difficulty adjustment that depends only 
on subjects’ performances [3, 34]. Furthermore, in a 
previous study, fNIRS-derived data could play a role in 
the diagnostic tool of cognitive disease by providing an 
objective index [35], supporting its feasibility for a variety 
of purposes in clinics.

In spite of the clinical usefulness of fNIRS in monitor-
ing mental workload, it is not necessarily associated only 
with task performance or brain activity [3]. This disso-
ciation could result from individual differences in neu-
ral efficiency, where some need more effort for the same 
output while others require less due to intelligence and 
expertise [36]. In other words, these differences limit 
negative correlations between brain activity and cogni-
tive performance. Thus, mental workload with fNIRS 
needs to be considered in tandem with cognitive per-
formances, as they collectively represent an individual’s 
neural efficiency. In this study, the neural efficiency index 
decreased as the task difficulty levels increased, sup-
porting its credibility as a mental workload monitoring 
indicator.

This study shed new light on the potential use of fNIRS 
to estimate mental workload. Increased HbO2 in the 
PFC was associated with increased difficulty levels of the 
N-back task. Nevertheless, inter-individual variations 
in intelligence and expertise could limit the correlation 
between brain activity and mental workload. Thus, men-
tal workload with fNIRS needs to be jointly considered 
with cognitive performance, which together represent a 
subject’s neural efficiency.

Although this study shed new light on the potential 
use of fNIRS to monitor mental workload in people with 
MCI, there were limitations. One of the main limitations 
was the lack of consideration for expertise in specific 
cognitive domains, impacting cognitive performances 
and neural efficiency in domain-specific cognitive tasks 
[37]. Therefore, future studies need to compare individu-
als with different experience levels on cognitive tasks 
to better understand the effects of practice. The second 
issue may be the test duration. The N-back task duration 
was quite long, which could increase variability in hemo-
dynamic responses. Indeed, a prior study indicated that 
long task durations failed to find correlations between 
brain activity and cognitive performance [38]. Thirdly, 
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while the results of this study are consistent with those 
of previous studies in healthy subjects, this study was 
unable to directly compare the performance of the model 
in healthy subjects and determine how it differs from the 
models in older adults with MCI. Therefore, in future 
studies, a comparative study needs to be conducted. 
Finally, since this study used all channels without any 
channel selection techniques, there is still room for fur-
ther optimization of the accuracy. However, the fact that 
this study achieved over 90% accuracy without them still 
supports the methodology of this study using all chan-
nels that focally targeted the PFC. Nevertheless, channel 
selection might need to be used in the future when using 
fNIRS with a larger number of channels measuring mul-
tiple brain regions.

Conclusions
fNIRS could also be a promising tool for measuring men-
tal workload in older adults with MCI. Despite their 
cognitive decline, older adults with MCI showed corre-
spondingly higher prefrontal activity as the difficulty of 
the cognitive task increased. In addition, this study dem-
onstrated the feasibility of the classification performance 
of the CNNs based on fNIRS-derived signals from the 
prefrontal cortex. However, brain activity might not be 
a sensitive indicator of cognitive performance, highlight-
ing the importance of neural efficiency as a more reliable 
measure.
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