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Abstract 

Purpose  To explore the predictive value of radiomics in predicting stroke-associated pneumonia (SAP) in acute 
ischemic stroke (AIS) patients and construct a prediction model based on clinical features and DWI-MRI radiomics 
features.

Methods  Univariate and multivariate logistic regression analyses were used to identify the independent clinical 
predictors for SAP. Pearson correlation analysis and the least absolute shrinkage and selection operator with ten-fold 
cross-validation were used to calculate the radiomics score for each feature and identify the predictive radiomics 
features for SAP. Multivariate logistic regression was used to combine the predictive radiomics features with the inde-
pendent clinical predictors. The prediction performance of the SAP models was evaluated using receiver operating 
characteristics (ROC), calibration curves, decision curve analysis, and subgroup analyses.

Results  Triglycerides, the neutrophil-to-lymphocyte ratio, dysphagia, the National Institutes of Health Stroke Scale 
(NIHSS) score, and internal carotid artery stenosis were identified as clinically independent risk factors for SAP. The 
radiomics scores in patients with SAP were generally higher than in patients without SAP (P < 0. 05). There was a lin-
ear positive correlation between radiomics scores and NIHSS scores, as well as between radiomics scores and infarct 
volume. Infarct volume showed moderate performance in predicting the occurrence of SAP, with an AUC of 0.635. 
When compared with the other models, the combined prediction model achieved the best area under the ROC (AUC) 
in both training (AUC = 0.859, 95% CI 0.759–0.936) and validation (AUC = 0.830, 95% CI 0.758–0.896) cohorts (P < 0.05). 
The calibration curves and decision curve analysis further confirmed the clinical value of the nomogram. Subgroup 
analysis showed that this nomogram had potential generalization ability.

Conclusion  The addition of the radiomics features to the clinical model improved the prediction of SAP in AIS 
patients, which verified its feasibility.
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Introduction
Stroke-associated pneumonia (SAP) is one of the most 
common medical complications in patients with acute 
ischemic stroke (AIS), with an estimated incidence rang-
ing between 5 and 26% [1]. SAP reduces the quality of life 
and increases the treatment costs, hospital stay, and risk 
of mortality in AIS patients [2–6]. Therefore, there is a 
need to develop fast and reliable tools to identify high-
risk patients to improve clinical outcomes.

Previous studies have established different scoring sys-
tems for early pneumonia prediction after AIS, such as 
the A2DS2 scale, the AIS-APS scale, and the ISAN scale 
[7–9]. However, these tools are based solely on clinical 
data, and their prediction efficiency is moderate [10]. 
Brain imaging is necessary to diagnose stroke and evalu-
ate the extent of the disease. Diffusion-weighted imaging-
magnetic resonance imaging (DWI-MRI) is the most 
sensitive and accurate imaging method for diagnosing 
AIS and has been widely used in studies related to stroke 
[11, 12]. Several studies identified a correlation between 
the brain infarct size on DWI-MRI and prognosis fol-
lowing an AIS and may also have a role in the develop-
ment of complications [13–15]. Studies have also found 
an association between several MRI radiological features, 
including the location, infarct volume, the number of 
lobes involved, and the brain atrophy score, with the risk 
of developing SAP [16, 17].

Radiomics uses algorithms to objectively extract a large 
number of quantitative features from medical images. 
This data can be used to transform subjective visual eval-
uation into an objective evaluation data-driven evalua-
tion of traditional radiologic characteristics [18–22]. This 
technique is increasingly being used to facilitate the diag-
nosis of stroke lesions [23, 24], predict early outcomes 
[25–27], and evaluate the long-term prognosis of stroke 
[28, 29]. However, to our knowledge, no studies have 
been conducted evaluating the role of radiomics in pre-
dicting SAP following an AIS.

Therefore, in this study, we aimed to explore the pre-
dictive value of radiomics in predicting SAP and con-
struct a prediction model based on clinical features and 
DWI-MRI radiomics features to predict SAP following 
AIS. The model was developed into a nomogram, and 
decision curve analysis (DCA) was performed to evaluate 
the clinical utility of the model.

Materials and methods
Study population
AIS patients who underwent a DWI-MRI scan from 
January 2018 to December 2021 were selected from our 
institution. All patients aged 18 years or above who were 
immediately hospitalized within 24 h following the onset 
of AIS symptoms and had a confirmed diagnosis of AIS 

on DW-MRI as defined by the World Health Organiza-
tion [30, 31] and a National Institute of Health stroke 
scale (NIHSS) score of 15 or less were included in the 
study. Patients that presented with diseases that had clin-
ical symptoms similar to pneumonia, such as pulmonary 
edema, pulmonary embolism, pulmonary atelectasis, 
tuberculosis, pulmonary tumor, and non-infective inter-
stitial lung disease (n = 3), and those who had pneumonia 
before admission (n = 17) were excluded from the study. 
In addition, patients who lacked the complete clini-
cal data (n = 276) and those who lacked an MRI or had 
severe artifacts on MRI (n = 16) were also excluded. The 
patients’ enrollment flow chart was illustrated in Fig.  1. 
Finally, 298 patients were included. None of the patients 
underwent intravenous thrombolysis. The patients were 
randomly divided into a training cohort (n = 208) and a 
validation cohort (n = 90) at a ratio of 7:3.

Diagnostic criteria for SAP
SAP was defined as a ’spectrum of lower respiratory tract 
infections occurring within the first 7 days after the onset 
of stroke’. Clinicians diagnosed SAP according to the data 
retrieved from chest images, clinical signs and symp-
toms, and laboratory parameters per guidelines issued 
by the Centers for Disease Control and Prevention cri-
teria (CDC) [32]. The patients diagnosed with SAP were 
recorded and were divided into the SAP and non-SAP 
groups according to the criteria above.

Ethical considerations
The study was approved by the Medical Ethics Commit-
tee of our institution: (2018) Medical Research Review 
No.04. Written informed consent was obtained from all 
patients participating in this study.

Clinical data extraction
The clinical data, including demographics, past history, 
comorbidities, characteristics of condition on admission, 
laboratory results and image features, were extracted 
for the first time after admission and retrieved from the 
patient’s medical records. The demographics included 
age, sex and body mass index (BMI). Past history 
included smoking and stroke. Comorbidities included 
hypertension, diabetes and dyslipidemia. Characteristics 
of condition on admission included dysphagia, NIHSS 
score, and the Modified Rankin Scale (mRS) score. The 
mRS score was used to measure the level of disability fol-
lowing AIS. Based on this score, the patients were divided 
into functionally independent if they had an mRS score 
of 2 or less and functionally dependent if they had an 
mRS score above 2 [33, 34]. Laboratory results included 
platelets (PLT), creatinine (Cr), aspartate transaminase to 
alanine transaminase ratio (AST/ALT), total cholesterol 
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(Tch), low-density lipoprotein (LDL), high-density lipo-
protein (HDL), triglycerides (TG), fasting plasma glucose 
(FPG), homocysteine (HCY), albumin (ALB), and the 
neutrophil to lymphocyte ratio (NLR). Image features 
included stenosis location (internal carotid artery (ICA), 
middle cerebral artery (MCA)), the extent of the steno-
sis (more or less than 50%), infarction side (left, right, or 
bilateral) and volume.

MRI acquisition
All patients underwent a DWI-MRI within 24 h of admis-
sion. The DWI-MRIs were acquired using a GE 3.0 T MRI 
scanner, using a repetition time (TR) of 4090 ms, an echo 
time (TE) of 98.0 ms, a field of view (FOV) = 230 mm x 
230  mm, a matrix of 192 × 192, a slice thickness to gap 
ration of 5 mm/1.5 mm, a b value of 0, and 1000 s/mm2.

Lesion site annotating and feature extraction
The radiomics analysis process was divided into 4 
phases; lesion site annotation, feature extraction, fea-
ture selection, and model construction (Fig.  2). Two 
radiologists annotated the ischemic lesions on the 
patient’s DWI using the 3D-Slicer software version 
4.10.2. Then, the consistency of the annotated volumes 
was evaluated by calculating the intra-class correlation 
coefficients (ICC). An ICC greater than 0.75 indicates a 
good agreement [35].

Subsequently, radiomics features were extracted using 
the PyRadiomics version 3.0.1 software as indicated by 

the Image Biomarker Standardization Initiative [36]. 
These features included first-order, shape and texture. 
The first-order and texture features were extracted from 
the original image, the Gaussian Laplace filtered image, 
and the wavelet filtered image.

Feature selection and model construction
Univariate analysis was used to identify the factors that 
differed between all patients that developed SAP and 
those that did not. Then, the significant variables in 
the training cohort were inputted into the multivari-
ate logistics regression (MLR) model to determine the 
independent clinical predictors of SAP (P < 0.05). These 
features were then used to construct the clinical predic-
tion model. The risk ratios of the predicted factor were 
expressed as odds ratio (OR) (95% confidence interval).

Spearman’s correlation coefficient was used to calculate 
the correlation and redundancy of features in the train-
ing cohort. The features were classified as redundant if 
they had a Spearman correlation coefficient higher than 
0.8. For each pair of features that have been marked as 
redundant, choose to retain one of the features, the other 
redundant feature was removed [37]. Subsequently, the 
optimal predictive features were screened out utiliz-
ing the least absolute shrinkage and selection operator 
(LASSO) with ten-fold cross-validation [38]. Eventually, 
the radiomics score was calculated for each patient based 
on the linear combination of weighted selection param-
eters for the relevant LASSO coefficients of the optimal 

Fig. 1  The flow chart of patients’ enrollment
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features, which was used to construct the radiomics 
prediction model. Finally, a combined prediction model 
was built based on both radiomics and clinical features, 
as well as a clinical prediction model containing only the 
clinical features and a radiomics prediction model con-
taining only the radiomics features were built for com-
parison. Then, the best-performing model was developed 
into a nomogram. Subsequently, a subgroup analysis was 
performed based on age, sex, BMI, and stroke severity on 
admission to test the generalization ability of our model.

Statistical analyses
The Python software (version 3.0) and R software (ver-
sion 4.2.1) were used for statistical analyses. The normally 
distributed variables were expressed as mean ± standard 
deviation (SD), while the non-normally distributed vari-
ables were expressed as median (first quartile, third quar-
tile). The variables between the SAP and non-SAP groups 
were compared using the student’s t-test for the normally 
distributed variables and the Mann–Whitney U test for 
the non-normally distributed variables. The categorical 
variables were expressed as numbers (percentage), and 
the chi-squared (χ2) test was used for comparison. Pear-
son correlation analysis was used to test the correlation. 

The predictive performance of all 3 models was com-
pared by calculating the area under the curve (AUC) of a 
receiver operating characteristics curve (ROC), the accu-
racy, sensitivity, specificity, negative predictive values 
(NPV), and positive predictive values (PPV). The Delong 
test was used to compare the differences in ROC curves 
between the models. The nomogram’s accuracy was 
evaluated using calibration curves [39]. A decision curve 
analysis (DCA) was used to evaluate the clinical value of 
the nomogram in the validation cohort [40]. For all statis-
tical tests, a p-value below 0.05 was considered statisti-
cally significant.

Results
Clinicodemographic features
The clinicodemographic features of the SAP and non-SAP 
patients in the training and validation cohorts are sum-
marized in Table 1. A total of 298 patients were enrolled 
in this study, of whom 208 were assigned to the training 
cohort, and 90 were assigned to the validation cohort 
randomly. Of the 298 patients enrolled in the study, 39 
(13.09%) patients developed SAP within 7 days following 
admission. A significant difference was noted in the age, 
BMI, dysphagia, NIHSS score, mRS score (> 2), TG, NLR, 

Fig. 2  Flowchart of radiomics analysis
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stenosis location (ICA) and volume between the SAP and 
non-SAP patients of the training cohort (all P < 0.05).

Identification of the independent clinical predictors
The MLR identified TG, NLR, NIHSS score, dysphagia, 
and stenosis location (ICA) as independent predictors for 
SAP (Table 2). Based on the result of the MLR, the clini-
cal prediction model was defined by the formula: Y = -1

.059TG + 0.373NLR + 0.188NIHSS score + 2.433Dyspha-
gia + 1.542stenosis location (ICA).

The association between stenosis location (ICA), infarct 
volume and SAP
The infarct volume was found to be significantly larger in 
patients with ICA stenosis than in patients without ICA 
stenosis (P = 0.006) (Fig. 3A).

Table 1  Risk factors in the training and validation cohorts

Characteristics Training Cohort (n = 208) Validation Cohort (n = 90)

Without SAP (n = 180) With SAP (n = 28) P Without SAP (n = 79) With SAP (n = 11) P

Demographics
  Age, M(Q25,Q75) 63.00(55.00,71.00) 68.50(60.00,76.00) 0.044 63.00(56.00,71.00) 66.00(61.00,77.00) 0.230

  Sex, n(%) 0.250 0.957

    Male 118(65.56) 22(78.57) 54(68.35) 8(72.73)

    Female 62(34.44) 6(21.43) 25(31.65) 3(27.27)

  BMI, M(Q25,Q75) 23.86(21.51,25.39) 21.34(20.20,24.61) 0.012 23.63(21.26,25.39) 22.46(20.76,23.66) 0.089

Past History
  Stroke, n(%) 54(30.0) 6(21.43) 0.480 22(27.85) 2(18.18) 0.752

  Smoking, n(%) 62(34.44) 15(53.57) 0.082 24(30.38) 5(45.45) 0.510

Comorbidities
  Hypertension, n(%) 137(76.11) 19(67.86) 0.482 64(81.01) 8(72.73) 0.809

  Diabetes, n(%) 68(37.78) 8(28.57) 0.465 34(43.04) 3(27.27) 0.504

  Dyslipidemia, n(%) 43(23.89) 3(10.71) 0.188 16(20.25) 1(9.09) 0.635

Characteristics of condition on admission
  Dysphagia, n(%) 7(3.89) 8(28.57)  < 0.001 3(3.8) 4(36.36) 0.001

  NIHSS score, M(Q25,Q75) 3.00(1.00,6.00) 4.00(2.00,10.00) 0.038 2.00(0.00,5.00) 5.00(2.00,12.00) 0.041

  mRS score(> 2), n(%) 36(20.0) 13(46.43) 0.005 13(16.46) 4(36.36) 0.242

Laboratory results
  PLT, M(Q25,Q75) 206.50(174.00,240.00) 214.50(163.00,259.00) 0.829 199.00(164.00,227.00) 219.00(201.00,265.00) 0.061

  Cr, M(Q25,Q75) 73.57(62.34,90.84) 72.35(65.55,82.69) 0.428 76.03(66.57,93.53) 78.33(59.64,85.72) 0.622

  AST/ALT, M(Q25,Q75) 1.19(0.96,1.52) 1.36(1.09,1.55) 0.133 1.17(0.99,1.49) 1.31(0.95,1.44) 0.409

  Tch, M(Q25,Q75) 4.67(4.04,5.20) 4.68(3.67,5.36) 0.518 4.67(4.16,5.19) 4.71(4.06,5.11) 0.735

  LDL, M(Q25,Q75) 2.77(2.36,3.18) 2.73(2.02,3.39) 0.757 2.84(2.36,3.32) 2.92(2.42,3.39) 0.878

  HDL, M(Q25,Q75) 1.07(0.93,1.31) 0.98(0.85,1.32) 0.360 1.02(0.92,1.29) 0.99(0.81,1.49) 0.907

  TG, M(Q25,Q75) 1.43(1.11,2.03) 1.11(0.96,1.65) 0.019 1.59(1.17,2.02) 1.09(0.83,1.69) 0.036

  FPG, M(Q25,Q75) 5.38(4.70,7.20) 5.42(4.42,5.79) 0.359 5.90(5.13,7.61) 5.44(5.11,6.16) 0.334

  HCY, M(Q25,Q75) 14.16(11.54,18.14) 15.84(11.45,19.34) 0.361 14.54(11.68,18.12) 15.35(10.85,19.15) 0.956

  ALB, M(Q25,Q75) 37.88(35.73,40.12) 37.02(33.86,38.22) 0.075 37.95(36.08,40.38) 36.35(35.07,38.16) 0.040

  NLR, M(Q25,Q75) 2.65(1.91,3.62) 3.44(2.16,5.42) 0.008 2.61(2.05,3.70) 4.71(3.82,6.77)  < 0.001

Imaging features
  Stenosis location, n(%)

    ICA 19(10.56) 9(32.14) 0.007 8(10.13) 4(36.36) 0.054

    MCA 42(23.33) 10(35.71) 0.241 21(26.58) 4(36.36) 0.749

  Infarction side, n(%)

    Left 69(38.33) 7(25.00) 0.249 35(43.75) 3(27.27) 0.456

    Right 75(41.67) 14(50.00) 0.533 29(36.25) 4(36.36) 0.755

    Bilateral 31(17.22) 8(28.57) 0.242 20(25.32) 3(27.27) 0.818

  Volume, M(Q25,Q75) 1.27(0.49,4.82) 4.08(0.85,16.07) 0.017 1.22(0.42,6.07) 1.84(0.40,16.18) 0.566
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The infarct volume was found to be significantly 
larger in patients with SAP than in patients without SAP 
(P = 0.017) (Table 1, Fig. 3B). In addition, both in patients 
with SAP and in patients without SAP, infarct volume 
was larger in patients with ICA stenosis.

Infarct volume showed moderate performance in pre-
dicting whether AIS patients would develop SAP, with an 
AUC of 0.635 (Fig. 4).

Feature extraction and radiomics scores
A total of 1041 features predictive of SAP were extracted. 
The 10 most relevant radiomics features for SAP in the 
training cohort were obtained by LASSO with ten-
fold cross-validation (Fig.  5A-C). The distribution of 

Table 2  Univariate and multivariable regression findings

Risk factor β SE Wald OR (95% CI) P

TG -1.059 0.485 4.77 0.347(0.134,0.897) 0.029

NLR 0.373 0.112 11.163 1.452(1.167,1.807) 0.001

NIHSS score 0.188 0.073 6.694 1.207(1.047,1.392) 0.01

Dysphagia 2.433 0.747 10.598 11.392(2.633,49.311) 0.001

Stenosis location 
(ICA)

1.542 0.633 5.939 4.674(1.352,16.155) 0.015

Fig. 3  The association between stenosis location (ICA), infarct volume and SAP. A The distribution of infarct volume in patients with ICA stenosis 
and patients without ICA stenosis. B The distribution of infarct volume in patients with SAP and patients without SAP

Fig. 4  Performance of infarct volume in predicting SAP
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the radiomics scores of patients with and without SAP 
for the training and validation cohorts is illustrated in 
Fig.  5D. The radiomics scores of patients with SAP and 
those without SAP were 2.30 (2.18, 2.65) and 2.13 (1.91, 

2.40), respectively, for the training cohort and 2.29 (2.09, 
2.52) and 2.09 (1.82, 2.29), respectively for the validation 
cohorts. The radiomics scores in patients with SAP were 
generally higher than in those without SAP. Wilcoxon’s 

Fig. 5  The optimal radiomics features for SAP. A The tuning parameter (k) in the tenfold cross-validation LASSO model. B The coefficients plotted 
against log(k). C The most relevant radiomics features predictive of SAP. D The distribution of radiomics scores in the training and validation cohorts
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test showed a significant difference in the radiomics 
scores between the patients with SAP in both the training 
and validation cohorts (P < 0. 05). The mean ICC between 
the lesion volumes annotated by the 2 radiologists was 
0.99 (95% CI 0.99–1, P < 0.05), indicating that the repro-
ducibility of the feature extraction was good.

We investigated the association between radiomics 
scores and infarct volume as well as radiomics scores and 
independent risk factors (NIHSS, NLR, TG) (Fig.  6). The 
radiomics scores and NIHSS scores exhibited a positive lin-
ear relationship, with a Pearson correlation coefficient (r) 
of 0.171(P = 0.014) (Fig. 7A). The radiomics scores and vol-
ume exhibited a positive linear relationship, with a Pearson 
correlation coefficient (r) of 0.372(P < 0.001) (Fig. 7B).

Prediction performance of the models
The prediction performance of the 3 models is summa-
rized in Table 3, while Fig. 8 illustrates the ROCs for the 
3 models. The clinical prediction model achieved an AUC 

of 0.785 (95%CI 0.673–0.889) and 0.736 (95%CI 0.629–
0.837) for the training and validation cohorts, respec-
tively. The sensitivity and specificity of the model were 
0.667 and 0.768, respectively, in the training cohort and 
0.417 and 0.872, respectively, in the validation cohort.

The radiomics prediction model achieved an AUC of 
0.660 (95% CI 0.546–0.766) and 0.646 (95% CI 0.541–
0.756) in the training and validation cohorts, respectively. 
The sensitivity and specificity of the model were 0.417 
and 0.826, respectively, in the training cohort and 0.533 
and 0.733, respectively, in the validation cohort.

The combined prediction model had an AUC of 0.859 
(95% CI 0.759–0.936) and 0.830 (95% CI 0.758–0.896) in 
the training and validation cohorts, respectively. The sen-
sitivity and specificity of the model were 0.750 and 0.826, 
respectively, in the training cohort and 0.800 and 0.787, 
respectively, in the validation cohort.

Compared with the other 2 models, the combined 
model had a significantly higher AUC in both the training 

Fig. 6  Correlation analysis chart
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and validation cohorts (Delong test P < 0.05) (Table 4) and 
was therefore used to develop the clinical nomogram.

Development and validation of the nomogram 
The nomogram of the combined model is illustrated in 
Fig.  9A. Clinicians could use the nomogram to predict 
the risk of developing SAP by summing the risk of the 
relevant clinical variables and the radiomics risk score. 
The calibration curves for the training and validation 
nomograms are illustrated in Fig.  9B. The calibration 
plot displayed a good level of consistency between the 
predicted and actual probabilities for both cohorts. The 
nomogram’s DCA is displayed in Fig. 9C. The DCA con-
firmed the clinical utility of the model.

As shown in Table 5 and Fig. 10, the subgroup analysis 
showed that the performance of the nomogram was not 
influenced by patient age, sex, BMI and stroke severity on 
admission (Delong test P > 0.05).

Discussion
SAP is a potentially preventable complication of stroke. 
The early identification of SAP is essential to limit the 
adverse clinical outcome of pneumonia [41, 42]. In this 
study, we explored the predictive value of radiomics in 
predicting SAP and construct an artificial intelligent 
model based on clinical features and DWI-MRI radiom-
ics features to predict SAP following AIS. The combined 
model performed better than clinical model and radiom-
ics model. The DCA confirmed the clinical effectiveness 
of the proposed model.

It has been confirmed by several studies that brain MRI-
based imaging features are closely related to SAP. Zhao 
et al. [43] showed that the DWI Alberta Stroke Program 
Early Computed Tomography Score (DWI-ASPECTS) 
used to predict the severity of AIS could also be used to 
predict the occurrence of SAP in patients with mild AIS 
[1, 44]. We investigated the association between radiom-
ics scores, infarct volumes and NIHSS scores, found that 

Fig. 7  The association between stenosis location (ICA), infarct volume and SAP. A Association between radiomics scores and NIHSS scores. B 
Association between radiomics scores and volume

Table 3  The performance of three prediction models in the training and validation cohorts

Model Cohort AUC (95%CI) ACC​ Sensitivity Specificity NPV PPV

Radiomics Prediction model Training Cohort 0.660(0.546–0.766) 0.779 0.417 0.826 0.916 0.238

Validation Cohort 0.646(0.541–0.756) 0.700 0.533 0.733 0.887 0.286

Clinical Prediction model Training Cohort 0.785(0.673–0.889) 0.759 0.667 0.768 0.939 0.300

Validation Cohort 0.736(0.629–0.837) 0.811 0.417 0.872 0.907 0.333

Combined Prediction model Training Cohort 0.859(0.759–0.936) 0.817 0.750 0.826 0.962 0.360

Validation Cohort 0.830(0.758–0.896) 0.789 0.800 0.787 0.952 0.429
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there was a linear positive correlation between radiom-
ics scores and NIHSS scores (Pearson:0.171, P = 0.014), 
as well as between radiomics scores and infarct volume 
(Pearson:0.372, P < 0.001). Yu et al. [17] found that neuro-
imaging features play a key role in predicting SAP. Brain 
atrophy and core infarct volume are closely related to the 
occurrence of SAP [45, 46]. We found that larger infarct 
volume and higher radiomics score were associated with 
a greater risk of developing pneumonia. We also inves-
tigated the predictive performance of infarct volume 
and obtained moderate performance, with an AUC of 
0.635. The NIHSS score reflects the severity of the stroke 
[47]. Previous studies have shown that stroke severity 
increases the risk of developing SAP [1]. Therefore, the 
radiomics score reflects the severity of stroke to a certain 
extent and affects the occurrence of SAP.

Studies have shown a good association between several 
radiomics features and clinical stroke outcomes, such as 
prognosis and recurrence [18]. Currently, the radiomics 
features has been certified to improve the prediction abil-
ity of prognosis prediction. Tang et al. [48] found an asso-
ciation between specific morphology radiomics features 

and stroke recurrence in patients with symptomatic 
intracranial atherosclerotic stenosis. With the addition 
of radiomics features, the AUC of the prediction model 
was increased by 11.7% and 17% in the training and vali-
dation sets, respectively. Zhou et  al. [49] demonstrated 
that the radiomics features performed well in predicting 
AIS outcomes. With the addition of radiomics features, 
the AUC of the prediction model was increased by 10.1% 
and 10.6% in the training and validation sets, respectively. 
However, relatively few studies have used radiomics fea-
tures to predict the risk of complications following AIS. 
Immunological changes are associated with an increased 
tendency to respiratory infections [13]. And neuroana-
tomical correlates are associated with immunological 
changes after stroke and increased risk of infection, so 
it is easy to develop SAP [16]. An activation of the sym-
pathetic nervous system is the main immunosuppressive 
mechanism leading to a high incidence of infections after 
stroke [50]. Studies have revealed that significant correla-
tions with texture features and neural density in the side 
of the hippocampus contralateral to the ischemic area. 
These preliminary results suggest that texture features 

Fig. 8  ROC curves of the 3 prediction SAP models for the training (A) and validation (B) cohorts

Table 4  Comparison of ROC between the models using the Delong test

Cohort The models for comparison P

Training Cohort Combined Prediction model versus Clinical Prediction model 0.042

Combined Prediction model versus Radiomics Prediction model 0.006

Validation Cohort Combined Prediction model versus Clinical Prediction model 0.043

Combined Prediction model versus Radiomics Prediction model  0.05
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can reflect microscopic changes that occur post-stroke, 
even in an area spared by ischemia [29]. Therefore, we 
believe that the extracted radiomics features, belong-
ing to the texture features, can reflect the microscopic 
changes that occur after a stroke and provide a good rep-
resentation of neural alterations caused by low immunity. 
It may potentially be used to predict the risk of devel-
oping infections after AIS. In this study, we used the 
PyRadiomics software version 3.0.1 to extract radiom-
ics features from the manually segmented brain lesions 
[18]. A total of 1041 radiomics features were obtained, of 
which 10 were identified as highly predictive of SAP. The 
majority of these features belonged to the wavelet feature 
cluster. The wavelet feature cluster measures asymmetry 
around the mean, which represents the tissue damage 
caused by the infarct. A study reported that this type of 
features might be associated with complications due to 
other pathological changes [49]. Among these features, 

Fig. 9  Nomogram of the combined prediction SAP model. A The nomogram. B The calibration curves for the training and validation nomograms. C 
The decision curve for the nomogram

Table 5  Subgroup analysis of AUCs using the Delong test

Subgroups divided by AUC​ P (versus 
overall set)

Age

  Age >  = 60 0.857 0.694

  Age < 60 0.822 0.927

Sex

  Male 0.820 0.914

  Female 0.842 0.928

BMI

  BMI >  = 24 0.811 0.878

  BMI < 24 0.837 0.942

Stroke severity on admission

  Normal or nearly normal (NIHSS score 0–1) 0.853 0.804

  Mild stroke (NIHSS score 2–4) 0.857 0.460

  Moderate stroke (NIHSS score 4–15) 0.775 0.581
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LowGrayLevelZoneEmphasis is a feature used to describe 
the distribution of gray levels in an image, and in MRI 
images of stroke patients, lesion site usually shows dif-
ferent gray levels, which reflects the difference in density 
between the lesion site and the surrounding normal site. 
Higher LowGrayLevelZoneEmphasis values indicate that 
areas of lower gray levels are more prominent around 
the lesion site, which may suggest pathological changes 
in the contours or margins of the infarcts, reflecting 
heterogeneity of the lesion site, which may be associ-
ated with SAP. Cluster Prominence represents the clus-
ter significance and is a measure of GLCM skewness and 

asymmetry, which was associated with stroke prognosis 
in previous studies [51], may be related to the occurrence 
of pneumonia. However, more research is required to 
understand the molecular mechanisms involved behind 
the development of this feature.

Consistent with previous studies, NLR, dysphagia, 
and NIHSS score were identified as independent pre-
dictors of SAP [1, 42, 52–54]. In addition, the steno-
sis location (ICA) and low TG were also identified as 
independent risk factors for predicting SAP. Chlamydia 
pneumoniae infection can also promote the develop-
ment of atherosclerosis [55], Cao J et  al. found that 

Fig. 10  Subgroup analysis of the combined model. After dividing by the age (A), sex (B), BMI (C), and stroke severity on admission (D)
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84.0% of Chinese patients with carotid atherosclerotic 
plaques tested positive for chlamydia pneumonia-
specific antigens [56]. As atherosclerotic plaques grow 
larger, leading to the narrowing of the arteries [57], 
the body’s immunity system is weakened, leading to 
an increased risk of infections [16]. A previous study 
reported that when compared to MCA, the ICA causes 
larger infarcts, thus increasing the risk of SAP [58]. Our 
study found that patients with ICA stenosis were more 
likely to develop SAP, and this relationship persisted 
after adjustment for confounding factors. Patients with 
ICA stenosis had larger infarct volumes, and larger 
infarct volumes can affect multiple brain functions 
and impair immunity, ultimately leading to functional 
impairment and increased susceptibility to infections 
[16]. TGs are a potential source of arachidonic acids. 
The lipases and cyclooxygenase found in the lipid 
droplets of macrophages can catalyze the esterifica-
tion of arachidonic acid to gradually transform it into 
eicosanoids compounds [59, 60]. These compounds 
are important lipid mediators of inflammation, and 
have an important role in balancing the extent of the 
inflammatory response [61]. Some studies have shown 
that when the concentration of TG is high, the TG-
rich lipoprotein can combine with lipopolysaccharide 
to exert immune regulation on cells crucial for hosting 
the immune defense [62], thus reducing the risk of SAP. 
The same association was not reported in other studies 
[63, 64]. Therefore, further research is recommended to 
confirm the specific relationship between TG and SAP.

Our study has some limitations that have to be 
acknowledged. Since this study was based on data 
extracted retrospectively, the model’s prediction accu-
racy needs to be validated prospectively. The use of 
single-agency data may lead to issues of geographic 
specificity and representativeness of the sample, a limi-
tation that may restrict our generalizations about differ-
ent groups. Therefore, in future studies, we will actively 
explore the possibility of external validation to enhance 
the reliability and generalizability of the study. In addi-
tion, the effect of treatment during hospitalization was 
not taken into account in this model. Finally, the com-
bined model had a high NPV and a low PPV, possibly 
due to the low incidence of SAP in our cohort (SAP: 
39/298, 13.1%).

Conclusion
The addition of the radiomics features to the clinical 
model improved the prediction of SAP in AIS patients, 
which verified its feasibility. The proposed nomogram 
could identify patients at risk of developing SAP and thus 
provide timely interventions.
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