RESEARCH

Photobiomodulation combination therapy as a new insight in neurological disorders: a comprehensive systematic review

Narmin Farazi¹, Hanieh Salehi-Pourmehr², Fereshteh Farajdokht¹, Javad Mahmoudi¹ and Saeed Sadigh-Eteghad^{1*}

Abstract

Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.

To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.

According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.

These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.

Keywords Photobiomodulation, Laser therapy, Combined therapies, Neurological disorders

*Correspondence:

Saeed Sadigh-Eteghad

Saeed.sadigetegad@gmail.com

¹ Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran

² Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University

of Medical Sciences, Tabriz, Iran

Introduction

Neurological disorders cause the majority of disability and are the second leading cause of death worldwide. Over the last three decades, the total number of deaths and disabilities caused by neurological diseases has increased significantly, particularly in low- and middleincome countries [1]. Congenital defects, epigenetic changes, aging, and environmental health issues are the primary causes of the onset and progression of various neurological disorders, which affect both the central and peripheral nervous systems (CNS and PNS) [2–4].

© The Author(s) 2024, corrected publication 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Photobiomodulation (PBM) is a non-invasive physical treatment modality that uses low-level lasers (from the red to near-infrared spectrum, with intensities ranging from 1–500 mW) and/or light-emitting diodes (LEDs) [5]. Evidence suggests that PBM could boost mitochondrial function by improving the electron transfer chain and increasing adenosine triphosphate (ATP) synthesis, as well as lowering oxidative stress biomarkers and inhibiting neuroinflammation [6]. PBM has been used to treat a variety of CNS and PNS disorders, including traumatic brain injury [7], stroke [8], Parkinson's disease (PD) [9], Alzheimer's disease (AD) [10], depression, anxiety, cognitive impairments [11, 12], spinal cord injury [13], and carpal tunnel syndrome (CTS) [14]. Both preclinical and clinical studies have shown that PBM therapy improves CNS function [15, 16] and effectively inhibits inflammation in peripheral nerves [17].

Currently, numerous PBM clinics and medical device manufacturers are actively working to improve the parameters that influence PBM effectiveness in the treatment of neurological disorders [18]. The safety of this technique was evaluated in three large randomized clinical trials on acute stroke, known as the "NeuroThera Effectiveness and Safety Trials" (NEST-1, NEST-2, and NEST-3), which found no adverse effects [19–21]. While there have been numerous peer-reviewed articles on PBM, there are few standard RCTs to definitively determine the clinical efficacy of this therapeutic approach [22].

There are some important gaps in the field of PBM therapy that must be addressed. Optimizing neural tissue stimulation with this technique is one of the most difficult challenges, due to the diverse types and severity of neuropathologies, as well as the rapid attenuation of light transmission in tissue [23, 24]. Combination therapies have been proposed as a way to increase treatment efficacy while avoiding severe side effects. As a result, current experimental and clinical studies concentrate on combination therapy rather than single therapy, indicating potential future clinical combination treatment schedules.

Although several systematic reviews have examined the effects of PBM on various neurological disorders [13, 14, 24, 25], we were unable to locate a comprehensive systematic review on PBM combination therapy in neurologic and neuropsychiatric disorders. This review aims to provide an overview of published procedures for determining whether combination therapies for CNS and PNS disorders are more effective than monotherapies. To that end, PBM-based methodologies were tested for detecting and treating neurologic and neuropsychiatric disorders such as depression, anxiety, Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, neuropathic

pain, spinal cord injury, sciatic nerve crush, paresis, and facial nerve injury. Furthermore, the parameters involved in these procedures were evaluated.

Methods

Search strategy

According to the PRISMA (Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, the findings of this review were reported. The Google Scholar, Pub-Med, and Scopus databases, as international electronic databases, were independently searched up to January 2024 to retrieve all types of studies primarily focused on the synergistic and complementary effects of PBMcombined strategies in the treatment of neurologic and neuropsychiatric disorders. The following keyword combinations based on MeSH terms were used: Photobiomodulation; PBM; Low-Level Laser Therapy; LLLT; Low-Level Light Therapy; Light-Emitting Diode; LED; Combine; Central Nervous System; CNS; Peripheral Nervous System; PNS; Neuropsychiatric; Neurodegenerative; Paresis; Neuropathy; Ischemia; Nerve Injury; pain. The search strategy is presented in Appendix 1. Before selection, duplicate citations were eliminated using the Endnote software. Two independent investigators scrutinized all titles, abstracts, and full texts of potentially qualified articles based on the eligibility criteria, and any discrepancies were resolved by the analysis of a third independent author and the majority consent was taken. Moreover, the reference lists from each article were checked through hand searching to find articles that the search strategy could not have found.

Study selection and data extraction

Following the search, all English-language published original articles on animal studies and clinical trials were included. The exclusion criteria were in vitro (i.e., cell culture) studies, literature reviews, case reports, protocol studies, conference abstracts, non-English articles, duplicate studies with the same ethical approval number, studies on a combination of two or more lasers at different wavelengths, and acupuncture lasers.

To clarify the relevant details from each included article, data and information from each study were extracted and tabulated as follows: author name and publication year, disease category, species (sex and age), type of combination therapy, laser properties (wavelength, energy density), duration of treatment, and key outcomes. Due to the high variability in the type of disease and treatment meta-analysis was not performed.

Study quality

The Cochrane Collaboration tool was utilized to evaluate the risk of bias (RoB) in randomized controlled clinical trials. This tool consists of several components including selection bias, performance bias, detection bias, attrition bias, and reporting bias. Animal studies were scored based on a modified version of the CAMARADES' study quality checklist. The CAMARADES checklist is a reliable and commonly used tool that offers mentoring to those who conduct systematic reviews and meta-analyses of data from preclinical literature [26, 27]. The questions in this tool covers information about publication in a peer-reviewed journal, control of temperature, random allocation to treatment or control, blinded induction, blinding of outcome assessment, use of anesthetic without significant intrinsic neuroprotective activity, animal model, sample-size calculation, compliance with animal welfare regulations, and a statement regarding possible conflicts of interest.

The assessment was conducted by two independent authors. The authors were familiar with both the methodological issues and the topic area. They also had previous experience of working with the tools. There was an explicit procedure for resolving disagreements among authors. All disagreements were resolved by comparing supporting information from each study report, which was divided into two parts of the data collection process (rechecking the document) and a difference in interpretation (resolved via discussion). Unresolved discrepancies were resolved after consulting with a third senior author [28, 29].

Result

Literature search

The electronic search of the mentioned databases (Google Scholar (n = 200), PubMed (8475) and Scopus (10273)), resulted in a total of (18948) studies. After removing duplicated papers (n = 8382) and conducting the appraisal process, 117 studies remained for full-text reading. Among these studies, three were excluded because they were conducted in cell culture. Studies that used combined lasers at different wavelengths were also excluded (n = 7). Additionally, eight case reports and four protocol studies were excluded. The PRISMA flowchart of the review selection process is illustrated in Fig. 1.

The results yielded 95 studies, which assessed the efficacy of strategies on behavioral and molecular changes in neurological disorders.

The included studies in the first step were divided into two major categories: clinical (human, n = 66) and preclinical (animal, n = 29) studies. Clinical studies were further classified into two main groups including CNS and PNS disorders. The first group was re-classified into neuropsychiatric disorders (n = 6), neurodegenerative diseases (n = 5), ischemia (n = 7), and nerve injury (n =19). The second group contained pain (n = 48), paresis (n = 3), and neuropathy (n = 7). Tables 1 and 2 provide the main characteristics of the included studies outcomes, light source parameters and combination treatments, in central and peripheral nervous system disorders in clinical studies. Since the re-categorizing preclinical studies was not possible due to limitations in the number of articles in each possible section, they were reported in a holistic manner. Table 3 represents the similar data from experimental studies. All included articles addressed the impacts of laser therapy combined with other therapies on neurological disorders.

Study characteristics

The wavelength, power/energy density (irradiance and fluence), mode of application (pulsed wave or continuous wave), and treatment frequency were the most important factors affecting the outcomes. Red to far-infrared lasers at a range of wavelengths from 630 to 1875 nm were widely used, as opposed to LEDs and CO2 lasers. The included protocols had an energy density of up to 983 J/ cm². According to the findings of this study, laser therapy was combined with other treatment approaches such as pharmacotherapy, exercise, environmental enrichment, exposure therapy, physiotherapy, ultrasound, mesenchymal stem cells, etc. The duration of treatment varied from 3 days to 18 months. Almost all studies showed positive effects of PBM-combined therapies on various neurological disorders.

Study quality and risk of bias

The Cochrane Collaboration's tool showed that the majority of CNS studies were not blinded, and the allocation concealment rate was low in these studies. Accordingly, selection, and detection bias were apparent in these studies. The details of the quality assessment are presented in Figs. 2 and 3. The CAMARADES checklist was utilized in the quality assessment of animal studies which showed that almost all studies were qualified (Table 4). All of the articles had been published in peer-reviewed journals and reported details of the animal model, anesthetic use, compliance with animal welfare, and a statement of potential conflicts of interest. Random allocation to groups was reported in 18 (62%) studies. Nine (31%) studies reported blinded induction of the model. Only one study reported a sample size calculation and 10 (34%) studies reported blinded assessment of the outcome.

Discussion

This systematic review sought to assess whether the integration of photobiomodulation (PBM) with other treatment strategies yielded additional advantages in the management of neurological and neuropsychological

Fig. 1 The PRISMA flowchart of the review selection process

disorders, as compared to administering these treatments separately.

Central Nervous System (CNS)

Neuropsychiatric disorders

Zaizar et al. [30, 31] showed that the concurrent use of transcranial infrared laser and exposure therapy reduced fear in individuals with pathological fear. The study findings demonstrated that the combination of PBM with a static magnetic field and Pilates, a therapeutic approach for stress incontinence, resulted in enhanced muscle strength and reduced urinary loss [32]. In addition, certain studies have found that the concurrent use of transcranial PBM with pharmaceutical interventions, such as coenzyme Q10 and methylene blue, can reduce anxiety by counteracting oxidative stress, neuroinflammation, and neuronal apoptosis [96, 97]. Furthermore, the concurrent use of transcranial PBM and a stimulating

environment has demonstrated a substantial elevation in hippocampal levels of BDNF, TrkB levels, and the p-CREB/CREB ratio, alongside a reduction in depressive behaviors [98].

Neurodegenerative diseases

Arakelyan et al. showed that the combination of lowlevel laser therapy (LLLT), magnetic field therapy, and light chromotherapy was more effective than using each therapy individually in reducing the deterioration associated with AD [33]. Nevertheless, Moges et al. observed no substantial enhancement in motor function or survival of motor neurons in the anterior horn of the lumbar spinal cord of a transgenic mouse model of familial amyotrophic lateral sclerosis when subjected to a combined laser therapy (810 nm) and riboflavin protocol [99]. Moreover, research has shown that the combination of PBM with exercise has a synergistic impact on mitigating

S
÷
ň
sti
<u>.</u>
<u> </u>
÷
ے
.=
S.L.
ď
Ū.
is(
\overline{O}
E
ē
'st
Ś
S
5
ž
ē
\subseteq
a
tr
0
Ű
μţ
e
Ľ.
at
Ŀ.
ţ
2
Ę
Ja
ij
ц
ЦС
Ы
σ
Ē
0
5
ŝte
ne
Ē
аĽ
ă
e.
2
Ŋ
SC
Ę
9
փ'
S,
Лe
L L
ŭ
nt
ō
SS
.≓
n
stı
0
ĕ
9
1
ŭ
. <u> </u>
Ŷ
-
f th
of th
cs of th
tics of th
ristics of th
eristics of th
cteristics of th
racteristics of th
haracteristics of th
Characteristics of th
I Characteristics of th
1 Characteristics of th
he 1 Characteristics of th

Table 1 Characteristic:	s of the included stu	udies outcomes, li	ight source param	leters and combination t	reatment, in central nervc	ous system disorders in c	inical studies
Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Zaizar et al, 2018 [30]	Neuropsychiatric	Fear and anxiety	NM / 18-65	Exposure therapy	1064 nm, 120 J/cm ² , 0.25 W/cm ²	MM	Combination therapy improved the outcomes of exposure therapy in pathological fear cases
Zaizar et al., 2023 [31]	Neuropsychiatric	Fear	F / 18 – 65	Exposure therapy	1064 nm, 120 J/cm ²	WZ	Stimulation of dIPFC and vmPFC regions did not enhance exposure therapy outcome
De Marchi et al., 2023 [32]	Neuropsychiatric	Stress	F / 44.81 ± 10.77	Static magnetic field & Pilates	905 nm, 0.085 J/cm ² (875 nm, 2.22 J/cm ² and 640 nm, 2.77 J/cm ²)	12 weeks (2/week)	Increased urinary tract's muscle strength and tone; Improved quality of life and decreased urinary lost
Arakelyan, 2005 [33]	Neurodegenerative	AD	M, F / 73.1	Magnetic field & Light chromo therapies	633 nm	6 courses delivered over 18 months, 15 pro- cedures per course	Combination therapy by magnetic field but not light chromo therapy improved out- comes of ADAS-Cog test in AD patients
Nagy et al., 2021 [34]	Neurodegenerative	AD	M, F / 69.50	Aerobic exercise	650 nm	12 weeks (1/week)	Improved Hb level, MoCa – B basic, quality of life for AD scale and Berg Balance scale scores; Significant reduction in BMI and WHR
Tamae et al., 2020 [35]	Neurodegenerative	D	NM / 30—80	Vacuum therapy	670, 808 nm	3 weeks (2/week)	Improved muscle pain in parkinsonians; Affected positively the quality of life
Hong et al, 2021 [36]	Neurodegenerative	Q	F / 67.53 ± 8.83	Molecular hydrogen water	940 nm, 6 mW/cm ²	2 weeks	UPDRS scores began decreasing from the first week, after 1 week of ther- apy cessation, UPDRS scores slightly increased but the improvement remained significant com- pared with the baseline
Casalechi et al., 2020 [37]	Ischemia	Stroke	M, F / 45 – 60	Magnetic field	905nm, 0.71 mW/cm ² (875 nm, 1944 mW/cm ² and 640 nm, 16.67 mW/ cm ² , 1.27, 38, 6.35 J/cm ²)	4 weeks (4/week)	Positive acute effects on functional mobil- ity in stroke survivors; Improved the 6MWT and TUG tests using a total energy of 301 per site

Table 1 (continued)							
Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Ashrafi et al., 2020 [38]	Ischemia	Stroke	M, F / 63.5±14.3	Low frequency electro- magnetic field	840 nm	5 days	Combination therapy improved mRS, MMSE and Barthel's index in stroke cases
Paolillo et al, 2022 [39]	Ischemia	Stroke	M, F / 59±11	Neuromuscular electrical stimulation	660, 808, 980 nm, 360 J/ cm ²	3 months (1/week)	Improved cognitive func- tion, pain relief, greater manual dexterity, physical and social emotional health which lead to better quality of life and well- being
Dumont et al., 2022 [40]	Ischemia	Stroke	M, F / 58.5±10.04	Static magnetic field	905 nm, 0.054, 0.162, 0.271 J/cm ² 640 nm, 1.27, 38, 6.35 J/ cm ² 875 nm, 1.48, 4.43, 7.41 J/cm ²	4 weeks	Improvement was observed in the kin- ematic variable of the hip in the paretic and non- paretic limbs
da Silva et al., 2020 [41]	Nerve injury	Spinal cord injury	M, F / 36.3±15.1	Physiotherapy	808 nm, 983 J/cm ² , 4.72 W/cm ²	4 weeks (3/week)	Leads to better sensory- motor recovery; Increased surface sensitivity, muscle strength, muscle contrac- tion and quality of life
6MWT, the 6-min walk test;	AD Alzheimer's disease, /	ADAS-Cog The Alzhein	ner's Disease Assessme	nt Scale-cognitive subscale, <i>BN</i>	11 body mass index, <i>dIPFC</i> dors	olateral prefrontal cortex, <i>F</i> Fe	male, <i>Hb</i> Hemoglobin, <i>M</i> Male,

6MWT, the 6-min walk test, AD Alzheimer's disease, ADAS-Cog The Alzheimer's Disease Assessment Scale-cognitive subscale, BMI body mass index, dIPFC dorsolateral prefrontal cortex, F Female, Hb Hemogroun, w wate, MMSE Mini-Mental State Examination, MoCa – B basic, Montreal Cognitive Assessment test for dementia, mRS modified Rankin scale, MM not mentioned, PD Parkinson's disease, TUG Timed Up and Go test, UPDRS Unified Parkinson Disease Rating Scale, wPFC ventromedial prefrontal cortex, WHR waist–hip ratio

Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Aghamohammadi et al., 2012 [42]	Pain	Trigeminal neuralgia	NM / 30-70	Ganglion block	890 mu	6 months 12 sessions	Decreased the severity of pain, dose of carba- mazepine; Increased the period of a pain-free state
Ebrahimi et al., 2018 [43]	Pain	Trigeminal neuralgia	M, F / NM	Carbamazepine	810 nm, 6.36 J/cm ²	3 weeks (3/week)	Decreased pain severity with time
Stergioulas 2007 [44]	Pain	Lateral epicondylitis	M, F / 45.2±2.86	Exercises	904 nm, 2.4 J/cm ²	8 weeks 12 sessions	A significant decrease of pain at rest, palpation and pain on isometric testing, middle finger test and pain during grip strength test; A significant increase in the wrist range of motion
Celik et al., 2019 [45]	Pain	Lateral epicondylitis	M, F / 48.2±9.4	Exercises	904 nm, 2.4 J/cm ²	4 weeks (3/week)	Improved elbow exten- sion, shoulder flexion strength, VAS, movement and handgrip strength
Ali et al, 2021 [46]	Pain	lateral epicondylitis	M, F / 44.9±7.3	Ultrasound	808, 915 nm, 5 J/cm ²	12 sessions	Improved the VAS, DASH score and hand grip- strength
Amanat et al., 2013 [47]	Pain	Orofacial pain	M, F / 47.22	Antidepressants, Anxio- lytics, Muscle relaxants, Carbamazepine	980 nm, 12.73 J/cm ²	3 weeks (3/week)	There was no significant additional level of efficacy for the laser in the man- agement of common orofacial pain based on VAS outcomes
Ceylan et al., 2004 [48]	Pain	Myofascial pain syn- drome	M, F / 34.05±8.25	Naproxen sodium, Phen- brobomate	904 nm, 1.44 J/cm ²	10 days	Increased the VAS values, 5-HIAA and 5-HT+ 5-HTP excretion; Reduced pain
Sumen et al., 2015 [49]	Pain	Myofascial pain syn- drome	M, F / 41.66±9.26	Exercises	670 nm, 4 J/cm ²	2 weeks (5/week)	It was found that pain (according VAS Index) was significantly lower in combination therapy group in comparison to exercise only
El-sharkawy et al, 2018 [50]	Pain	Myofascial pain syn- drome	M, F / NM	Ultrasound, Hot pack, Exercise	905, 808 nm, 16 J/cm ²	4 weeks (3/week)	Increased the quality of life, pressure pain threshold for temporo- mandibular join, masseter and anterior temporalis muscles

Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Mansourian et al., 2019 [51]	Pain	Myofascial pain syn- drome	M, F / 18–60	Fluoxetine, Clonazepam	810 nm, 2 J/cm ²	5 weeks (2/week)	Improved pain and limita- tion in lateral movements
Gur et al, 2003 [52]	Pain	Chronic low back pain	M, F / 35.2 ± 10.51	Exercise	1 J/cm ²	4 weeks (5/week)	Laser therapy seemed to be an effective method in reducing pain and functional disability. However, does not bring any additional benefits to exercise therapy
Djavid et al., 2007 [53]	Pain	Chronic low back pain	M, F / 38	Exercise	810 nm, <i>27 J/</i> cm ²	6 weeks (2/week)	No greater effect of laser therapy plus exercise compared with exer- cise for any outcome; Reduced pain; Increased lumbar range of move- ment on the Schober Test and active flexion; Reduced disability
Ammar 2015 [54]	Pain	Chronic low back pain	M, F / 42.1 ± 12.8	Exercise	850 nm	6 weeks (2/week)	Improved functional dis- ability, pain and lumbar ROM
Koldaş Doğan et al. 2017 [55]	Pain	Chronic low back pain	M, F / 52.14±12.13	Hot pack	850 nm, 10 J/cm ² 650, 785, 980 nm, 3 J/ cm ²	3 weeks (5/week)	Improved pain severity, pattent's and physician's global assessment, ROM and MODQ scores; Laser therapy provided more improvements in lat- eral flexion measure- ments and disability of the patients
Mohammad Ezz El Dien et al., 2007 [56]	Pain	Primary periarthritis shoulder	M, F / 49.2±5.9	Electromagnetic field, Exercise	880 nm, 1 J/cm ²	2 months (3/week)	Improved all shoulder parameters (pain, tender- ness, range of motion and function)
Otadi et al., 2012 [57]	Pain	Shoulder tendonitis	F / 49.48±8.5	Ultrasound, Exercise	830 nm, 1 J/cm ²	10 sessions (3/week)	Improved VAS, TSS, CMS and the muscle strengths

Table 2 (continued)

Table 2 (continued)							
Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Eslamian et al., 2012 [58]	Pain	Rotator cuff tendinitis	M, F / 50.16±12.10	Physiotherapy	830 nm, 4 J/cm ²	10 sessions (3/week)	Improved pain (reduc- tion in VAS average) and shoulder disability problems; Improved the patient's function; No additional advantages were detected in increas- ing shoulder joint range of motion in comparison to other physical agents
Dogan et al, 2010 [59]	Pain	Subacromial impinge- ment syndrome	M, F / 53.59 ± 11.34	Cold pack	850 nm, 5 J/cm ²	14 sessions (5/week)	Improved pain sever- ity, range of motion except internal and exter- nal rotation and SPADI scores
Abrisham et al., 2011 [60]	Pain	Subacromial syndrome	M, F / 52.2±5.7	Exercise	890 nm, 2–4 J/cm ²	2 weeks (5/week)	Significant post-treatment improvements were achieved in all parameters, in all movements, There was a substantial differ- ence between the groups in VAS scores, Improved the shoulder ROM
Pekyavas et al., 2016 [61]	Pain	Subacromial impinge- ment syndrome	NM / 51.1 ± 14.3	Manual therapy, Kinesio taping, Exercise	1064 nm	15 sessions (3/week)	Minimized pain and dis- ability; Increased ROM and SPADI
Alfredo et al., 2021 [62]	Pain	Subacromial impinge- ment syndrome	NM / 51.9±8.7	Exercise	904 nm	8 weeks (3/week)	Improved shoulder function; Reduced pain intensity and medication intake
Ökmen et al., 2017 [63]	Pain	Chronic shoulder pain	M, F / 53	Exercise	1064 nm, 100 J/cm ²	2 weeks (7/week)	Compared to the values of PRT and PST at months 1, 3, and 6, VAS, SPADI, and NHP values were lower
Teixeira et al., 2022 [64]	Pain	Chronic neck/shoulder pain	M, F / 32.78±9.99	Magnetic field	905, 875, 640 nm	3 weeks (2/week)	Reduced pain intensity (reduction in VAS) in all time points tested; There was no difference in the ROM outcomes
Kolu et al., 2018 [65]	Pain	Chronic lumbar radicu- lopathy	M, F / 53.40 ± 10.57	Hot pack, Exercise	12, 120 J/cm ²	2 weeks (5/week)	Decreased pain variation and functionality (VAS and ODI)

Farazi et al. BMC Neurology (2024) 24:101

Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Stasinopoulos et al., 2009 [66]	Pain	Lateral elbow tendi- nopathy	NM / 18≤	Exercise	904 nm, 130 mW/cm ²	4 weeks (3/week)	Decline in pain; Increase in function compared with baseline has been observed
Liu et al., 2014 [67]	Pain	Patellar tendinopathy	M / 18–23	Exercise	810 nm, 1592 mW/cm ²	4 weeks (6/week)	Reduced pain (VAS); Improved function capacity of knee, muscle strength and endurance
Stergioulas et al, 2008 [68]	Pain	Chronic achilles tendi- nopathy	M, F / 30.1 ±4.8	Exercise	820 nm, 60 mW/cm ²	8 weeks 12 sessions	Combination therapy accelerates clinical recovery as tested by VAS, Power densities below 100 mW/cm ² seems to be important for obtaining good results
Saayman et al., 2011 [69]	Pain	Cervical facet dysfunc- tion	F / 18–40	Chiropractic joint manipulation therapy	830 nm, 151 mW/cm²	3 weeks (2/week)	The combination therapy was more effective than either of the 2 on their own; Pain disabil- ity in everyday life, lateral flexion, and rotation was the main outcomes
Gu et al, 2017 [70]	Pain	Cervical spondylosis	M, F / 35—71	Ozone therapy	WN	WN	Decreased preoperative neck and shoulder pain (VAS score) at 1 month period
Venosa et al., 2019 [71]	Pain	Cervical spondylosis	M, F / 49.76	Exercise	1064 nm	6 weeks (2/week)	Increased cervical ROM; Reduced pain; There was a significant differ- ence in NDI scores; Anal- gesic effects; Improved function in patients affected by cervical spondylosis
Yilmaz et al, 2020 [72]	Pain	Cervical pain	M, F / 18–60	Exercise	1064 nm, 5 J/cm ²	4 weeks (5/week)	Improved cervical range of motion and quality of life by reducing pain (ROM, VAS and NPADS values)

Table 2 (continued)

Table 2 (continued)							
Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
De Carli et al., 2013 [73]	Pain	Temporomandibular joint pain	× Z	Piroxicam	808 nm, 100 J/cm ²	10 days	Combination therapy was not more effective than single therapies (evaluated by VAS)
Elgohary et al., 2018 [74]	Pain	Temporomandibular joint pain	M, F / 60.75 ±5.09	Exercise	950 nm, 7.6 J/cm ²	4 weeks (5/week)	Improvement in VAS, VCS and UW-QOL question- naire results
Brochado et al., 2018 [75]	Pain	Temporomandibular joint pain	M, F / 46.5±14.4	Manual therapy	808 nm, 13.3 J/cm ²	4 weeks (3/week)	Reduced depression symptoms, anxiety symptoms and physical symptoms; Promoted pain relief; Improved man- dibular function and jaw disabilities
Ahmad et al, 2018 [76]	Pain	Temporomandibular joint pain	M, F / 37.56±8.26	Ultrasound, Hot pack, Exercise	905, 808 nm, 16 J/cm ²	4 weeks (3/week)	Decreased limitations in daily functions; Increased pressure pain threshold for masseter and anterior temporalis muscles
Panhoca et al., 2019 [77]	Pain	Temporomandibular joint pain	M, F / 23—66	Ultrasound	808 nm, 32.832 J/cm ²	4 weeks (2/week)	Synergistic treatment was effective in improving the oral health-related quality of life (assessed by the Oral Health Impact Profile)
Panhóca et al., 2021 [78]	Pain	Temporomandibular joint pain	M, F / 18—55	Ultrasound	808 nm, 684 J/cm ²	4 weeks (2/week)	Laser combined with ultrasound are effective in the treat- ment of pain as assessed by analogue pain scale; Assessment of range of motion and assessment of quality of life
Panhóca et al., 2021 [78]	Pain	Temporomandibular joint pain	M, F / 18—55	Vacuum therapy	808 nm, 684 J/cm ²	4 weeks (2/week)	Laser combined with vacuum are effective in the treatment of pain as assessed by analogue pain scale; Assessment of range of motion and assessment of quality of fife

Table 2 (continued)							
Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Dias et al., 2022 [79]	Pain	Temporomandibular joint pain	M, F / 32.16±8.60	Orofacial myofunctional therapy	830 nm, 51 and 34 J/ cm ²	13 sessions	Improved the degree of pain (VAS) and self-per- ception of the OHQOL
Matsutani et al, 2007 [80]	Pain	Fibromyalgia	F / 44	Exercise	830 nm 3 J/cm ²	5 weeks (2/week)	Pain reduction; Higher pain threshold at tender points; Lower mean FIQ scores; Higher SF-36 mean scores
da Silva et al., 2018 [81]	Pain	Fibromyalgia	F/≥35	Exercise	905 nm, 0.75 J/cm ² (640 nm, 5 J/cm ² and 875 nm, 5.83 J/cm ²)	10 weeks (2/week)	Improved pain threshold in several tender points; A more substantial effect was noticed for the com- bined therapy; Pain relief was accomplished by improving VAS and FIQ scores as well as quality of life
Germano Maciel et al, 2018 [82]	Pain	Fibromyalgia	F / 30—50	Exercise	808 nm, 142.85 J/cm ²	8 weeks (3/week)	Reduced pain; Improved function, muscular performance, depression, and quality of life; The benefic effects of func- tional exercise were not improved by combi- nation with LLLT
Aquino Junior et al., 2021 [83]	Pain	Fibromyalgia	F / 30—65	Ultrasound	660 nm	2 to 10 weekly sessions	Combination therapy was more efficient in improvement in the pain of fibromyalgia as tested by FIQ and VAS
Paolillo et al., 2015 [84]	Pain	Osteoarthritis	F / 68±6	Ultrasound, Exercise	808 nm, 7 J/cm ²	3 months (1/week)	Grip strength did not dif- fer; Significant decrease of the pain sensitivity
Gavish et al., 2021 [8 5]	Pain	Knee pain	M, F />18	Physiotherapy	810 nm, 142.5 and 180 J/cm ² (660/850 nm, 3 J/cm ²)	4 weeks (2/week)	Reduced pain (VAS); Improved the Kujala score
Murakami et al., 1993 [86]	Paresis	Facial palsy	M, F / 41.8±4.7	Ganglion block	830 nm	WN	The combination therapy showed a similar overall recovery of facial palsy to ganglion block

Table 2 (continued)							
Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Yamada et al., 1995 [87]	Paresis	Facial palsy	NM / 45.1 ± 14.0	Corticosteroid	830 nm 36.7, 38.2 and 127.4 J/ cm ²	3-10 weeks	Combination therapy is an ideal adjunct treat- ment in cases that cor- ticosteroid therapy is mineable
Ordahan 2017 [88]	Paresis	Bell's palsy	M, F / 41 ± 9.7	Exercise	830 nm, 10 J/cm ²	6 weeks (3/week)	Improved functional facial movements through the FDI; Decreased recovery times for patients
Naeser et al., 2002 [89]	Neuropathy	Carpal tunnel syndrome	M, F / 53.5	Transcutaneous electric nerve stimulation	632.8, 904 nm, 1.81 J/cm ²	3 to 4 weeks (3/week)	Significant decreases in MPQ score, median nerve Sensory latency, and Pha- len and Tinel signs
Dincer et al., 2009 [90]	Neuropathy	Carpal tunnel syndrome	F / 52.2±9.1	Splinting	904 nm, 1 J/cm ²	2 weeks (5/week)	Reduced symptom sever- ity and pain; Increased patient satisfaction using BQ SSS, BQ FSS, VAS, ENMG testing
Yagci et al., 2009 [91]	Neuropathy	Carpal tunnel syndrome	F / 49.47 ± 6.32	Splinting	830 nm	10 sessions	Improved both clinical and NCS parameters (median motor nerve distal latency, median sensory nerve conduction velocities, BQ SSS, and BQ FCS); Provided better outcomes on NCS
Fusakul et al., 2014 [92]	Neuropathy	Carpal tunnel syndrome	M, F / 50.70±1.39	Splinting	810 nm	5 weeks (3/week)	Improved hand grip strength, distal motor latency of the median nerve and electroneuro- physiological param- eters at 5 and 12-week follow-up
Tabatabai et al., 2016 [93]	Neuropathy	Carpal tunnel syndrome	M, F / 48.60	Transcutaneous electri- cal nerve stimulation	808 nm, 6.5 J/cm ²	2 weeks (5/week)	Reduced the mean scores of MPQ, VAS, pain severity, and DASH questionnaires

Author	Disease category	Disorder	Sex/Age	Combination therapy	Laser/(LED)	Treatment duration	Key outcomes
Güner et al., 2018 [94]	Neuropathy	Carpal tunnel syndrome	F / 44.33 ± 9.21	Kinesiotaping	685 nm, 5 J/cm ²	3 weeks (5/week)	Improved VNS daytime, VNS night, FPS, HGS, BQ SSS, BQ FCS parameters at 3th and 12th weeks compared to before treat- ment; Improved mMA, mSNCV, and mSDL parameters at the 12th week (from ENMG param- eters)
Bartkowiak et al., 2019 [95]	Neuropathy	Carpal tunnel syndrome	M, F / 46.8 ± 10.8	Exercise	830 nm, 9 J/cm²	2 weeks (5/week)	Declined sensory impair- ments and pain; Improved hand grip strength, VAS, Boston Questionnaire results, CTS SSS and CTS FSS
5-HIAA 5-hydroxy indole ac symptom severity scale, CM Hand FMAG Electroneurom	etic acid 5-HT serotonin 15 Constant Murley Scor	1, 5-HTTP 5-hydroxy tryptophan re, CTS FSS The carpal tunnel sy Mercial discability index FIO 5th	n, <i>BQ FCS</i> Boston Quest yndrome functional sta	tionnaire functional capacity atus scale, <i>CTS SSS</i> The carpal setionnaire <i>EDS</i> Einger binch s	scale, <i>BQ FSS</i> Boston Questi tunnel syndrome symptom	onnaire functional status scal severity scale, DASH Disabiliti and LLT Low level lseer the	e, BQ SSS Boston Questionnaire es of the Arm, Shoulder and

Table 2 (continued)

manu, envinger and up surfactan used in tex, not rup muck, not rup of up surfactant up to the provident of t

Ś
<u>e</u> .
9
St.
_
ta
5
Ĕ
.⊆
ē
Q
ŵ
\subseteq
Ъ
ē
5
at
Ð
t
5
Ę
Ja
÷
Ę
Ы
Ю
σ
Ĕ
σ
S
te
é
Ľ
<u>c</u>
g
<u>a</u>
Ű
Ľ
0
÷
Ē
. <u>⊡</u> `
Š
e
Ľ
8
ΤĽ
б
S
<u>.</u>
9
stl
~
a
p
1
ĕ
Ę
t L
ō
S
Ę
is.
ē
Ū
raci
aract
Charact
Charact
3 Charact
le 3 Charact

Author	Disease category		Species	Sex/Age	Combination therapy	Apelinieniai suudies Laser	Treatment duration	Key outcomes
Salehpour et al, 2019 [96]	Neuropsychiatric	Depression	BALB/c mice	M / Adult	CoQ ₁₀	810 nm, 33.3 J/cm ² , 6.66 W/cm ²	5 days	Antidepressant-like effects; Decreased lipid peroxidation, conticosterone, TNF-a, and IL-6; Enhanced total TAC, GSH levels, GPX and SOD activi- ties in HIP and PFC, The inflammatory response in the HIP and PFC was sup- pressed, as indicated by decreased NF-kB, p38, and JNK levels; Down-regulated intrinsic apoptosis biomarkers, BAX, BcI-2, cytochrome c release, and caspase-3
Meynaghizadeh- Zargar et al, 2020 [97]	Neuropsychiatric	Chronic mild stress	BALB/c mice	M/8 weeks	Methylene blue	810 nm, 8 J/cm ² , 4.75 W/cm ²	4 weeks (3/week)	Anxiolytic effects; Therapeutic effects; Therapeutic effects dysfunction, learning and memory impair- ments; Decreased serum cortisol levels, NO production, ROS production, SOD; Increased TAC, GPX
Farazi et al., 2022 [98]	Neuropsychiatric	Depression	BALB/c mice	M / Adult	Environmental enrichment	810 nm, 8 J/cm ² , 4.75 W/cm ²	14 days	Antidepressant-like effects; Up-regulated hippocampal BDNF/ TrkB/CREB signaling pathway
Moges et al., 2009 [99]	Neurodegenerative	Amyotrophic lateral sclerosis	G93A SOD1 Trans- genic mice	NM / 51 days	Riboflavin	810 nm, 12 J/cm ²	(3/week)	The lack of significant improvement in sur- vival and motor per- formance indicates interventions were ineffective in altering disease progression

Table 3 (continue	(pa							
Author	Disease category	Disorder	Species	Sex/Age	Combination therapy	Laser	Treatment duration	Key outcomes
[100] [100]	Ischemia	Embolic stroke model	New Zealand white rabbits	WN/W	Tissue plasminogen activator	808 nm, 10 mW/cm ²	ž Z	Near-infrared laser therapy may be administered safely either alone or in combination with tPA because nei- ther trearment affected hemorrhage incidence or volume
Li et al., 2014 [101]	Ischemia	Hypoxic-ischemic brain damage	Sprague–Dawley rats	M, F / 3 months	Mesenchymal stem cell	660 nm, 60 mW/cm ²	7 days	Diode irradiation promotes migration of the transplanted bone marrow mesen- chymal stem cells
Salehpour et al., 2019 [102]	Ischemia	Ischemia	BALB/c mice	M / Adult	CoQ ₁₀	810 nm, 33.3 J/cm ² , 6.66 W/cm ²	14 days	Improved spa- tial and episodic memory; Lowered ROS levels; Increased ATP and general mitochondrial activity as well as biomark- ers of mitochondrial biogenesis includ- ing SIRT1, PGC-1α, NRF1, and TFAM; Decreased inflamma- tory responsiveness, iNOS, TNF-α and IL-1β levels
Menovsky et al., 2003 [103]	Nerve injury	Sciatic nerve crush	Wistar rats	Σ	Solder and suture materials	CO2 laser	MZ	Leads to optimal early histological results and least foreign-body reaction at the repair site
Duke et al, 2012 [104]	Nerve injury	Sciatic nerve crush	Sprague-Dawley rats	Σ	Electrical stimulation	1875 nm	WN	Reduces the laser power requirements and mitigates the risk of thermal damage while maintaining

Table 3 (continue	d)							
Author	Disease category	Disorder	Species	Sex/Age	Combination therapy	Laser	Treatment duration	Key outcomes
Dias et al., 2013 [105]	Nerve injury	Sciatic nerve crush	Wistar rats	Σ	Natural latex protein	780 nm, 15 J/cm ² , 0.75 W/cm ²	6 sessions (Alternate days)	Improved the myelin density and morpho- logical characteristics; The capillary density and ultrastructural characteristics were similar to the control group
Yang et al, 2016 [106]	Nerve injury	Sciatic nerve crush	Sprague-Dawley rats	M / Adult	Mesenchymal stem cells	660 nm, 9 J/cm ²	7 days	Provided greater functional recovery; Potentiated recovery in SFI, VA and AA; Increased electro- physiological function and expression of S100 immuno- reactivity; Reduced the inflammatory cells
Dias et al., 2015 [107]	Nerve injury	Sciatic nerve crush	Wistar rats	Σ	Latex protein	780 nm, 15 J/cm², 0.75 W/cm²	6 sessions (Alternate days)	Improvement of the nerve characteristics including the mor- phometric and ultra- structural characteris- tics of nerve fibers
Muniz et al., 2015 [108]	Nerve injury	Sciatic nerve crush	Wistar rats	Σ	Natural latex protein	780 nm, 15 J/cm², 0.75 W/cm²	12 days (6/48 h)	Improved mus- cle fiber atrophy; Increased light fiber area and reduced dark fiber area
de Souza et al., 2018 [109]	Nerve injury	Sciatic nerve crush	Swiss mice	M / Adult	Dexamethasone	660 nm, 10 J/cm ²	28 days	Improved nerve regeneration through the SSI and SFI assessments
Dias et al., 2019 [1 10]	Nerve injury	Sciatic nerve crush	Wistar rats	M / 2 months	Natural latex protein	780 nm, 15 J/cm², 0.75 W/cm²	6 sessions (Alternate days)	Improved nerve fiber regeneration; Reduced the number, density, diameter and organization of nerve fibers; Increased NGF, VEGF

Author	Disease category	Disorder	Species	Sex/Age	Combination therapy	Laser	Treatment duration	Key outcomes
de Souza et al, 2021 [111]	Nerve injury	Sciatic nerve crush	Swiss mice	M/3 months	Simvastatin	660 nm, 10 J/cm ²	28 days	Sciatic functional index, thermal heat hyperalgesia, mechanical hyper- algesia, and ther- mographic were evaluated; The results showed that PBM alone was more effective compared to Simvastatin alone or combination
Souza et al., 2013 [112]	Nerve injury	Spinal cord injury	Wistar rats	M / 20-21 weeks	Monosialoganglio- side	WN	42 days	Combination therapy shows no superior functional, neuro- logical or histological results
Janzadeh et al., 2017 [113]	Nerve injury	Spinal cord injury	Wistar rats	M / Adult	Chondroitinase ABC	660 nm, 0.5 J/cm², 0.819 W/cm²	14 days	Improved motor func- tion recovery, myeli- nation and number of axons; Decreased GSK3B, CSPG, and AQP4 expression
Pedram et al, 2018 [114]	Nerve injury	Spinal cord injury	Fischer-344, Wistar rats	M / 8 – 12 weeks	Meloxicam	810 nm, 6 J/cm ² , 200 mW/cm ²	2 weeks	Increased BBB test results; Histological findings revealed no sig- nificant difference between all study groups
Sarveazad et al., 2019 [115]	Nerve injury	Spinal cord injury	Wistar rats	M / Adult	Human adipose derived stem cells	660 nm	2 weeks	Improved the motor function, SCI-induced allodynia and hyper- algesia, Increased the GDNF, GABA receptors and Gad65 expression level; Reduced the expres- sion of GSK3B, IL-6, AQP4

Table 3 (continued)

Table 3 (continue	d)							
Author	Disease category	Disorder	Species	Sex/Age	Combination therapy	Laser	Treatment duration	Key outcomes
Janzadeh et al., 2020 [116]	Nerve injury	Spinal cord injury	Wistar rats	M / Adult	Chondroitinase ABC	660 nm, 22.8 J/cm ² , 500 mW/cm ²	2 weeks	Reduced allodynia and thermal hyperal- gesia; Improved func- tional recovery; Did not reduce mechani- cal hyperalgesia; Decreased BDNF and IL-6; Increased Gad65 and GDNF; Reduced neuropathic pain; Improved move- ment
Chen et al., 2021 [117]	Nerve injury	Spinal cord injury	Sprague-Dawley rats	M / 12 weeks	Human umbilical cord mesenchymal stem cells	630 nm, 100 mW/ cm ²	14 days	Improved neuro- filament structure and arrangement; Promoted motor function and neu- ronal recovery; Increased the expres- sion of NF-200, glial fibrillary acidic protein in the damaged area and the BBB scores; Nissl bodies were more numer- ous and the nerve fibers were longer and thicker, Reduced lesions volume and secondary damage; Promoted functional recovery
Dong et al, 2015 [118]	Nerve injury	Traumatic brain injury	C57BL/6 mice	NM/8 weeks	Lactate / Pyruvate	810 nm, 36 J/cm ² , 150 mW/cm ²	∑ Z	Retained memory and learning activi- ties of injured mice to a normal level; Low levels of glyco- lysis; Increased ATP; Reduced formation of ROS and apoptosis in neurons

Table 3 (continue	(þ.							
Author	Disease category	Disorder	Species	Sex/Age	Combination therapy	Laser	Treatment duration	Key outcomes
Buchaim et al, 2016 [119]	Nerve injury	Facial nerve injury	Wistar rats	M / 60 days	Heterologous fibrin sealant	830 nm, 6 J/cm ² , 258.6 mW/cm ²	5 weeks (3/week)	Combination group presented the closest results to the control, in all nerve morpho- metry indexes (regen- eration), except in the axon area
de Oliveira Rosso et al., 2017 [120]	Nerve injury	Facial nerve injury	Wistar rats	M / 80 days	Heterologous fibrin sealant	830 nm, 6.2 J/cm ² , 0.26 W/cm ²	5 weeks (3/week)	A significant differ- ence in the fiber nerve area; The functional recovery of whisker movement; Accelerated morpho- logical and functional nerve repair
Jameie et al, 2014 [121]	Pain	Neuropathic pain (Chronic constric- tion injury model)	Wistar rat	M / Adult	CoQ ₁₀	980 nm,4 J/cm ² , 0.248 W/cm ²	2 weeks	Cellular and molecu- lar synergism on pain relief; Increased thermal and mechanical sense thresholds
Noma et al., 2020 [122]	Pain	Neuropathic pain (Trigeminal nerve injury)	Sprague-Dawley Wistar rat	M / 5–6 weeks	Oxytocin	810 nm, 0.1 W	3 days	The expanded area of cortical excitation caused by model was suppressed by combination therapy but not by each treatment alone; Combined applica- tion is effective in relieving the neuro- pathic pain
Martins et al., 2020 [123]	Pain	Orofacial pain	Wistar rats	M/2 months	Vitamins B complex	904 nm, 6 J/cm ²	10 sessions	Maximal antiallodynic effect; Improved the nociceptive behavior; Down- regulated expres- sion of GFAP, Iba-1, IL-1B, IL-6 and TNF-o; Increased IL-10

Author	Disease category	Disorder	Species	Sex/Age	Combination therapy	Laser	Treatment duration	Key outcomes
de Freitas Dutra Júnior et al., 2022 [124]	Pain	Calcaneus tendon injury	Wistar rats	NM / 60 days	Heterologous fibrin biopolymer	660 nm, 6 J/cm ² , 1 W/cm ²	3 weeks (1/week)	Reduced the vol- ume of the edema; Stimulate the repair process; Tenocyte proliferation, granula- tion tissue and col- lagen formation were observed in the PTCT area
AA ankle angle, AQP4 Q ₁₀ , CREB cAMP respo fibrillary acid protein, <i>IL-6</i> interleukin-6, <i>iN</i> O:	aquaporin 4, <i>ATP</i> adenosi nse element-binding, <i>CSF</i> <i>GP</i> x glutathione peroxida 5 inducible NO synthase, J	ne triphosphate, <i>BAX</i> Bcl- 06 chondroitin sulfate pro ise, <i>G5H</i> glutathione, <i>G5K</i> <i>INK</i> c-Jun aminoterminal	2 associated X proteir oteoglycan, F Female, (3β glycogen synthase kinases, M Male, NF-2	, <i>BBB</i> Basso-Beattie-Bre <i>GABA</i> Gamma-aminobu kinase-3β, <i>HIP</i> hippoca <i>30</i> neurofilament 200, <i>N</i>	snahan test, <i>Bcl-2</i> B-cell lyr tyric acid, <i>Gad65</i> Glutamic mpus, <i>Iba-1</i> ionized calciur <i>F-KB</i> nuclear factor-Kb, <i>NG</i>	nphoma 2, <i>BDNF</i> brain-d acid decarboxylase65, G n binding adaptor molec <i>F</i> nerve growth factor, <i>N</i> /	lerived neurotrophic fact DNF glial-derived neuro cule 1, <i>IL-10</i> Interleukin-1 <i>M</i> not mentioned, <i>NO</i> nit	:or, CoQ ₁₀ Coenzyme trophic factor, GFAP glial 0, IL-1β Interleukin-1β, rric oxide, NRF1 nuclear

Table 3 (continued)

respiratory factor 1, *PFC* prefrontal cortex, *PGC1-a* peroxisome proliferator-activated receptor gamma coactivator-1 alpha, *PTCT* partial transection of the calcaneus tendon, *ROS* reactive oxygen species, *SFI* Sciatic Functional Index, *SRT1* silent mating-type information regulation 2 homolog 1, *SOD* superoxide dismutase, *SSI* Sciatic Static Index, *TAC* total antioxidant capacity, *TFAM* mitochondrial transcription factor A, *TNF-a* tumor necrosis factor-alpha, *tPA* tissue plasminogen activator, *TKB* tyrosine receptor kinase B, *VA* vertical activity of locomotion, *VEGF* vascular endothelium growth factor

Fig. 2 Risk of bias (RoB) assessment using Cochrane RoB tool (included CNS studies). Left panel shows RoB summary showing each RoB item for each included study. Right panel shows RoB graph showing each RoB item presented as percentages across all included studies. In this color-coded ranking, the green color represents a low RoB and red high RoB

the decline associated with AD [34]. Patients with PD have been found to benefit from combined treatments involving infrared laser and vacuum therapy, as well as molecular hydrogen water treatments. These treatments have been shown to effectively accelerate the relief of disease severity [35, 36].

Ischemia

In their study, Lapchak et al. [100] found that the simultaneous use of transcranial near-infrared laser therapy and thrombolytic therapy did not have any impact on the occurrence or size of hemorrhages in a stroke model induced by embolism [100]. Another research conducted demonstrated that the use of red-light emitting diode irradiation in conjunction with

bone marrow mesenchymal stem cell transplantation had a synergistic effect on enhancing the movement of stem cells towards damaged primary neurons. This approach also resulted in improved avoidance memory in a rat model of global cerebral ischemia [101]. Moreover, research has shown that the combined use of PBM and Coenzyme Q10 significantly reduced the negative effects of global cerebral ischemia on spatial and episodic memory, excessive production of reactive oxygen species (ROS), neuroinflammation, and impairments in mitochondrial function and biogenesis in a model of aging induced by d-galactose [102]. A clinical trial study demonstrated that the application of both PBM (comprising laser and LED) and static magnetic field treatment resulted in enhanced functional

	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias				Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Abrisham 2011	?	?	•	•	•	?	•	۲ I	Koldas Dogan	2016	•	•	•	•	•	?	•
Aghamohammadi 2012	•	?	•	•	٠	?	•		Koldaş Doğar	2017	•	•	٠	٠	٠	?	•
Ahmad 2018	•	?	•	•	•	?	•		Kolu	2018	?	?	•	۲	•	?	•
Alfredo 2021	•	•	•	•	•	?	•		Liu	2014	?	?	•		٠	?	?
Ali 2021	?	?	•	•	•	?	•		Mansourian	2019	•	?	•	•	•	?	•
Amanat 2013	•	?	٠	?	•	?	•		Matsutani	2007	?	•	•	•	٠	?	•
Ammar 2015	٠	?	•	•	٠	?	•	Mohammac	Ezz El Dien	2007	0	?	•	٠	٠	?	•
Aquino Junior2021	•	•	•	•	•	?	?		Murakami	1993	•	•	۲	٠	•	?	?
Bartkowiak 2021	•	•	•	•	?	?	?		Naeser	2002	?	?	٠	•	٠	?	•
Brochado2018	•	?	•	•	•	?	•		Ökmen	2017	?	?	٠	•	•	?	•
Celik 2019	•	•	?	•	?	?	•		Ordahan	2017	•	•	•	?	٠	?	•
Ceylan 2004	•	•	•	•	•	?	•		Otadi	2012	•	۲	۲	•	٠	?	•
Da silva 2018	?	?	•	•	•	?	•		Panhóca	2019	•	•	•	•	٠	?	?
De Carli 2013	•	?	•	•	•	?	•		Panhóca	2021	?	?	•	•	٠	?	?
Dias 2022	?	2	2	2	2	2	?		Paolillo	2015	?	?	?	?	•	?	?
Dincer 2009	2	?	•	2	?	2	?		Pekyavas	2016	•	?	?	?	•	?	•
Diavid 2007		2	2			2			Saayman	2011	?	?	•	•	•	?	•
Ebrahimi 2018		2	2	-		2			Stasinopoulos	2009	?	?	•	•	•	?	•
Elizabani 2018				-		2			Stergioulas	2007	?	•		•	•	?	
Elgonary 2018		-		-		•			Stergioulas	2008	2	2		•	•	2	
El-sharkawy 2018	•	-	-	-		· ·			Sumen	2015	•	2		•	•	2	
Eslamian 2012	0	0	0			7	•		Tabatabai	2016	•	•	-			· 2	
Fusakul 2014	<u> </u>			-		7	•		Toixoira	2022	-		-				
Gavish 2021				•	•	0	•		Vanosa	2010		2		-		2	
Germano Maciel 2018	•	•		•	-	•	•		Venosa	2013	-					-	
Gu 2017	-	-	-	-		?	<u> </u>		Vamada	1005	2	2	2	2	2	2	2
Guner 2018	?	•	•	•	•	?	•		Vilmor	2020	•	•				-	
Gur 2003	?	?	•	?	?	?	•		Tiillidz	2020	•	•	•	•	•	•	•
Ran	dom A	sequ	uence	e ger conc	ierati ealm	on (s ent (select	tion bias)									
Blinding of parti	cipar	nts a	nd pr	ersor	nel (perfo	orma	nce bias)									
Blindin	g of	outco	ome	asse	ssme	ent (d	etect	tion bias)									
2.1110	In	com	plete	outo	ome	data	(attr	ition bias)									
		ç	Selec	tive	repor	tina	reno	rting bias)									
					-001		00	Other hise									
								2 4.0. 0100		1		1			+		
					_	_		Server, Marca	0% 2	5%		50%	6	7	5%	10	00%
Low risk o	of bia	S				Un	clear	risk of bias		H	ligh r	isk o	f bia	s			

Table 4 The methodological quality of individual animal studies using the CAMARADES checklist

Authors	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
		20	18	9	10			1		
de Oliveira Rosso, 2017 [120]	Yes	No	Yes	Yes						
Menovsky, 2003 [103]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Buchaim, 2016 [119]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Chen, 2021 [117]	Yes	No	Yes	Yes						
de Freitas Dutra Júnior, 2022 [124]	Yes									
de Souza, 2021 [111]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
de Souza, 2018 [109]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes
Dias, 2013 [105]	Yes	Yes	No	No	No	Yes	Yes	No	Yes	Yes
Dias, 2015 [107]	Yes	Yes	No	No	No	Yes	Yes	No	Yes	Yes
Dias, 2019 [110]	Yes	Yes	No	No	No	Yes	Yes	No	Yes	Yes
Dong, 2015 [118]	Yes	Yes	No	No	No	Yes	Yes	No	Yes	Yes
Duke, 2012 [104]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes
Farazi, 2022 [98]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Jameie, 2014 [121]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes
Janzadeh, 2020 [116]	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Janzadeh, 2017 [113]	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Lapchak, 2008 [100]	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes
Martins, 2020 [123]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes
Meynaghizadeh-Zargar, 2020 [97]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Moges, 2009 [99]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes
Muniz, 2015 [108]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Noma, 2020 [122]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Pedram, 2018 [114]	Yes	No	Yes	Yes						
Salehpour, 2019 [96]	Yes	No	Yes	Yes						
Salehpour, 2019 [102]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Sarveazad, 2019 [115]	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Souza, 2013 [112]	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes
Li, 2014 [101]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes
Yang, 2016 [106]	Yes	No	Yes	Yes						

Studies fulfilling the criteria of (Q1) peer-reviewed publication; (Q2) control of temperature; (Q3) random allocation; (Q4) blinded induction; (Q5) blinded assessment of outcome; (Q6) use of anesthetic; (Q7) animal model; (Q8) sample size calculation; (Q9) compliance with animal welfare regulations; and (Q10) statement of potential conflict of interests

mobility outcomes in individuals who had experienced a stroke [37]. In a similar vein, Ashrafi et al. found that the concurrent use of pulsed LLLT and an extremely low-frequency electromagnetic field reduced the severity of stroke, enhanced cognitive function, alleviated depression, and mitigated the extent of disability in performing daily tasks among individuals who had suffered a stroke [38]. Other studies have shown that the co-administration of PBM with neuromuscular electrical stimulation or a static magnetic field to patients diagnosed with a stroke resulted in optimal improvements in cognitive function, pain relief, and kinematic variables of the hip in both paretic and nonparetic limbs [39, 40].

Nerve injury

Studies have shown that using a CO2 laser, along with three distinct suture materials and a bovine albumin protein solder, produces favorable initial histological outcomes and aids in the recovery process at the site of nerve repair [103].

Muniz et al. discovered that the combination of LLLT with natural latex protein reduces the severity of muscle wasting after a sciatic nerve injury (SCI) [108]. In addition, Yang et al. found that the combination of LLLT with mesenchymal stem cells had a more significant impact on the functional recovery of a crushed sciatic nerve compared to using either therapy alone [106]. In addition, the combination of PBM with dexamethasone and

simvastatin demonstrated superior efficacy compared to individual therapies in enhancing SCI outcomes [109, 111]. In contrast, certain studies have suggested that the use of combination therapy does not result in a synergistic impact on the recovery from SCI [107, 125].

In their study, Souza et al. found that the concurrent application of transdermal monosialoganglioside (GM1) and laser did not result in any notable impact on the functional and neurological outcomes after SCI in rats [112]. Furthermore, the co-administration of PBM along with chondroitinase ABC or meloxicam has demonstrated enhanced functionality in the identical model [113, 114, 116]. Moreover, there have been reports indicating that the combination of LLLT with either human adipose-derived stem cells or human umbilical cord mesenchymal stem cells has proven to be successful in restoring motor function and promoting the regeneration of nerve fibers in rat models of SCI [115, 117]. A recent randomized clinical trial demonstrated that patients with incomplete spinal cord injury experienced improvements in sensory responses, muscle strength, and muscle contraction one month after receiving a combination of PBM and physiotherapy [41].

Peripheral Nervous System (PNS) Pain

Prior research has shown that the amalgamation of LLLT with Q10 or oxytocin can elevate thresholds in models of neuropathic pain [121, 122]. Moreover, a randomized controlled clinical trial demonstrated that the combination of LLLT and carbamazepine reduced the intensity of pain in individuals suffering from trigeminal neuralgia [43]. Additionally, a separate study found that the combination of LLLT and Gasserian ganglion block can extend the duration of pain relief and decrease the amount of carbamazepine taken by patients with trigeminal neuralgia after treatment [42].

Studies have shown that the use of PBM in conjunction with exercise or ultrasound therapy can alleviate pain, improve shoulder flexion, elbow extension, and handgrip strength in individuals suffering from lateral epicondylitis [44–46]. Amanat et al. demonstrated the effectiveness of combining laser therapy with pharmaceutical therapy, including tricyclic antidepressants, anxiolytics, muscle relaxants, and carbamazepine, for treating orofacial pain [47]. In addition, Martins et al. demonstrated that longterm combined therapy with PBM and B complex vitamins effectively reduced pain responses [126].

Administering infrared laser therapy in conjunction with exercise or conventional medical interventions (such as naproxen sodium, fluoxetine, and clonazepam) to individuals suffering from myofascial pain syndrome resulted in decreased pain levels and elevated excretion of serotonin metabolites [48, 49, 51]. Furthermore, the simultaneous application of LLLT and physiotherapy resulted in the alleviation of pain and enhancement of the quality of life in individuals suffering from myofascial pain syndrome [50].

Research has shown that the utilization of both infrared laser treatment and physical exercise can effectively alleviate pain in individuals suffering from chronic low back pain [52–54]. Moreover, a clinical trial demonstrated that the use of both hot-pack therapy and two specific wavelengths of low-level laser therapy (850 nm and 650 nm) effectively reduced pain severity and enhanced functionality and range of motion in this particular group [55]. Furthermore, a combined effect on the intensity of pain and the function of the shoulder has been observed when laser therapy is used in conjunction with exercise in individuals diagnosed with subacromial impingement syndrome [60–62].

Kolu et al. discovered that a combination of transcutaneous nerve stimulation (TENS), ultrasound, and exercise yielded superior results compared to high-intensity laser therapy combined with a hot pack and exercise. This combination was found to be more effective in reducing pain and improving functionality in patients with chronic lumbar radiculopathy [65]. Moreover, the concurrent use of PBM with a static magnetic field or active electrical stimulation has demonstrated synergistic effects in alleviating pain intensity in individuals suffering from chronic neck pain [127]. Similarly, the effectiveness of LLLT in combination with ultrasound, exercise, or physiotherapy has been reported to exhibit robust synergistic therapeutic effects in treating shoulder tendonitis [57, 58] and tendinopathy [66, 68, 128].

A combination of laser therapy, chiropractic joint manipulation, ozone therapy, or exercise has been shown to effectively improve cervical flexion, lateral flexion, rotation, and pain disability in patients with cervical facet dysfunction, cervical disc herniation, or spondylosis, when compared to using only one of these treatments [69–72]. Moreover, the application of LLLT and piroxicam has demonstrated favorable outcomes in reducing the intensity of pain in individuals afflicted with temporomandibular joint arthralgia [73].

The utilization of both PBM and manual therapy has been discovered to effectively alleviate pain and jaw impairments, while also enhancing mandibular function in individuals diagnosed with temporomandibular disorders (TMD) [75]. Moreover, multiple studies have utilized a fusion of PBM and ultrasound therapy for TMD treatment. These studies have documented decreases in physical pain and psychological constraints, along with enhancements in quality of life [76–78]. Furthermore, a combination therapy of laser therapy and vacuum therapy has been found to result in pain relief and improvement of TMD joint motion [78]. Combining orofacial myofunctional therapy with PBM has demonstrated favorable results, including decreased pain in patients with TMD [129].

Furthermore, recent findings indicate that individuals suffering from fibromyalgia can experience positive outcomes in terms of decreased pain and enhanced psychological well-being, functional ability, and overall quality of life through the use of adjunct PBM therapy and exercise, or a combination of PBM and ultrasound [80–83]. Furthermore, the combination of laser therapy and ultrasound has been proven to effectively alleviate pain and decrease disability in individuals suffering from osteoarthritis [84].

Gavish et al. found that the efficacy of a combined treatment of LLLT and physiotherapy was superior to physiotherapy alone in managing anterior knee pain in patients. Furthermore, this beneficial effect persisted for a duration of 3 months post-treatment [85].

Paresis

The utilization of both LLLT and stellate ganglion block has demonstrated the ability to expedite the process of recuperation from facial paralysis[86]. Yamada et al. found that the use of both LLLT and corticosteroid therapy had a more significant impact on patients with facial palsy in the early stages of recovery compared to using either therapy alone [87]. The combined use of LLLT and facial exercise treatment has shown synergistic effects in patients with facial paralysis. This therapy has been found to enhance functional facial movements and reduce the time required for recovery [88].

Neuropathy

Combining LLLT with TENS has been shown to reduce pain scores and median nerve sensory latency, alleviate Phalen and Tinel signs, and enhance functionality in individuals with CTS [89]. Furthermore, a clinical trial validated that the utilization of a combination of a highpower laser (808 nm, 6.5 J/cm2) and TENS alleviated the intensity of pain and enhanced hand functionality in patients with CTS [93]. Dincer et al. found that the concurrent use of LLLT and splinting yielded superior results compared to individual therapies in terms of reducing pain scores and enhancing patient satisfaction [90]. Similarly, Fusakul et al. showed that the utilization of LLLT in conjunction with wrist splinting resulted in reduced pain scores, enhanced hand grip strength and pinch strength, and improved the functional status of individuals with CTS [92].

Nevertheless, a study indicated that the utilization of both kinesiotaping and LLLT in CTS did not exhibit superiority

over LLLT alone in the immediate term (3 weeks). Over a period of 12 weeks, the combination of therapies yielded greater improvements in hand grip strength and finger pinch strength outcomes compared to individual therapy [94]. Bartkowiak et al. discovered that the use of LLLT at a wavelength of 830 nm and energy density of 9 J/cm2, along with nerve and tendon gliding exercises, significantly reduced sensory disturbances and pain scores in patients with CTS. Additionally, it improved hand grip strength and functionality. However, they found no additional advantage when comparing it to the combination of ultrasound with nerve and tendon gliding exercises [95].

Limitation

For this systematic review, some limitations should be highlighted. The lack of details about the parameters in some studies, hindered the possibility of meticulous evaluations. The heterogeneity in included disorders (CNS and PNS) exacerbated the exact focusing on each (made it difficult to focus on each specific disorder). Moreover, there was a limited number of CNS-related interventions in clinical studies. Also, the variation in combined treatment approaches resulted in a lack of uniformity in the data. The stimulation parameters used for performing PBM in the included disorders were not unified. Parameters such as wavelengths, frequency, pulse width, stimulation target, intensity, duration, and unilateral/bilateral treatment differed between the included studies. Due to these limitations, we could only assess the variety of combinations and the effect of key parameters on reported outcomes in the included studies. Another limitation was the moderate quality of the included studies, as assessed using a risk of bias assessment tool. The majority of studies had a pre-post design, were not randomized and blinded.

Despite the limitations of this systematic review, there were also several strengths that are important to mention. We conducted comprehensive research by including both animal and human studies that focused on PBM-combined methodologies which had not been previously mentioned.

Furthermore, we documented all potential combinations that were examined in prior investigations. Moreover, this systematic review covered a wide range of psychological and neurological disorders which is unique. Additionally, we considered multiple scientific databases, providing an overview that is as complete as possible.

Conclusion

This systematic review clearly demonstrates the therapeutic role of PBM combined therapies, as well as their potential to improve treatment efficacy and reduce side effects across a wide range of central and peripheral neurological disorders. This approach provides numerous research opportunities for studying the synergistic effects of combining PBM with other treatment modalities to optimize neural tissue stimulation by this technique. Also, this review listed the all-possible combinations that studied in previous preclinical and clinical researches. Given the significant heterogeneity in the combined treatment approaches and included disorders, additional studies are required to establish more consistent evidence of efficacy. These studies will provide guidance for the development of well-designed and successful clinical trials.

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12883-024-03593-4.

Supplementary Material 1.

Acknowledgements

The present study was supported by The Tabriz University of Medical Sciences.

Authors' contributions

NF and SSE designed the study. HSP, FF, and JM did the literature search, study quality assessment, and data extraction. NF and SSE drafted the tables and Figs. NF wrote the first draft of this review, and SSE helped to finish the final version. HSP, FF and JM helped with the revision of the manuscript. All authors approved the conclusions of our study.

Funding

The study supported by "Tabriz University of Medical Sciences" (NO: 72471). The funding body played no role in the design of the study and collection, analysis, and interpretation of data.

Availability of data and materials

All data generated or analyzed in this work are included in the published version.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 28 October 2023 Accepted: 4 March 2024 Published: 19 March 2024

References

- Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255–65.
- Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14(3):285–93.
- Sanberg PR, Eve DJ, Cruz LE, Borlongan CV. Neurological disorders and the potential role for stem cells as a therapy. Br Med Bull. 2012;101(1):163–81.

- Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol. 2012;124(2):153–72.
- 5. Hamblin MR. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016;6:113–24.
- Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol, B. 2014;140:344–58.
- 7. Thunshelle C, Hamblin MR. Transcranial low-level laser (light) therapy for brain injury. Photomed Laser Surg. 2016;34(12):587–98.
- 8. Hamblin MR. Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res. 2018;96(4):731–43.
- Hamilton CL, El Khoury H, Hamilton D, Nicklason F, Mitrofanis J. "Buckets": early observations on the use of red and infrared light helmets in parkinson's disease patients. Photobiomodul Photomed Laser Surg. 2019;37(10):615–22.
- 10. Hamblin MR, editor Photobiomodulation for Alzheimer's Disease: Has the Light Dawned? Photonics. 2019;6:77.
- Mohammed HS. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci. 2016;31:1651–6.
- Meng C, He Z, Xing D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer's disease. J Neurosci. 2013;33(33):13505–17.
- 13. Ramezani F, Razmgir M, Tanha K, Nasirinezhad F, Neshastehriz A, Bahrami-Ahmadi A, et al. Photobiomodulation for spinal cord injury: a systematic review and meta-analysis. Physiol Behav. 2020;224:112977.
- 14. Bekhet AH, Ragab B, Abushouk AI, Elgebaly A, Ali OI. Efficacy of lowlevel laser therapy in carpal tunnel syndrome management: a systematic review and meta-analysis. Lasers Med Sci. 2017;32(6):1439–48.
- Medalha CC, Di Gangi GC, Barbosa CB, Fernandes M, Aguiar O, Faloppa F, et al. Low-level laser therapy improves repair following complete resection of the sciatic nerve in rats. Lasers Med Sci. 2012;27(3):629–35.
- Cotler HB, Chow RT, Hamblin MR, Carroll J. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthoped Rheumatol. 2015;2(5):00068.
- Chow R, Armati P, Laakso E-L, Bjordal JM, Baxter GD. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg. 2011;29(6):365–81.
- 18. Shapero BG, Mischoulon D, Cusin C. The massachusetts general hospital guide to depression. Cham: Springer Nature Switzerland AG; 2019.
- Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness And Safety Trial-1 (NEST-1). Stroke. 2007;38(6):1843–9.
- Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40(4):1359–64.
- 21. Hacke W. Transcranial laser therapy in acute stroke treatment: results of Neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. 2014;45(12):E309-E.
- 22. Salehpour F, Sadigh-Eteghad S, Mahmoudi J, Kamari F, Cassano P, Hamblin MR. Photobiomodulation for the Brain: Photobiomodulation Therapy in Neurology and Neuropsychiatry. Switzerland: Springer; 2023.
- 23. Chamkouri H, Liu Q, Zhang Y, Chen C. Chen LA-O Brain photobiomodulation therapy on neurological and psychological diseases. J Biophotonics. 2024;17:e202300145 (1864-0648 (Electronic)).
- Gutiérrez-Menéndez A, Marcos-Nistal M, Méndez M, Arias JL. Photobiomodulation as a promising new tool in the management of psychological disorders: A systematic review. Neurosci Biobehav Rev. 2020;119:242–54 (1873-7528 (Electronic)).
- Lee T-I, Ding Z, Chan AS. Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies. Ageing Res Rev. 2023;83:101786.
- Krauth D, Woodruff TJ, Bero L. Instruments for assessing risk of bias and other methodological criteria of published animal studies: a systematic review. Environ Health Perspect. 2013;121(9):985–92.
- 27. Ma L-L, Wang Y-Y, Yang Z-H, Huang D, Weng H, Zeng X-T. Methodological quality (risk of bias) assessment tools for primary and secondary

medical studies: what are they and which is better? Mil Med Res. 2020;7:1–11.

- Bertizzolo L, Bossuyt P, Atal I, Ravaud P, Dechartres A. Disagreements in risk of bias assessment for randomised controlled trials included in more than one Cochrane systematic reviews: a research on research study using cross-sectional design. BMJ Open. 2019;9(4):e028382.
- Seo H-J, Kim KU. Quality assessment of systematic reviews or metaanalyses of nursing interventions conducted by Korean reviewers. BMC Med Res Methodol. 2012;12:1–6.
- Zaizar ED, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy: a randomized clinical trial. Contemp Clin Trials. 2018;72:95–102.
- Zaizar ED, Papini S, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy on pathological fear: a randomized clinical trial. Psychol Med. 2023;53(3):908–17.
- De Marchi T, Ferlito JV, Turra AC, Flamia S, de Bispo MF, Pavelecini Donida ML, et al. Pilates method and/or Photobiomodulation therapy combined to static magnetic field in women with stress urinary incontinence: a randomized, double-blind, placebo-controlled clinical trial. J Clin Med. 2023;12(3):1104.
- 33. Arakelyan HS. Treatment of Alzheimer's disease with a combination of laser, magnetic field and chromo light (colour) therapies: a doubleblind controlled trial based on a review and overview of the etiological pathophysiology of Alzheimer's disease. Laser Ther. 2005;14(1):19–28.
- Nagy EN, Ali AY, Behiry ME, Naguib MM, Elsayed MM. Impact of combined photo-biomodulation and aerobic exercise on cognitive function and quality-of-life in elderly Alzheimer patients with anemia: A randomized clinical trial. Int J Gen Med. 2021;14:141–52.
- 35. Tamae PE, Santos AVd, Simão MLdS, Canelada ACN, Zampieri KR, Santos TVd, et al. Can the associated use of negative pressure and laser therapy be a new and efficient treatment for Parkinson's pain?: a comparative study. J Alzheimer's Dis Parkinsonism. 2020;10(3):1000488–91.
- Hong C-T, Hu C-J, Lin H-Y, Wu D. Effects of concomitant use of hydrogen water and photobiomodulation on Parkinson disease: a pilot study. Medicine. 2021;100(4):e24191.
- 37. Casalechi HL, Dumont AJL, Ferreira LAB, de Paiva PRV, Machado CdSM, de Carvalho PdTC, et al. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial. Lasers Med Sci. 2020;35(6):1253–62.
- Ashrafi F, Rezaei A, Azhideh A, Tabeie F, Gachkar L, Ahmadi MA, et al. Effectiveness of extremely low frequency electromagnetic field and pulsed low level laser therapy in acute stroke treatment. Int Clin Neurosci J. 2020;7(3):127.
- Paolillo FR, Luccas GAA, Parizotto NA, Paolillo AR, Castro Neto JCd, Bagnato VS. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. J Biophotonics. 2022;16:e202200260.
- Dumont AJL, Casalechi HL, Tomazoni SS, Grecco LC, Galli M, Oliveira CS, et al. Photobiomodulation Therapy Combined with Static Magnetic Field (PBMT–SMF) on Spatiotemporal and kinematics gait parameters in post-stroke: a pilot study. Life. 2022;12(2):186.
- da Silva FC, Silva T, Gomes AO, da Costa Palácio PR, Andreo L, Gonçalves MLL, et al. Sensory and motor responses after photobiomodulation associated with physiotherapy in patients with incomplete spinal cord injury: clinical, randomized trial. Lasers Med Sci. 2020;35(8):1751–8.
- 42. Aghamohammadi D, Amirnaseri R, Peirovifar A, Hossainzadeh H, Eidi M, Ehsaei M, et al. Gasserian ganglion block with or without low-intensity laser therapy in trigeminal neuralgia: a comparative study. Neurosurg Q. 2012;22(4):228–32.
- 43. Ebrahimi H, Najafi S, Khayamzadeh M, Zahedi A, Mahdavi A. Therapeutic and analgesic efficacy of laser in conjunction with pharmaceutical therapy for trigeminal neuralgia. J Lasers Med Sci. 2018;9(1):63–8.
- Stergioulas A. Effects of low-level laser and plyometric exercises in the treatment of lateral epicondylitis. Photomed Laser Surg. 2007;25(3):205–13.
- 45. Celik D, Anaforoglu Kulunkoglu B. Photobiomodulation therapy versus extracorporeal shock wave therapy in the treatment of lateral epicondylitis. Photobiomodul Photomed Laser Surg. 2019;37(5):269–75.

- Ali EM, Fekry O, Obeya HE, Darweesh H, Moharram A. Efficacy of high intensity laser versus ultrasound therapy in the management of patients with lateral epicondylitis. Egyptian Rheumatol. 2021;43(2):119–23.
- Amanat D, Ebrahimi H, Lavaee F, Alipour A. The adjunct therapeutic effect of lasers with medication in the management of orofacial pain: double blind randomized controlled trial. Photomed Laser Surg. 2013;31(10):474–9.
- Ceylan Y, Hizmetli S, Siliğ Y. The effects of infrared laser and medical treatments on pain and serotonin degradation products in patients with myofascial pain syndrome. A controlled trial. Rheumatol Int. 2004;24(5):260–3.
- Sumen A, Sarsan A, Alkan H, Yildiz N, Ardic F. Efficacy of low level laser therapy and intramuscular electrical stimulation on myofascial pain syndrome. J Back Musculoskelet Rehabil. 2015;28(1):153–8.
- El-sharkawy ATM, Ahmad RE-SE-S. Effect of low-level LASER therapy combined with conventional physiotherapy on pain and quality of life in patients with Myofascial pain dysfunction syndrome. Egypt Dental J. 2018;64:3111–23 (4-October (Oral Surgery)).
- Mansourian A, Pourshahidi S, Sadrzadeh-Afshar M-S, Ebrahimi H. A comparative study of low-level laser therapy and transcutaneous electrical nerve stimulation as an adjunct to pharmaceutical therapy for myofascial pain dysfunction syndrome: a randomized clinical trial. Front Dentistry. 2019;16(4):256.
- 52. Gur A, Karakoc M, Cevik R, Nas K, Sarac AJ, Karakoc M. Efficacy of low power laser therapy and exercise on pain and functions in chronic low back pain. Lasers Surg Med. 2003;32(3):233–8.
- Djavid GE, Mehrdad R, Ghasemi M, Hasan-Zadeh H, Sotoodeh-Manesh A, Pouryaghoub G. In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: a randomised trial. Austr J Physiother. 2007;53(3):155–60.
- 54. Ammar TARA. Monochromatic infrared photo energy versus low level laser therapy in chronic low back pain. J Lasers Med Sci. 2015;6(4):157.
- Koldaş Doğan Ş, Ay S, Evcik D. The effects of two different low level laser therapies in the treatment of patients with chronic low back pain: a double-blinded randomized clinical trial. J Back Musculoskelet Rehabil. 2017;30(2):235–40.
- Mohammad EzzElDien M, et al. Comparative study of therapeutic effect of pulsed electromagnetic field and laser therapy in treatment of primary periarthritis shoulder. Egypt Rheumatol Rehabil. 2007;34:251.
- Otadi K, Hadian M-R, Olyaei G, Jalaie S. The beneficial effects of adding low level laser to ultrasound and exercise in Iranian women with shoulder tendonitis: a randomized clinical trial. J Back Musculoskelet Rehabil. 2012;25(1):13–9.
- Eslamian F, Shakouri SK, Ghojazadeh M, Nobari OE, Eftekharsadat B. Effects of low-level laser therapy in combination with physiotherapy in the management of rotator cuff tendinitis. Lasers Med Sci. 2012;27(5):951–8.
- Dogan SK, Saime A, Evcik D. The effectiveness of low laser therapy in subacromial impingement syndrome: a randomized placebo controlled double-blind prospective study. Clinics. 2010;65(10):1019–22.
- Abrisham SMJ, Kermani-Alghoraishi M, Ghahramani R, Jabbari L, Jomeh H, Zare M. Additive effects of low-level laser therapy with exercise on subacromial syndrome: a randomised, double-blind, controlled trial. Clin Rheumatol. 2011;30(10):1341–6.
- Pekyavas NO, Baltaci G. Short-term effects of high-intensity laser therapy, manual therapy, and Kinesio taping in patients with subacromial impingement syndrome. Lasers Med Sci. 2016;31(6):1133–41.
- Alfredo PP, Bjordal JM, Junior WS, Marques AP, Casarotto RA. Efficacy of low-level laser therapy combined with exercise for subacromial impingement syndrome: a randomised controlled trial. Clin Rehabil. 2021;35(6):851–60.
- 63. Ökmen BM, Ökmen K. Comparison of photobiomodulation therapy and suprascapular nerve-pulsed radiofrequency in chronic shoulder pain: a randomized controlled, single-blind, clinical trial. Lasers Med Sci. 2017;32(8):1719–26.
- 64. Teixeira AM, et al. Photobiomodulation therapy combined with static magnetic field reduces pain in patients with chronic nonspecific neck and/or shoulder pain: a randomized, triple-blinded, placebo-controlled trial. Life. 2022;12(5):656.

- 65. Kolu E, Buyukavci R, Akturk S, Eren F, Ersoy Y. Comparison of high-intensity laser therapy and combination of transcutaneous nerve stimulation and ultrasound treatment in patients with chronic lumbar radiculopathy: a randomized single-blind study. Pakistan J Med Sci. 2018;34(3):530.
- 66. Stasinopoulos D, Stasinopoulos I, Pantelis M, Stasinopoulou K. Comparing the effects of exercise program and low-level laser therapy with exercise program and polarized polychromatic non-coherent light (bioptron light) on the treatment of lateral elbow tendinopathy. Photomed Laser Surg. 2009;27(3):513–20.
- 67. Liu, X.-G., L. Cheng, and J.-M. Song, Effects of low-level laser therapy and eccentric exercises in the treatment of patellar tendinopathy. International Journal of Photoenergy 2014;2014.
- Stergioulas A, Stergioula M, Aarskog R, Lopes-Martins RA, Bjordal JM. Effects of low-level laser therapy and eccentric exercises in the treatment of recreational athletes with chronic achilles tendinopathy. Am J Sports Med. 2008;36(5):881–7.
- Saayman L, Hay C, Abrahamse H. Chiropractic manipulative therapy and low-level laser therapy in the management of cervical facet dysfunction: a randomized controlled study. J Manipul Physiol Ther. 2011;34(3):153–63.
- Gu K, Yan Y, Wei W, Li Y, Liu W, Guo Y, et al. Safety and efficacy study of an ozone laser combined therapy using puncture needle in the treatment of patients with cervical spondylosis. Clin Spine Surg. 2017;30(5):E505–9.
- Venosa M, Romanini E, Padua R, Cerciello S. Comparison of highintensity laser therapy and combination of ultrasound treatment and transcutaneous nerve stimulation in patients with cervical spondylosis: a randomized controlled trial. Lasers Med Sci. 2019;34(5):947–53.
- 72. Yilmaz M, Tarakci D, Tarakci E. Comparison of high-intensity laser therapy and combination of ultrasound treatment and transcutaneous nerve stimulation on cervical pain associated with cervical disc herniation: a randomized trial. Complement Ther Med. 2020;49:102295.
- De Carli M, Guerra M, Nunes T, Di Matteo R, De Luca C, Aranha A, et al. Piroxicam and laser phototherapy in the treatment of TMJ arthralgia: A double-blind randomised controlled trial. J Oral Rehabil. 2013;40(3):171–8.
- Elgohary HM, et al. Effects of ultrasound, laser and exercises on temporomandibular joint pain and trismus following head and neck cancer. Ann Rehabil Med. 2018;42(6):846–53.
- Brochado FT, Jesus LHd, Carrard VC, Freddo AL, Chaves KD, Martins MD. Comparative effectiveness of photobiomodulation and manual therapy alone or combined in TMD patients: a randomized clinical trial. Braz Oral Res. 2018;32:e50.
- Ahmad R, Elatief E, El Sayed W, Ali RR, Ashour EM, Abdelsamee M. Effect of conventional therapy and low level laser therapy on pain and limitation of daily functions in patients with temporomandibular joint dysfunction. Int J Physiother Res. 2018;6(2):2797–805.
- Panhoca VH, Bagnato VS, Alves N, Paolillo FR, Deana NF. Increased oral health-related quality of life postsynergistic treatment with ultrasound and photobiomodulation therapy in patients with temporomandibular disorders. Photobiomodul Photomed Laser Surg. 2019;37(11):694–9.
- Panhóca VH, Tamae PE Jr, AEA, Bagnato VS, Comparison of the synergistic effect of vacuum therapy or ultrasound associated with low power laser applied in temporomandibular disorders. Oral Health Dental Manage. 2021;20(9):1–6.
- 79. Dias, W.C.F.G.d.S., et al. Effects of photobiomodulation combined with orofacial myofunctional therapy on the quality of life of individuals with temporomandibular disorder. in CoDAS. 2022. SciELO Brasil.
- Matsutani LA, Marques A, Ferreira E, Assumpção A, Lage L, Casarotto R, et al. Effectiveness of muscle stretching exercises with and without laser therapy at tender points for patients with fibromyalgia. Clin Exp Rheumatol. 2007;25(3):410–5.
- 81. da Silva MM, Albertini R, de Tarso Camillo Carvalho P, Leal-Junior ECP, Bussadori SK, Vieira SS, et al. Randomized, blinded, controlled trial on effectiveness of photobiomodulation therapy and exercise training in the fibromyalgia treatment. Lasers Med Sci. 2018;33(2):343–51.
- Germano Maciel D, Trajano da Silva M, Rodrigues JA, Viana Neto JB, de França IM, Melo ABM, et al. Low-level laser therapy combined to functional exercise on treatment of fibromyalgia: a double-blind randomized clinical trial. Lasers Med Sci. 2018;33(9):1949–59.

- Aquino Junior AEd, Carbinatto FM, Franco DM, Bruno JdSA, Simão MLdS, Fernandes AC, et al. The laser and ultrasound: the ultra laser like efficient treatment to fibromyalgia by palms of hands-comparative study. J Novel Physiother. 2021;11(1):1000447–51.
- Paolillo AR, Paolillo FR, João JP, João HA, Bagnato VS. Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis. Lasers Med Sci. 2015;30(1):279–86.
- Gavish L, Spitzer E, Friedman I, Lowe J, Folk N, Zarbiv Y, et al. Photobiomodulation as an adjunctive treatment to physiotherapy for reduction of anterior knee pain in combat soldiers: a prospective, double-blind, randomized, pragmatic, sham-controlled trial. Lasers Surg Med. 2021;53(10):1376–85.
- Murakami F, Kemmotsu O, Kawano Y, Matsumura C, Kaseno S, Imai M. Diode low reactive level laser therapy and stellate ganglion block compared in the treatment of facial palsy. Laser Ther. 1993;5(3):131–5.
- Yamada H, Yamanaka Y, Orihara H, Ogawa H. A preliminary clinical study comparing the effect of low level laser therapy (LLLT) and corticosteroid therapy in the treatment of facial palsy. Laser Ther. 1995;7(4):157–62.
- Ordahan B. Role of low-level laser therapy added to facial expression exercises in patients with idiopathic facial (Bell's) palsy. Lasers Med Sci. 2017;32(4):931–6.
- 89. Naeser MA, Hahn K-AK, Lieberman BE, Branco KF. Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous electric nerve stimulation: a controlled study. Arch Phys Med Rehabil. 2002;83(7):978–88.
- Dincer U, Cakar E, Kiralp MZ, Kilac H, Dursun H. The effectiveness of conservative treatments of carpal tunnel syndrome: splinting, ultrasound, and low-level laser therapies. Photomed Laser Surg. 2009;27(1):119–25.
- 91. Yagci I, et al. Comparison of splinting and splinting plus low-level laser therapy in idiopathic carpal tunnel syndrome. Clin Rheumatol. 2009;28(9):1059–65.
- 92. Fusakul Y, Aranyavalai T, Saensri P, Thiengwittayaporn S. Low-level laser therapy with a wrist splint to treat carpal tunnel syndrome: a double-blinded randomized controlled trial. Lasers Med Sci. 2014;29(3):1279–87.
- Tabatabai SMR, Bashardoust Tajali S, Attarbashi Moghadam B, Mir SM. Effects of high-Power diode laser irradiation combined with electrical stimulation on wrist pain and function following carpal tunnel syndrome. J Clin Physiother Res. 2016;1(2):61–7.
- 94. Güner A, Altan L, Kasapoğlu Aksoy M. The effectiveness of the lowpower laser and kinesiotaping in the treatment of carpal tunnel syndrome, a pilot study. Rheumatol Int. 2018;38(5):895–904.
- Bartkowiak Z, Eliks M, Zgorzalewicz-Stachowiak M, Romanowski L. The effects of nerve and tendon gliding exercises combined with low-level laser or ultrasound therapy in carpal tunnel syndrome. Ind J Orthop. 2019;53(2):347–52.
- 96. Salehpour F, Farajdokht F, Cassano P, Sadigh-Eteghad S, Erfani M, Hamblin MR, et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull. 2019;144:213–22.
- Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Mohaddes G, Salehpour F, Rasta SH. Effects of transcranial photobiomodulation and methylene blue on biochemical and behavioral profiles in mice stress model. Lasers Med Sci. 2020;35(3):573–84.
- Farazi N, Mahmoudi J, Sadigh-Eteghad S, Farajdokht F, Rasta SH. Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive-and anxiety-like behaviors in a mice model of noise stress. Lasers Med Sci. 2022;37(2):1181–91.
- 99. Moges H, Vasconcelos OM, Campbell WW, Borke RC, McCoy JA, Kaczmarczyk L, et al. Light therapy and supplementary Riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg Med. 2009;41(1):52–9.
- Lapchak PA, Han M-K, Salgado KF, Streeter J, Zivin JA. Safety profile of transcranial near-infrared laser therapy administered in combination with thrombolytic therapy to embolized rabbits. Stroke. 2008;39(11):3073–8.
- Li X, Hou W, Wu X, Jiang W, Chen H, Xiao N, et al. 660 nm red lightenhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment. Neural Regen Res. 2014;9(3):236.

- 102. Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P, et al. Photobiomodulation and coenzyme Q10 treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Front Cell Neurosci. 2019;13:74.
- Menovsky T, Beek JF. Carbon dioxide laser-assisted nerve repair: effect of solder and suture material on nerve regeneration in rat sciatic nerve. Microsurgery. 2003;23(2):109–16.
- Duke AR, et al. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles. J Neural Eng. 2012;9(6):066006.
- 105. Dias FJ, et al. Application of a low-level laser therapy and the purified protein from natural latex (Hevea brasiliensis) in the controlled crush injury of the sciatic nerve of rats: a morphological, quantitative, and ultrastructural study. BioMed Res Int. 2013;2013.
- Yang CC, Wang J, Chen SC, Hsieh YL. Synergistic effects of low-level laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves. J Tissue Eng Regen Med. 2016;10(2):120–31.
- 107. Dias FJ, Issa JPM, Coutinho-Netto J, Fazan VP, Sousa LG, Iyomasa MM, et al. Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats. J Neurol Sci. 2015;349(1–2):129–37.
- Muniz KL, Dias FJ, Coutinho-Netto J, Calzzani RAJ, Iyomasa MM, Sousa LGD, et al. Properties of the tibialis anterior muscle after treatment with laser therapy and natural latex protein following sciatic nerve crush. Muscle Nerve. 2015;52(5):869–75.
- 109. de Souza LG, Marcolino AM, Kuriki HU, Gonçalves ECD, Fonseca MdCR, Barbosa RI. Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci. 2018;33(6):1341–9.
- 110. Dias FJ, et al. Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury. Plos One. 2019;14(1):e0210211.
- 111. de Souza LG, Hendler KG, Marcolino AM, Kuriki HU, Cardoso RB, de Cássia Registro Fonseca M, et al. Photobiomodulation promotes neural regeneration when compared to simvastatin treatment in a sciatic nerve crush model. Lasers Med Sci. 2021;36(8):1591–7.
- 112. Souza Fld, Cristante AF, Marcon RM, Ferreira R, Santos GBd, Barros Filho TEPd. Transdermal monosialoganglioside with laser in the treatment of spinal cord lesion in rats. Acta Ortopédica Brasileira. 2013;21:87–91.
- Janzadeh A, Sarveazad A, Yousefifard M, Dameni S, Samani FS, Mokhtarian K, et al. Combine effect of Chondroitinase ABC and low level laser (660 nm) on spinal cord injury model in adult male rats. Neuropeptides. 2017;65:90–9.
- 114. Pedram MS, Dehghan MM, Shojaee M, Fekrazad R, Sharifi D, Farzan A, et al. Therapeutic effects of simultaneous photobiomodulation therapy (PBMT) and meloxicam administration on experimental acute spinal cord injury: rat animal model. J Photochem Photobiol, B. 2018;189:49–54.
- 115. Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther. 2019;10(1):1–15.
- 116. Janzadeh A, Sarveazad A, Hamblin MR, Teheripak G, Kookli K, Nasirinezhad F. The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol Behav. 2020;227:113141.
- Chen H, Wang Y, Tu W, Wang H, Yin H, Sha H, et al. Effects of photobiomodulation combined with MSCs transplantation on the repair of spinal cord injury in rat. J Cell Physiol. 2021;236(2):921–30.
- Dong T, et al. Low-level light in combination with metabolic modulators for effective therapy of injured brain. J Cereb Blood Flow Metab. 2015;35(9):1435–44.
- 119. Buchaim DV, et al. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve. Lasers Med Sci. 2016;31(5):965–72.
- 120. de Oliveira Rosso MP, et al. Stimulation of morphofunctional repair of the facial nerve with photobiomodulation, using the end-to-side technique or a new heterologous fibrin sealant. J Photochem Photobiol, B. 2017;175:20–8.

- 121. Jameie SB, Masoumipoor M, Janzadeh A, Nasirinezhad F, Kerdari M, Soleimani M. Combined therapeutic effects of low power laser (980nm) and CoQ10 on Neuropathic pain in adult male rat. Med J Islam Repub Iran. 2014;28:58.
- 122. Noma D, Fujita S, Zama M, Mayahara K, Motoyoshi M, Kobayashi M. Application of oxytocin with low-level laser irradiation suppresses the facilitation of cortical excitability by partial ligation of the infraorbital nerve in rats: an optical imaging study. Brain Res. 2020;1728:146588.
- 123. Martins D, et al. Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immunity-Health. 2020;2:100040.
- 124. de FreitasDutra Júnior E, et al. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats. Lasers Med Sci. 2022;37(2):971–81.
- 125. Dias FJ, Issa JPM, Iyomasa MM, Coutinho-Netto J, Calzzani RAJ, Iyomasa DM, et al. Application of a low-level laser therapy and the purified protein from natural latex (Hevea brasiliensis) in the controlled crush injury of the sciatic nerve of rats: a morphological, quantitative, and ultrastructural study. BioMed Res Int. 2013;2013:597863.
- 126. Martins D, Marques D, Venega R, Chacur M. Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain, Behavior, Immunity-Health. 2020;2:100040.
- 127. Teixeira AM, Leal-Junior ECP, Casalechi HL, Vanin AA, de Paiva PRV, Melo FHC, et al. Photobiomodulation therapy combined with static magnetic field reduces pain in patients with chronic nonspecific neck and/or shoulder pain: a randomized, triple-blinded. Placebo-Contr Trial Life. 2022;12(5):656.
- 128. Liu X-G, Cheng L, Song J-M. Effects of low-level laser therapy and eccentric exercises in the treatment of patellar tendinopathy. International Journal of Photoenergy. 2014;2014.
- 129. Dias WCFGdS, Cavalcanti RVA, Magalhães Júnior HV, Pernambuco LdA, Alves GÂdS, editors. Effects of photobiomodulation combined with orofacial myofunctional therapy on the quality of life of individuals with temporomandibular disorder. CoDAS; 2022: SciELO Brasil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.