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Abstract
Background  Accumulating neuroimaging evidence indicates that patients with cervical dystonia (CD) have changes 
in the cortico-subcortical white matter (WM) bundle. However, whether these patients’ WM structural networks 
undergo reorganization remains largely unclear. We aimed to investigate topological changes in large-scale WM 
structural networks in patients with CD compared to healthy controls (HCs), and explore the network changes 
associated with clinical manifestations.

Methods  Diffusion tensor imaging (DTI) was conducted in 30 patients with CD and 30 HCs, and WM network 
construction was based on the BNA-246 atlas and deterministic tractography. Based on the graph theoretical analysis, 
global and local topological properties were calculated and compared between patients with CD and HCs. Then, the 
AAL-90 atlas was used for the reproducibility analyses. In addition, the relationship between abnormal topological 
properties and clinical characteristics was analyzed.

Results  Compared with HCs, patients with CD showed changes in network segregation and resilience, characterized 
by increased local efficiency and assortativity, respectively. In addition, a significant decrease of network strength was 
also found in patients with CD relative to HCs. Validation analyses using the AAL-90 atlas similarly showed increased 
assortativity and network strength in patients with CD. No significant correlations were found between altered 
network properties and clinical characteristics in patients with CD.

Conclusion  Our findings show that reorganization of the large-scale WM structural network exists in patients with 
CD. However, this reorganization is attributed to dystonia-specific abnormalities or hyperkinetic movements that need 
further identification.
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Background
Idiopathic cervical dystonia (CD) is the most frequent 
form of local dystonia and is characterized by abnormal 
head, neck and shoulder movements and postures [1–
3]. In addition, CD is associated with tremors and pain, 
together with motor manifestations impair daily living 
activities and decrease the quality of life [4, 5]. However, 
the underlying causes and pathophysiology of CD remain 
poorly understood.

Accumulating evidence from functional magnetic res-
onance imaging (MRI) and voxel-based morphometry 
demonstrates the occurrence of functional and structural 
abnormalities in multiple brain regions [6–9], includ-
ing the basal ganglia, thalamus, cerebellum, and cerebral 
cortex, showing a network model in which various brain 
regions play a role in the CD pathogenesis. In addition, 
Ramdhani et al. [10], found that gray matter alterations 
were accompanied by more widely observed white mat-
ter (WM) microstructural abnormalities in patients with-
out task-specific dystonia (blepharospasm and CD) than 
in those with task-specific dystonia (writer’s cramp and 
laryngeal dystonia). These abnormalities were located 
mainly in the brainstem, thalamus, corpus callosum, 
anterior limb/genu of the internal capsule, cerebel-
lum, primary sensorimotor cortex, WM of the middle/
inferior frontal gyrus, and inferior temporal gyrus. In 
patients with CD, diffusion tensor imaging (DTI) studies 
using a region of interest-based analysis or a whole-brain 
approach have detected extensive WM microstructural 
changes in the motor cortex, premotor cortex, fron-
tal, temporal and parietal cortices, visual system, basal 
ganglia, thalamus, cerebellum, and brainstem [8, 11]. In 
addition, DTI studies using tractography-based method 
demonstrated abnormal connections between the pal-
lidum and brainstem [12], the dentato-rubro-thalamic 
tract, between the thalamus, middle frontal gyrus and 
brainstem [13], and between the globus pallidus, puta-
men, thalamus and the sensorimotor cortices [14]. There-
fore, observing abnormalities in DTI studies indicates 
that diffuse and extensive loss of WM integrity may be 
a common feature of CD. Our previous study investigat-
ing topological changes in WM structural networks using 
graph theory analysis in patients with blepharospasm 
found that these patients display large-scale WM reorga-
nization in the brain at the network level [15]. However, 
studies revealing the overall connection changes in WM 
anatomical networks in CD, rather than those observed 
in specific anatomical structures, are still lacking. Graph 
theoretical methods model the brain as a complex net-
work whose topological architecture can be quantita-
tively characterized. Following the network modeling 
procedure, various network properties can be employed 
to investigate the organizational mechanisms underlying 
the relevant networks. This approach provides tools for 

understanding the association between various patholog-
ical processes and diseases [16, 17]. Therefore, a detailed 
knowledge of large-scale WM anatomical network reor-
ganization can help researchers better understand the 
pathophysiological mechanisms underlying CD and facil-
itate the development of therapeutic strategies.

In this study, we hypothesized that extensive reorgani-
zation of large-scale WM anatomical networks occurs in 
patients with CD. We tested this hypothesis by combin-
ing DTI with graph theoretical analysis to study the dif-
ferences in topological organization between CD patients 
and healthy controls (HCs). In addition, the relationships 
between the identified topological metrics and clinical 
features (e.g., symptom severity and disability) were fur-
ther evaluated in patients with CD.

Methods
Participants
Patients with idiopathic CD, and HCs were recruited 
from our outpatient movement disorder clinic between 
September 2021 and July 2023. All patients met the fol-
lowing inclusion criteria: (i) age 19–75 years; and (ii) a 
diagnosis of CD was established according to the pub-
lished criteria by an experienced neurologist (G.L.) [18]. 
Exclusion criteria were as follows: (i) known causes of 
dystonia or a family history of movement disorders; (ii) 
had dystonia involving other body sites in addition to 
neck muscles; (iii) reported evidence of Parkinson’s dis-
ease, stroke, traumatic brain injury, Alzheimer’s disease, 
and epilepsy; (iv) had a family history of movement dis-
orders as well as a history of exposure to antipsychotic 
drugs before the onset of dystonia; (v) had any condi-
tions that contradicted with cerebral MRI; (vi) received 
botulinum toxin (BoNT) injections within 3 months and/
or oral medications for approximately 24  h before MRI 
scans. HCs were recruited using the same exclusion cri-
teria. Written informed consent was obtained from all 
the participants and the study was approved by the Ethi-
cal Committee of the First Affiliated Hospital of Sun Yat-
sen University ([2020]323).

Clinical assessment
Demographics and clinical characteristics, including 
patients’ age, sex, duration of disease, and number of 
BoNT injections were collected from all patients via face-
to-face interviews before MRI scanning. The Toronto 
Western Spasmodic Torticollis Rating Scale (TWSTRS), 
Global Dystonia Rating Scale (GDS), and Cervical Dys-
tonia Impact Profile-58 (CDIP-58) were used to assess 
the severity, disability, and effects of CD on the quality 
of life [19–21]. Non-motor symptoms, including anxiety, 
depression, and cognition situation were assessed using 
the Hamilton Anxiety Scale (HAMA) [22], Hamilton 
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Depression Scale (HAMD) [23], and Minimum Mental 
State Examination (MMSE) [24], respectively.

Data acquisition
MRI data for each participant were collected using a 3T 
scanner (Tim Trio; Siemens, Erlangen, Germany). DTI 
data were acquired using a single-shot echo-planar imag-
ing sequence (repetition time, 7000 ms; echo time, 91 ms; 
flip angle, 90°; acquisition matrix, 128 × 128; field of view, 
256 × 256 mm2; voxel size, 2 × 2 × 3 mm3; 50 axial slices). 
Diffusion weighting was isotropically distributed in 64 
directions using a b value of 1000 s/mm2. Moreover, three 
dimensional T1-weighted images (repetition time = 2530 
ms, echo time = 4.45 ms, inversion time = 1100 ms, flip 
angle = 7°, matrix dimensions = 256 mm × 256 mm, voxel 
size = 1 × 1 × 1 mm3, and 192 slices) were obtained to 
improve registration to the standard space.

Image preprocessing
All DTI data were analyzed using the PANDA toolbox 
(Pipeline for Analyzing Brain Diffusion Images toolkit, 
https://www.nitrc.org/projects/panda/) with structural 
MRI of the brain [25]. First, the brain mask was estimated 
for each participant from the b0 image, and the non-
brain tissues were removed. Subsequently, the data were 
corrected for head motion and eddy current distortion by 
applying the affine registration of each diffusion-weighted 
image to the b0 image. The diffusion tensor elements 
were then estimated, and the fractional anisotropy (FA) 
was calculated for each voxel. The generated FA images 
were registered to the Montreal Neurological Institute 
(MNI) 152 standard space using nonlinear registration. 
Subsequently, the whole-brain fiber tractography was 
performed by a deterministic tracking algorithm using 
the Diffusion Toolkit (http://trackvis.org) and TrackVis 
software (http://trackvis.org/) [26]. All tracts were com-
puted by seeding each voxel with an FA > 0.2. Tractogra-
phy was terminated if it turned at an angle exceeding 45° 
or reached a voxel with an FA of less than 0.2.

Brain network construction
Adopting the approach used in our previous study (Guo 
et al., 2021) [15], network nodes were defined using the 
BNA-246 atlas (http://atlas.brainnetome.org/). This fine-
grained parcellation atlas includes more detailed infor-
mation on both functional and anatomical connections, 
which could help to describe connectivity in the brain 
global network characteristics more accurately [27]. We 
set the fraction of streamline (FSe) values as the edge 
weights of the network [28]. Reportedly, FSe was imple-
mented to estimate the strength/weight of each WM 
connection in tractography-derived matrices [28]. The 
FSe value for a pathway originating in some Brainnetome 
region A and terminate at B is defined as the ratio of the 

number of streamlines originating at A and terminating 
at B to the total number of streamlines that either origi-
nate at A or terminate at B while excluding streamlines 
that represent self (within-area) connections [29]. As a 
connectivity matrix of 246 × 246 regions, the FSe links 
two regions relative to the number of streamlines extrin-
sic to those regions. Finally, a symmetric FSe-weighted 
(246 × 246) matrix, representing the WM structural net-
work, was generated for each participant (Fig. 1) [29].

	
FSe(i, j) =

NOS(i, j)
∑N

x=1NOS(i, x) +
∑N

y=1 NOS(y, j) − NOS(i, j)

where χ ≠ i and y ≠ j; N is the total number of regions 
(N = 246); and NOS (i, j) is the number of streamlines 
connecting regions i and j.

Global network measures
On the global level, the integration (e.g., global effi-
ciency [Eglob], shortest path length [Lp]), segregation 
(local efficiency [Eloc], cluster coefficient [Cp], and mod-
ularity [Q]), and resilience (assortativity [r]) measures 
[30] of WM anatomical networks were computed based 
on the FSe-weighted (246 × 246) matrix for each par-
ticipant by using the Gretna toolbox (https://helab.bnu.
edu.cn/gretna/) [31], which was implemented using the 
MATLAB (R2018b) platform (https://www.mathworks.
com/). The network density, also belonging to the inte-
gration of the network [32], was calculated by invoking 
the network density function in the Brain Connectivity 
Toolbox (https://www.nitrc.org/projects/bct/). In addi-
tion, network strength (Sp) and small-world properties 
were assessed to characterize the topological organiza-
tion of the networks. Eglob can indicate the efficiency of 
information transference across a network, while Eloc 
indicates how well a node exchanges information with 
its neighboring nodes [33]. A smaller Lp indicates the 
faster information transfer to the entire brain region, and 
Cp quantifies the prevalence of clustered connectivity 
around individual nodes [34]. Network density refers to 
the ratio of actual to possible connections [30]. Addition-
ally, assortativity, known as degree correlation, is a mea-
sure of the correlation between nodal degree and mean 
degree of its nearest neighbors, which is related to the 
more vulnerable network being attacked by lower assor-
tativity [35–37]. Positive assortativity values indicate 
that nodes may be connected to other nodes of the same 
degree, and high-degree nodes or hubs of the network 
are likely to be connected [30]. A small-world network is 
defined as γ > 1 and λ ≈ 1. These two measurements can 
be summarized into a simple quantitative metric, small 
worldness, σ = γ/λ > 1 [38].

https://www.nitrc.org/projects/panda/
http://trackvis.org
http://trackvis.org/
http://atlas.brainnetome.org/
https://helab.bnu.edu.cn/gretna/
https://helab.bnu.edu.cn/gretna/
https://www.mathworks.com/
https://www.mathworks.com/
https://www.nitrc.org/projects/bct/
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Fig. 1  Flow diagram of WM network construction applying DTI based on BNA-246 atlas. (1) b0 image (A) in the individual diffusion space for each partici-
pant was aligned with the T1-weighted image (B). (2) The co-registered T1-weighted image of the native DTI space was mapped to the nonlinear ICBM152 
T1 template (E) of the MNI space using a nonlinear transformation matrix T. (3) Warped the BNA-246 atlas (C) in MNI space into the native diffusion space 
(F) by inverting T1 format T− 1. (4) Whole-brain WM fibers (D) were traced with DTI tractography employing the deterministic tractography algorithm. (5) 
The whole brain WM network was constructed in patients with CD and HCs. FSe-weighted matrices (G) for CD and HCs groups. Abbreviations: BNA-246, 
Brainnetome Atlas with 246 brain regions; CD, cervical dystonia; DTI, diffusion tensor imaging; HCs, healthy controls; ICMB, International Consortium for 
Brain Mapping; MNI, Montreal Neurological Institute; WM, white matter
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Regional network measures
We calculated the nodal efficiency (Enodal) and two met-
rics of nodal centrality, betweenness centrality (BC) and 
degree centrality (DC), for all 246 regions [39]. Enodal 
represents the importance of a given node in conveying 
information within a network. BC is the fraction of all 
shortest paths in the network that passes through a given 
node. The DC, the number of links connected to a node, 
is one of the most common centrality measures [40].

Statistical analyses
Differences in age between patients with CD and HCs 
were assessed using two sample t-tests or Mann-Whitney 
U tests after Shapiro-Wilk normality testing. Sex dis-
tributions were compared using the Pearson χ2 test. All 
analyses were performed using SPSS (version 27.0; IBM, 
Armonk, NY, USA).

Between-group differences in streamline count and 
network parameters were determined using two sample 
t-test, with HAMA and HAMD scores as covariates. In 
addition, the relationships between the abnormal net-
work graph theoretical metrics and clinical features, 
including TWSTRS total scores, TWSTRS subscales, and 
disease duration, were assessed using partial correlation 
analyses after adjusting for age, sex, HAMA, and HAMD 
scores. P < 0.05 was set to evaluate statistical significance.

Reproducibility analyses
Referring to the previous study [15], we evaluated 
the potential effects of different parcellation schemes 
employing similar network analyses with an additional 
Anatomical Automatic Labeling atlas with 90 brain 
regions (AAL-90; https://www.gin.cnrs.fr/en/tools/aal/) 
in patients with CD [41].

Results
Demographic information and clinical characteristics
The demographic and clinical characteristics of the 
30 patients with CD (14 women; median age, 40 years) 
and 30HCs (16 women; median age, 41 years) are sum-
marized in Table  1. There were no statistically signifi-
cant differences in age, sex, MMSE scores, or streamline 
count between the groups. A significant difference in 
the HAMA and HAMD scores between the groups was 
observed. We visually inspected the tractography to 
ensure a necessary minimum coverage of the track count 
including the corpus callosum (1161), cingulate (240), 
uncinate tracts (222), superior (370) and inferior longitu-
dinal fasciculus (208), corticospinal tract (2683), and spi-
nothalamic tract (2438) in patients with CD.

Differences in global and regional network properties
Compared with HCs, a significant increase of Eloc 
(t = 2.231, P = 0.029), and assortativity (t = 2.264, P = 0.027), 
and a significant decrease of Sp (t = 5.349, P < 0.001) were 
found in patients with CD (Table 2; Fig. 2A , B, and C). 

Table 1  Demographics and clinical characteristics of the 
participants

CD (n = 30) HCs (n = 30) P 
value

Median age (range) 40 (19–70) 41 (23–62) 0.549
Female (%) 14 (46.7%) 16 (53.3%) 0.606
Median duration year 
(range)

1.25 (0.12-10) - -

BoNT injections (yes/
no)

9/21 - -

Median TWSTRS 
(range)

33.75 
(15.75–56.50)

- -

Median TWSTRS sever-
ity (range)

19 (7–25) - -

Median TWSTRS dis-
ability (range)

10 (0–23) - -

Median TWSTRS pain 
(range)

5.5 (0-10.5) - -

Median GDS (range) 6 (1–18) - -
Median CDIP-58 
(range)

48.97 
(16.90–73.10)

- -

Median HAMA (range) 7 (0–23) 1 (0–8) < 0.001
Median HAMD (range) 6 (0–18) 1 (0–7) < 0.001
MMSE (range) 28 (25–30) 29 (25–30) 0.121
Streamline count 
(Mean ± SD)

42296.5 ± 5360.3 42370.6 ± 6180.8 0.961

Abbreviations: CD, cervical dystonia; CDIP-58, Cervical Dystonia Impact Profile; 
GDS, Global Dystonia Rating Scale; HAMA, Hamilton Anxiety Scale; HAMD, 
Hamilton Depression Scale; HCs, healthy controls; MMSE, Minimum Mental 
State Examination; TWSTRS, Toronto Western Spasmodic Torticollis Rating Scale

Table 2  Differences of global properties between CD patients 
and HCs by BNA-246 and AAL-90 atlas

CD (n = 30) HCs (n = 30) P value
BNA-246 Local 

efficiency
0.032 ± 0.002 0.031 ± 0.002 0.029 *

Assortativity 0.289 ± 0.063 0.255 ± 0.052 0.027 *
Network 
strength

4986.60 ± 2.90 4990.60 ± 2.90 < 0.001**

Network 
density

0.056 ± 0.002 0.055 ± 0.001 0.669

Shortest 
path length

58.267 ± 0.410 58.191 ± 0.303 0.883

Global 
efficiency

0.01718 ± 0.0001 0.01720 ± 0.0008 0.928

AAL-90 Assortativity 0.131 ± 0.069 0.083 ± 0.061 0.029 *
Network 
strength

6018.60 ± 2.90 6022.60 ± 2.90 < 0.001 
**

Network 
density

0.273 ± 0.003 0.272 ± 0.004 0.812

Shortest 
path length

39.230 ± 0.229 39.113 ± 0.253 0.768

Global 
efficiency

0.0255 ± 0.0001 0.0256 ± 0.0001 0.782

Abbreviations: AAL-90, Anatomical Automatic Labeling atlas with 90 brain 
regions; BNA-246, Brainnetome Atlas with 246 brain regions; CD, cervical 
dystonia; HCs, healthy controls. Note *P < 0.05, **P < 0.001, compared with HCs.

https://www.gin.cnrs.fr/en/tools/aal/
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However, no significant differences in Eglob, Cp, Lp,, Q, and 
network density were observed in these patients. Patients 
with CD and HCs showed a small world architecture of 
the WM network characterized by γ > 1 and λ ≈ 1 (Fig. 2D, 
E, and F). Patients with CD showed higher Lp and lower 
Eglob than HCs, but the differences were not statistically 
significant. In addition, we did not find any differences in 
the regional network properties such as Enodal, BC, or DC 
between patients with CD and HCs.

Correlations between network metrics and clinical features
No significant correlations were found between altered 
network properties and clinical characteristics, includ-
ing TWSTRS total scales, TWSTRS subscales, disease 
duration.

Reproducibility of results
We repeated the reconstruction of the WM network 
using the AAL-90 atlas. Similar results characterized 
by higher assortativity (t = 2.237, P = 0.029) and lower 
Sp (t = 5.349, P < 0.001), were observed in patients with 

CD than in HCs. However, differences in Eloc between 
patients with CD and HCs could not be reproduced. We 
also found no differences in nodal network metrics such 
as Enodal, BC, and DC, between patients with CD and 
HCs.

Discussion
In this study, we found that patients with CD displayed 
alterations in segregation characterized by increased Eloc 
and resilience and increased assortativity in the whole-
brain WM anatomical brain network. These findings 
support our hypothesis that extensive reorganization of 
large-scale WM anatomical networks occurs in patients 
with CD.

Neuroimaging studies have demonstrated the small-
world characteristics of large-scale WM networks in the 
human brain [42, 43]. Consistently, both patients with 
CD and HCs showed typical small-world WM network 
topologies. In addition, the findings of our previous study 
revealed a small-world architecture of the WM net-
work in patients with blepharospasm [15]. This evidence 

Fig. 2  Characteristics of global properties between patients with CD and HCs by BNA-246 atlas. The global parameters of local efficiency (A), assortativity 
(B) and network strength (C) had shown significant differences between CD and HCs. Small-world properties (D, E and F) were displayed both CD and HCs 
(Sigma > 1, Lambda ≈ 1 and Gamma > 1). *P < 0.05, **P < 0.001, compared with HCs. Abbreviations: BNA-246, Brainnetome Atlas with 246 brain regions; CD, 
cervical dystonia; HCs, healthy controls
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supports the perspective that the structural architecture 
of the human brain is conserved and that small-world 
networks can tolerate disease and developmental altera-
tions [44]. Local efficiency, an index of structural segrega-
tion, is associated with short range connections between 
neighborhood regions, which increase the fault toler-
ance of a network or mediate modularized information 
processing [33]. Higher local efficiency in patients with 
CD indicates dense local connections in brain struc-
tural networks [45]. Assortativity represents the degree 
of correlation between connected nodes. High assorta-
tivity, termed assortative mixing, indicates that nodes 
of a similar degree tend to be connected in the network 
[46, 47]. Generally, an assortative-mixing network can 
accelerate the spread of information generated by high-
degree nodes [35, 48]. A positive assortativity coefficient 
implies that nodes with similar degrees are more likely 
to connect with each other, indicating enhanced local 
information processing efficiency and resilience to attack 
[49], while increased local efficiency implies closed local 
connections [45]. Moreover, increased Lp and decreased 
Eglob have been suggested to be associated with a reduced 
transmission and integration function of long-distance 
brain interval information in post-traumatic stress disor-
der and type 2 diabetes [50, 51]. Thus, the positive and 
higher assortativity and Eloc, together with the increased 
Lp and decreased Eglob values in patients with CD, indi-
cate enhanced local interconnectivity and local informa-
tion processing abilities that might be associated with the 
loss of long-distance brain interval information commu-
nication. However, there were no significant differences 
in Lp and Eglob between patients with CD and HCs, pos-
sibly due to the small sample size of this study. Further 
analyses with larger sample sizes are needed to clarify 
these differences. Additionally, structural connectivity 
tending to form an assortative network for a connected 
network reportedly may help to keep the flow of neural 
signals and processing as far as possible, while functional 
connectivity reversely form a dissortativity network to 
assist functional connectivity maintaining the function-
ality against indiscriminate propagation of disturbance 
[52]. The assortativity of functional networks in patients 
with CD should be further verified in future studies.

However, we could not determine whether changes in 
Eloc and assortativity were attributable to the dystonia-
specific reorganization of structural brain networks or 
to cervical hyperkinetic movements. A lack of associa-
tion between increased Eloc and assortativity and symp-
tom severity of CD demonstrates that these changes are 
more likely because of dystonia origin. However, further 
studies are needed to confirm this. In this study, we did 
not find any differences in regional network properties 
such as Enodal, BC, and DC in patients with CD compared 
to HCs, which is not consistent with the findings of our 

previous study involving in patients with blepharospasm 
[15]. In our previous study, patients with blepharospasm 
showed increased nodal efficiency values in multiple 
cortical and subcortical regions, including the primary 
motor cortex and basal ganglia, compared with HCs. 
These areas are hub regions specific to blepharospasm. 
Lesion studies have revealed that damage to the cerebel-
lum and the nearby brainstem is more likely to result in 
CD [3, 53]. In addition, Prudente et al. [54] investigated 
the neuropathology of cervical dystonia in six patients 
and found a patchy loss of Purkinje cells in the cerebel-
lum. Recent animal and clinical studies have shown that 
dystonia is closely associated with abnormalities in the 
motor network involving the cerebellum and dystonia 
[55, 56]. This evidence shows that network changes in 
the cerebellum may have a closer relationship with CD, 
considering the absence of infratentorial brain structures 
such as the cerebellum and brainstem in the BNA-246 
atlas. However, further studies are needed to address this 
hypothesis.

Validation analyses showed increased assortativity 
significantly and Sp were similarly detected using the 
AAL-90 atlas in patients with CD compared with HCs. 
However, we also noted inconsistent findings. For exam-
ple, no differences in local efficiency observed between 
patients with CD and HCs. A possible explanation for 
this inconsistency is that the local Eloc is more sensitive to 
selecting parcelllation atlases than other global topologi-
cal metrics.

This study had some limitations. First, the sample size 
of this study was relatively small. Second, the current 
understanding of the effects of BoNT on WM structural 
networks is limited, highlighting the need for further 
research in this area. Third, the absence of the brain-
stem and cerebellum in the BNA-246 atlas, limits explor-
ing the roles of network changes in these regions in CD 
pathophysiology and their correlation with disease sever-
ity. Fourth, DTI deterministic tractography was used to 
reconstruct human WM anatomical networks. Although 
this method widely used, its ability to resolve crossed 
fiber bundles is limited [57]. Therefore, probabilistic dif-
fusion tractography approaches should be used in further 
studies to reconstruct brain WM networks.

In conclusion, our findings demonstrate that patients 
with CD exhibit widespread brain reorganization at the 
network level. Detailed knowledge of large-scale WM 
anatomical network reorganization can help research-
ers better understand pathophysiological mechanisms of 
CD, However, whether this reorganization is attributed 
to dystonia-specific abnormalities or hyperkinetic move-
ments in cervical muscles needs further identification.
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