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Abstract
Background and Objective Transcranial magnetic stimulation (TMS) is considered as a promising treatment option 
for post-stroke cognitive impairment (PSCI).Some meta-analyses have indicated that TMS can be effective in treating 
cognitive decline in stroke patients, but the quality of the studies included and the methodologies employed were 
less than satisfactory. Thus, this meta-analysis aimed to evaluate the efficacy and safety of TMS for treating post-stroke 
cognitive impairment.

Methods We searched online databases like PubMed, Embase, Cochrane Library, and Web of Science to retrieve 
randomized controlled trials (RCTs) of TMS for the treatment of patients with PSCI. Two independent reviewers 
identified relevant literature, extracted purpose-specific data, and the Cochrane Risk of Bias Assessment Scale was 
utilized to assess the potential for bias in the literature included in this study. Stata 17.0 software was used for data 
analysis.

Results A total of 10 studies involving 414 patients were included. The results of the meta-analysis showed that 
TMS was significantly superior to the control group for improving the overall cognitive function of stroke patients 
(SMD = 1.17, 95% CI [0.59, 1.75], I2 = 86.1%, P < 0.001). Subgroup analyses revealed that high-frequency rTMS 
(HF-rTMS), low-frequency rTMS (LF-rTMS), and intermittent theta burst stimulation (iTBS) all have a beneficial effect 
on the overall cognitive function of stroke patients. However, another subgroup analysis failed to demonstrate any 
significant advantage of TMS over the control group in terms of enhancing scores on the Loewenstein Occupational 
Therapy Cognitive Assessment (LOTCA) and Rivermead Behavioral Memory Test (RBMT) scales. Nonetheless, TMS 
demonstrated the potential to enhance the recovery of activities of daily living in stroke patients, as indicated by the 
Modified Barthel Index (MBI) (SMD = 0.76; 95% CI [0.22, 1.30], I2 = 52.6%, P = 0.121).

Conclusion This meta-analysis presents evidence supporting the safety and efficacy of TMS as a non-invasive neural 
modulation tool for improving global cognitive abilities and activities of daily living in stroke patients. However, given 
the limited number of included studies, further validation of these findings is warranted through large-scale, multi-
center, double-blind, high-quality randomized controlled trials.

PROSPERO registration number CRD42022381034.
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Introduction
The prevalence of stroke is increasing due to a grow-
ing and aging population, making it is the second most 
common cause of acquired disability worldwide [1]. 
Post-stroke cognitive impairment (PSCI) is a frequent 
complication after stroke, and stroke events significantly 
increase the risk of developing dementia [2, 3], leading to 
an earlier onset of dementia by up to 10 years [4]. Cogni-
tive decline is strongly associated with a lower quality of 
life following a stroke [5] and prolongs hospital stays [6]. 
The pathogenesis of post-stroke cognitive impairment 
involves various cellular changes such as disrupted redox 
state, mitochondrial dysfunction, blood-brain barrier 
disruption, microglia activation, and amyloid-β deposi-
tion in the brain parenchyma [7–10]. Cognitive impair-
ments cannot be solely attributed to the specific locations 
of stroke but can be caused by damages to anatomically 
distributed brain networks supporting cognition [11]. 
Controlling vascular risk factors, drug treatments such 
as cholinesterase inhibitors and N-methyl-D-aspartate 
receptor antagonist may improve PSCI [12–14]. These 
drugs have shown effectiveness in enhancing cognitive 
functioning but are often accompanied by adverse reac-
tions [15–17]. Currently, there is no approved pharma-
cological treatment specifically designed for post-stroke 
cognitive impairment or dementia [18]. Non-pharmaco-
logical therapies, such as lifestyle interventions, cognitive 
training, physical exercise, and acupuncture, are com-
monly utilized, but their effectiveness is not significant 
[19–22].

Transcranial magnetic stimulation (TMS), a non-
invasive and relatively safe form of brain stimulation, 
has gained popularity for its ability to selectively induce 
electric currents in specific cortical regions of the brain 
through electromagnetic induction [23]. This technique, 
widely used in neurological and psychiatric rehabilita-
tion, can modulate cortical excitability, either by exciting 
or inhibiting targeted brain regions [24, 25]. Repetitive 
transcranial magnetic stimulation (rTMS) and theta burst 
stimulation (TBS) are two primary types of TMS thera-
pies [26]. High-frequency rTMS (HF-rTMS) is known 
to increase excitability in the target cortical regions, 
whereas low-frequency rTMS (LF-rTMS) induces the 
opposite effect [27]. Intermittent theta burst stimulation 
(iTBS) delivers short bursts of high-frequency pulses 
intermittently to enhance cortical excitability, while con-
tinuous theta burst stimulation (cTBS) applies continu-
ous pulses at a lower frequency to inhibit cortical activity 
[28]. Both iTBS and cTBS are types of rTMS utilized for 
neuro-modulation in clinical settings.

rTMS has undergone extensive research in patients 
with Alzheimer’s disease (AD) and has emerged as an 
effective treatment for cognitive impairment associated 
with AD, offering safe and long-lasting effects [29, 30]. 
Studies have shown that rTMS can mitigate cognitive 
deficits in AD mice by inhibiting apoptosis through the 
activation of the cAMP/PKA/CREB signaling pathway 
[31]. The application of iTBS has demonstrated benefi-
cial effects on depression, executive function, and target 
engagement of the cognitive control network in older 
adults [32]. iTBS, acknowledged as a time-saving and 
cost-effective repetitive transcranial magnetic stimula-
tion regime, has shown promise in animal experiments 
for improving cognitive decline and alleviating AD-type 
pathology in APP/PS1 mice [33]. iTBS is regarded as a 
modified design of rTMS that can serve as a complemen-
tary approach to psychotherapy [34].

Previous studies have demonstrated the effectiveness 
of TMS in patients with post-stroke cognitive impair-
ment [35, 36]. Some researchers have also reported that 
high-frequency rTMS may not have a discernible impact 
on cognition in post-stroke patients [37]. Recently, a sys-
tematic review and meta-analysis indicated that rTMS is 
an effective technique for treating post-stroke patients 
with cognitive impairment [38]. However, it is essential 
to acknowledge that certain studies included in the meta-
analysis were published quite some time ago, potentially 
compromising the quality of the literature. Furthermore, 
the meta-analysis relied on comparing final values, which 
is less efficient and robust than utilizing change scores 
between baseline and post-intervention measurements 
[39]. Therefore, our aim is to conduct an updated meta-
analysis to assess the effects of TMS on cognitive func-
tion in post-stroke patients.

Materials and methods
This meta-analysis was conducted according to the 
guidelines of the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) [40]. This 
study was prospectively registered with the PROSPERO 
database of systematic reviews (CRD42022381034): 
https://www.crd.york.ac.uk/prospero/display_record.
php?ID=CRD42022381034.

Literature search strategy
We searched four databases (Pubmed, Embase, Cochrane 
Library, and Web of Science) for published random-
ized controlled trials (RCTs) from database inception 
up to May 2024. The search strategy used the following 
terms: ((((((cerebral OR cerebellar OR intracerebral OR 

Keywords Stroke, Cognitive impairment, Transcranial magnetic stimulation, Randomized controlled trial, Meta-
analysis

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022381034
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intracranial OR brain OR cerebrovascular) AND (bleed* 
OR haemorrhage* OR hemorrhage* OR infarction* OR 
occlusion* OR emboli* OR embolus OR thrombus OR 
thrombosis OR thrombi)) OR (stroke OR apoplexy OR 
post stroke OR post-stroke))) AND (cognitive OR cog-
nition OR dementia OR processing OR attention OR 
language OR visuospatial OR memory OR executive 
function OR intelligence)) AND (transcranial magnetic 
stimulation OR TMS OR rTMS OR theta burst stimu-
lation OR TBS OR iTBS OR cTBS)) AND (randomized 
controlled trial)).

Inclusion and exclusion criteria
We formulated the literature inclusion criteria by the 
principles of PICOS (Population, Intervention, Compari-
son, Outcomes and Study): (1) participants diagnosed 
with stroke, (2) cognitive impairment at least one domain 
in attention and executive, memory, language and visuo-
spatial function caused by stroke, (3) including interven-
tion group (rTMS or iTBS) and control group (Sham or 
no stimulation), (4) outcomes including cognitive func-
tion assessment, and complete clinical data was pro-
vided in the literature, (5) randomized controlled trial, 
(6) participants were adults (≥ 18 years), (7) articles pub-
lished in English language, (8) studies in recent 10 years. 
The exclusion criteria were: (1) severe cognitive decline 
that impedes cooperation, (2) cognitive impairment or 
dementia before stroke, (3) data sets that were incom-
plete and unable to be analyzed, even after attempting to 
contact the authors via email, and in cases where there 
were articles from the same study, previous and incom-
plete data will be excluded.

Data extraction
Two reviewers (S.H. and W.C.) working independently 
examined and extracted data from each included study. 
The extracted information included (1) general char-
acteristics: author, year of publication, study design, 
number of participants, mean age, stroke duration; (2) 
intervention: type of stimulation, location of stimula-
tion, intensity, frequency, total pulses per treatment, 
sham stimulation method, intervention time and adverse 
effects; (3) statistical data of the score of cognitive per-
formance. Any discrepancies in data obtained by the two 
reviewers were resolved by discussing with another pro-
fessional researcher to reach a consensus.

Quality of studies and risk of bias assessment
The quality of included studies was assessed using the 
Cochrane Handbook for Systematic Reviews of Interven-
tions [41]. The following characteristics were assessed: 
(1) random sequence generation; (2) allocation conceal-
ment; (3) blinding; (4) handling of incomplete outcome 
data; (5) evidence of selective outcome reporting; (6) 

other potential risks that could impact the validity of the 
study. The risk of bias for each criterion was categorized 
as low, high, or unclear.

Statistical analysis
Stata 17.0 software was used for Meta-analysis. Cochrane 
Rev-Man 5.4 software was used for quality assessment. 
Homogeneity test (Q test) and I2 value was used to test 
the heterogeneity of the included research. The effect of 
TMS on cognitive function in post-stroke patients was 
defined as the mean difference (MD) in the change of 
cognitive indicators relative to baseline (before stimu-
lus treatment) in the experimental and control groups. 
Given the diversity of cognitive indicators applied in the 
included studies, standardized mean difference (SMD) 
and 95% confidence intervals were used to summa-
rize eligible trial pooled effect sizes. SMD is often used 
in meta-analysis to compare mean differences between 
groups with outcome variables measured on different 
scales. Because two studies [42, 43] did not show a net 
change of cognitive scores between baseline and post 
intervention, the following formulas were used:

Mean changes = Mean post − Mean baseline;

 SD change =
√

SD2
baseline + SD2

post − (2× coefficent × SD baseline × SD post)

If this correlation coefficient is unknown, it may be esti-
mated as 0.5. If there is a similar study that reports sum-
mary statistics for change from baseline, baseline and 
final values, a better estimate (Chap.  6.5.2.8, Cochrane 
Handbook) of the correlation coefficient is:

 
coefficent =

SD2
baseline + SD2

post − SD2
Change

2× SDbaselineSDpost

In some studies, the standard errors of the mean or stan-
dard deviations were not given but figures, which had to 
be recalculated. In the case of one included study [44], 
the approximate data were extracted from figures in this 
paper using the online version of the web-based Web-
PlotDigitizer (https://apps.automeris.io/wpd/index.zh_
CN.html, Copyright 2010–2022 Ankit Rohatgi) software.

Heterogeneity was quantified using the I2 statistic, 
and I2 ≤ 50% was considered low heterogeneity, then the 
meta-analysis was conducted with fixed effects model. 
I2 > 50% indicated substantial heterogeneity, and the 
random effects model was adopted for meta-analysis. In 
addition, high statistical heterogeneity was analyzed by 
subgroup analysis.

Sensitivity analysis was also used to explore the source 
of heterogeneity, and funnel plot, Begg’s and Egger’s tests 
were performed to evaluate publication bias. Statistical 
significance was considered for p-values less than 0.05.

https://apps.automeris.io/wpd/index.zh_CN.html
https://apps.automeris.io/wpd/index.zh_CN.html
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Result
Search results
The initial search identified a total of 646 records, and 
435 studies remained after excluding 211 duplicate 
records. Of these, 435 studies were excluded after read-
ing titles and abstracts (including studies published more 
than 10 years ago). Two reviewers (S.H. and W.C.) inde-
pendently read the full-text articles of the 21 studies, and 
11 studies were excluded. Eventually, 10 randomized con-
trolled trials were included in this meta-analysis [43–52]. 
Figure  1 shows a flowchart of screening and selection 
process.

Study characteristics
Ten studies were included in this meta-analysis, com-
prising a total of 414 participants. The characteristics of 
the included studies are presented in Table 1.All patients 
included in this review had a diagnosis of stroke, and their 
cognitive function was assessed. The experimental group 
in seven studies received rTMS treatment, and three 
studies received iTBS. One trial included 2 intervention 
arms and one control group (rTMS vs. iTBS vs. control) 
[50]. The TMS stimulation location in eight studies [43–
45, 47–50, 52] was the left dorsal lateral prefrontal cortex 

(DLPFC) with high-frequency rTMS (HF-rTMS) stimu-
lation (≥ 5  Hz) or iTBS, and the remaining two studies 
were right DLPFC and contralateral DLPFC with low-fre-
quency rTMS (LF-rTMS) stimulation (1 Hz). The details 
of each study are provided in Table 1.

Study quality
Risk of bias in the included studies was evaluated using 
Cochrane’s risk of bias tool [53]. The results were as illus-
trated in Fig. 2.All studies in this review were RCTs. Four 
studies [48–50, 52] were double blinded and the other 
four were single blinded [43, 44, 46, 49]. Two studies did 
not mention if blinded [45, 47]. The control group in 6 
studies included sham stimulation [46, 48–52]. Eight 
studies described random sequences generated using 
random number tables or computer programs [44, 46–
52]. Two studies reported allocation procedures with 
concealment [50, 52]. Therefore, all included studies were 
considered to have a mild risk of bias (Fig. 3).

(A) Risk of bias summary: review authors’ judgments 
about each risk of bias item for each included study. (B) 
Risk of bias graph: review authors’ judgements about 
each risk of bias item presented as percentages across all 
included studies.

Fig. 1 Flow chart for study screening
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Effect of TMS on cognition in stroke patients
Global cognition was measured by the Mini-Men-
tal Status Examination (MMSE), Montreal Cognitive 
Assessment (MoCA) scale in this study, Loewenstein 
Occupational Therapy Cognitive Assessment (LOTCA), 
Repeatable Battery for the Assessment of Neuropsycho-
logical Status (RBANS). MMSE and MoCA are both valid 
cognitive tools in stroke patients [54]. LOTCA is a rela-
tively systematic assessment method in evaluating cogni-
tive function in patients with stroke, and is slightly better 
than the MMSE [55]. The RBANS is a widely used brief 
test for detecting cognitive impairment in various neu-
ropsychiatric conditions, which has also been applied to 
assess cognitive function in stroke patients [56].

A total of 10 RCTs (NTMS=216, Ncontrol=213) were 
included in the pooled meta-analysis to access the effects 
of TMS vs. sham/no stimulation on global cognition in 
stroke patients. The improvement in global cognition 
among stroke patients was significantly greater in TMS 
group compared to the control group (SMD = 1.17, 95% 
CI [0.59, 1.75], I2 = 86.1%, P < 0.001) (Fig.  3), and ran-
dom effects model was used because of substantial 
heterogeneity.

Subgroup analysis of the effect of HF-rTMS, LF-rTMS and 
iTBS
Subgroup analyses were performed based on stimula-
tion types (HF-rTMS, LF-rTMS, and iTBS). The results 
revealed that LF-rTMS had an SMD of 1.82(95%CI [0.34, 
3.30], I2 = 88.8%, P = 0.003) and HF-rTMS had an SMD of 
1.36(95%CI [0.27, 2.44], I2 = 88.8%, P < 0.001). The SMD 
between trials in iTBS group was 0.58 (95%CI [0.17, 
0.99], I2 = 39.4%, P = 0.175). Subgroup analyses revealed 
that all forms of TMS yielded a positive effect on the 
global cognitive function of stroke patients (Fig. 4).

Subgroup analysis of the effect of TMS on LOTCA, RBMT, 
MBI
We also performed subgroup analysis of selected out-
comes (LOTCA, RBMT, and MBI) and compared the 
influence of TMS treatment on the recovery of executive 
capacity, memory, and activity of daily living in patients 
with stroke. LOTCA is a series of tests designed for occu-
pational therapists, to assess a person’s cognitive process-
ing ability and to determine whether a person is able to 
carry out everyday functional tasks [57]. The Rivermead 
Behavioural Memory Test (RBMT) was designed specifi-
cally to evaluate memory abilities for the performance of 
daily tasks [58]. The Modified Barthel Index (MBI) is a 
commonly used scale that measure disability or depen-
dence in activities of daily living in stroke patients [59].

Fig. 2 Quality assessment of selected studies by the Cochrane risk of bias tool
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Three studies reported LOTCA scores and two studies 
reported RBMT. The pooled results did not reveal that 
TMS was better than control group on the improvement 
of LOTCA and RBMT scores (SMD = 0.51; 95% CI [-0.08, 
1.10], I2 = 64.6%, P = 0.037, and SMD = 0.35, 95% CI [-1.60, 
2.31], I2 = 93.7%, P < 0.001) with random-effect model 
(Fig.  5). However, when it came to the changes of MBI 
scores, the difference between the two groups was statis-
tically significant according to the analyses (SMD = 0.76; 
95% CI [0.22, 1.30], I2 = 52.6%, P = 0.121), which indicated 
that TMS improved the MBI scores more efficiently 
(Fig. 6).

Publication bias and sensitivity analysis
Egger’s regression tests were conducted to evaluate the 
influence of small studies as publication bias. The P-value 
of Egger’s test do not support the existence of publica-
tion bias for all interventions (t = 1.18, P = 0.269). The 
shape of Begg’s funnel plot seems to be asymmetric (Pr 
>|z|=0.213) (Fig. 7). To identify the influence of individ-
ual studies on the overall meta-analysis, a sensitivity anal-
ysis was conducted. This involved systematically omitting 
each study to evaluate its impact on the collective results. 

The analysis revealed that no single study significantly 
affected the overall effect sizes (Fig. 8). Thus, our meta-
analysis was relatively stable.

Adverse reaction
TMS is a noninvasive form of brain stimulation. Gener-
ally, TMS is considered safe and well-tolerated. In this 
systematic review, only three included studies reported 
adverse effects [43, 45, 46, 48]. Those patients in TMS 
groups felt discomfort because of the unique sounds 
that occur during stimulation and facial muscle contrac-
tions [45]. Three studies showed that several patients 
experienced transient headaches or dizziness in the 
TMS group, and patients in sham or control group com-
plained light dizziness or headache [43, 46, 48]. However, 
these symptoms disappeared quickly without any spe-
cific interventions. These symptoms disappeared quickly 
without any specific interventions.

Discussion
This comprehensive meta-analysis involved an in-depth 
review of ten randomized controlled trials, showing the 
significant superiority of TMS over the control group 

Fig. 3 A forest plot of the effect of TMS on cognitive function in stroke patients. Abbreviations: SMD Standardized mean differences, CI confidence 
intervals
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in enhancing the overall cognitive function of stroke 
patients, while presenting minimal adverse reactions. 
These findings not only align with but also reinforce pre-
vious meta-analytic results in this field. Moreover, TMS 
demonstrated potential in improving the recovery of 
activities of daily living in stroke patients. However, sub-
group analysis did not reveal a clear advantage of TMS 
over the control group in terms of enhancing scores on 
the LOTCA and RBMT scales, indicating the necessity 
for further research in this area.

Many stroke patients in the process of recovery often 
encounter various cognitive deficits, such as difficulties 
in attention, memory, executive functioning, and infor-
mation processing [60]. The occurrence of cognitive 
impairment is closely related to the damage of specific 
brain regions such as the frontal lobe, anterior temporal 
lobe, cingulate gyrus, and hippocampus [61]. Cerebral 
ischemic injury-induced cognitive impairment involves 

numerous signaling pathways. Various transcription fac-
tors, intracellular adhesion molecules, and endogenous 
growth factors play a role in the pathogenesis of stroke-
related cognitive impairment, offering potential thera-
peutic targets for treatment [62]. Preclinical mechanisms 
for cognitive function improvement after stroke include 
neuroplasticity, angiogenesis, inflammatory response 
modulation, and neurotrophic factor activity. These 
processes contribute to brain repair, synaptic rewiring, 
and functional recovery [63, 64]. TMS is a non-invasive 
technique that targets specific areas of the cerebral cor-
tex. TMS studies have provided valuable insights into 
the pathophysiology of neurodegenerative disorders and 
stroke, further enhancing our understanding of post-
stroke brain reorganization [65].

The results of our study indicated a significant 
improvement in global cognitive function with the 
use of TMS in stroke patients. The global cognitive 

Fig. 4 Subgroup analysis of LF-rTMS, HF-rTMS and iTBS on cognitive function in stroke patients. Abbreviations: SMD Standardized mean differences, 
CI confidence intervals, LF-rTMS low-frequency repetitive transcranial magnetic stimulation, HF-rTMS High-frequency repetitive transcranial magnetic 
stimulation, iTBS intermittent theta burst stimulation
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assessment tools used in this study included MMSE, 
MoCA, and RBANS. Although MMSE and MOCA are 
two cognitive screening tools, many studies use these 
two scales to assess patient’s cognitive status before 
and after treatment for clinical trial or practice [66]. In 
this study, the intervention types of TMS included HF-
rTMS, LF-rTMS, and iTBS. Subgroup analyses revealed 
that all three TMS treatments had a positive impact on 
global cognitive function in stroke patients. According 

to the theory of imbalanced interhemispheric interac-
tions induced by stroke [67], HF-rTMS and iTBS pro-
tocols were considered “excitatory”, while LF-rTMS was 
considered ‘‘inhibitory” [68]. The dorsolateral prefrontal 
cortex (DLPFC) plays a critical role in cognitive control, 
and applying TMS to the DLPFC can enhance cognitive 
processing [69]. The left DLPFC has been linked to the 
regulation of stress-related cognitive processes and phys-
iological responses [61, 70]. Among the selected studies, 

Fig. 6 Subgroup analysis of TMS on the improvement of MBI. Abbreviations: MBI modified Barthel index, SMD standardized mean differences, CI confi-
dence intervals

 

Fig. 5 Subgroup analysis of TMS on the improvement of LOTCA, RBMT scores. Abbreviations: LOTCA Loewenstein occupational therapy cognitive assess-
ment, RBMT Rivermead behavioral memory test, SMD standardized mean differences, CI confidence intervals
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eight chose the left DLPFC as the stimulation site, while 
the remaining studies focused on the right or contra-
lateral DLPFC. The excitatory stimulation of the left 
DLPFC and inhibitory stimulation of the right DLPFC 
may enhance cognitive function in stroke patients, with 
potential dependence on handedness. Research confirms 
that the dominant DLPFC hemisphere is typically located 
in the left hemisphere for the majority of right-handed 
individuals, while 16.7% of left-handed individuals also 
exhibit left-sided dominance in their DLPFC hemisphere 
[71]. Subgroup analysis indicated that there was no sta-
tistically significant difference between the two groups 
when using the LOTCA and RBMT scales. The LOTCA 
test involves multiple cognitive tasks and typically takes 
around 45 minutes to complete. LOTCA is considered 
to be a time-consuming and demanding tool, offering a 
more comprehensive assessment compared to other cog-
nitive evaluations like the MMSE or MoCA [72]. In the 
subgroup analysis, it was not conclusively demonstrated 
that TMS intervention led to a superior improvement in 
patients’ LOTCA scores, thus further research is needed 

to confirm this. The RBMT, on the other hand, is specifi-
cally designed to detect impairment in everyday memory 
function, which includes various domains of memory 
function such as immediate memory, delayed mem-
ory, recognition memory, prospective memory, visual 
memory, verbal memory, spatial memory, and orienta-
tion [73]. Some researchers have found that TMS has a 
limited effect on working memory in patients with brain 
disorders [74]. Another study did not observe a signifi-
cant effect of TMS on working memory in patients with 
Alzheimer’s disease [75]. In our study, we observed that 
the effect of TMS on memory improvement was not 
superior to that of the control group. TMS may pri-
marily improve cognitive function in stroke patients by 
enhancing their executive function [52, 76]. Research has 
shown that TMS can enhance mental flexibility and task-
switching abilities in the executive function of patients 
with mild cognitive impairment [77]. In terms of the daily 
living abilities of stroke patients, our study found that 
TMS can significantly improve their Barthel Index scores 
compared to the control group, indicating that TMS can 

Fig. 7 Begg’s funnel plot
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enhance their ability to perform daily task. Although the 
MBI does not directly measure cognitive function, it does 
reflect a patient’s level of independence in performing 
these tasks, which can be influenced by cognitive impair-
ment. TMS may potentially reduce the risk of depression 
in post-stroke patients, thereby further enhancing their 
daily life capabilities [78]. When it comes to adverse reac-
tions, TMS therapy generally demonstrates good safety. 
The most common side effects were headache, fatigue, 
and pain/discomfort at the stimulation site [79], which 
are typically mild and easily manageable. A rare but seri-
ous adverse event of TMS treatment is seizure [80]. In 
this study, we observed that adverse reactions to TMS 
involved headache and dizziness, both of which promptly 
resolved without the need for specific interventions.

Limitation
Our meta-analysis applied strict inclusion and exclusion 
criteria. However, this study does have several limita-
tions: (a) Variations in stimulation frequency and inter-
vention duration existed among the included studies, 
and most of the studies had relatively small sample sizes. 
(b) The randomized controlled trials lacked standardiza-
tion. Some studies did not include sham stimulation as 
negative controls, and there were instances where allo-
cation concealment or blinding was not properly imple-
mented. (c) Differences in participant age and variations 
in the severity of their illnesses may have influenced the 
rehabilitation outcomes. (d) The effectiveness of TMS 
administration in these studies may not be definitively 

confirmed due to the limited number of available stud-
ies. Given these limitations, it is important to note that 
the conclusions drawn from this meta-analysis may be 
affected.

Conclusion
Overall, this meta-analysis has shown that TMS is a safe 
and effective non-invasive neural modulation tool in the 
treatment of post-stroke cognitive impairment. TMS 
has shown significant improvements not only in global 
cognitive abilities but also in activities of daily living for 
stroke patients. However, it is worth noting that TMS has 
been linked to certain adverse effects, such as headaches 
or dizziness. Further research involving larger sample 
sizes and improved experimental design is still required 
to determine the optimal therapeutic protocol and vali-
date the benefits of TMS in treating post-stroke cognitive 
impairment.
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