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Abstract 

Background Despite the frequent diagnostic delays of rare neurologic diseases (RND), it remains difficult to study 
RNDs and their comorbidities due to their rarity and hence the statistical underpowering. Affecting one to two 
in a million annually, stiff person syndrome (SPS) is an RND characterized by painful muscle spasms and rigidity. 
Leveraging underutilized electronic health records (EHR), this study showcased a machine-learning-based framework 
to identify clinical features that optimally characterize the diagnosis of SPS.

Methods A machine-learning-based feature selection approach was employed on 319 items from the past medi-
cal histories of 48 individuals (23 with a diagnosis of SPS and 25 controls) with elevated serum autoantibodies 
against glutamic-acid-decarboxylase-65 (anti-GAD65) in Dartmouth Health’s EHR to determine features with the high-
est discriminatory power. Each iteration of the algorithm implemented a Support Vector Machine (SVM) model, 
generating importance scores—SHapley Additive exPlanation (SHAP) values—for each feature and removing one 
with the least salient. Evaluation metrics were calculated through repeated stratified cross-validation.

Results Depression, hypothyroidism, GERD, and joint pain were the most characteristic features of SPS. Utilizing these 
features, the SVM model attained precision of 0.817 (95% CI 0.795–0.840), sensitivity of 0.766 (95% CI 0.743–0.790), 
F-score of 0.761 (95% CI 0.744–0.778), AUC of 0.808 (95% CI 0.791–0.825), and accuracy of 0.775 (95% CI 0.759–0.790).

Conclusions This framework discerned features that, with further research, may help fully characterize the pathologic 
mechanism of SPS: depression, hypothyroidism, and GERD may respectively represent comorbidities through com-
mon inflammatory, genetic, and dysautonomic links. This methodology could address diagnostic challenges in neu-
rology by uncovering latent associations and generating hypotheses for RNDs.
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Background
Of more than 6,000 rare diseases that affect about 6% of 
the global population [1, 2], at least half are life-threat-
ening or chronically debilitating dysfunctions of the 
central or peripheral nervous system [3]. However, due 
to the medical communities’ limited expertise in unu-
sual disease presentations and insufficient diagnostic 
tools, rare neurologic diseases (RNDs) are frequently 
detected with a delay. Despite the socioeconomic bur-
den of such diseases, the disorders’ rarity hinders the 
accrual of sufficient statistical power appropriate for 
systematic exploration of their pathological and clini-
cal features, which are crucial for optimizing diagnostic 
accuracy and precision [4].

Recent advancements in artificial intelligence and 
machine learning (ML) have introduced novel strate-
gies to study the pathologies and treatment outcomes 
for RNDs. Applying ML to electronic health records 
(EHR) is demonstrating increasing promise in the 
accurate detection of rare diseases and is gaining trac-
tion as decision support systems due to its strengths in 
extracting knowledge and identifying otherwise elusive 
associations [5–7]. Such capabilities are offering oppor-
tunities to mine clinical data, even retrospectively, to 
augment the diagnostic clarification and confirmation 
of rare diseases and validate co-occurring character-
istics amongst affected individuals [8]. These insights 
bolster the case for ML’s increasingly larger role in 
decoding rare diseases and perhaps even inspiring fresh 
hypotheses based on newly unearthed correlations.

Stiff person syndrome (SPS) is an RND characterized 
by axial muscle stiffness and painful spasms, affect-
ing only one to two in a million annually [9, 10]. While 
hallmark electromyography findings, symptomatic alle-
viation from benzodiazepine therapy, and the presence 
of autoantibodies against glutamic-acid-decarboxy-
lase-65 (anti-GAD65) suggest SPS, diagnosis still relies 
on subjective clinical judgment, given the condition’s 
variable and poorly understood presentation [11, 12]. 
This ambiguity often leads to misdiagnosis and signifi-
cant delays in diagnostic confirmation (mean delay of 
6.2 years) and treatment initiation. Like many other 
RNDs, the rarity of SPS leads to insufficient statistical 
power, challenging the identification of relevant disease 
interrelationships. In this retrospective proof-of-prin-
ciple study, we showcased the utility of ML models on 
EHR to overcome the constraints of conventional sta-
tistical tests and highlight the capability of such mod-
els to identify potential clinical features that may bear 
comorbid associations in the pathology of SPS.

Methods
Subject characteristics
To date, there exists no consensus on the ‘ideal’ sam-
ple size in ML analyses of EHR-based clinical data [13]. 
While higher sample sizes minimize type II errors, rare 
diseases are prone to mislabeling which can exacerbate 
type I errors, which are equally, if not more worrisome 
than insufficiencies in statistical power [14]. To that end, 
in this single-center retrospective study, we maintained a 
strict inclusion criterion with carefully selected patients 
with SPS and controls based on positive serum antibody 
titers to avoid any mislabeling of data and preserve model 
performance. Thus, our retrospective cohort consisted 
of 48 patients who were seen at Dartmouth Health from 
January, 2010 to January, 2020 and had elevated serum 
anti-GAD65 titers (≥ 0.03 nmol/L). Of these 48 patients, 
23 were diagnosed with SPS by neurologists. All subjects’ 
past medical history (problem list) items from the EHR 
were binarized (1 if present; 0 otherwise), resulting in 319 
unique items. This study was approved by the Commit-
tee for the Protection of Human Subjects at Dartmouth 
Health (STUDY02000166) and followed the Strengthen-
ing the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) reporting guideline.

Data analysis and feature selection
Patient demographics as well as relevant binarized 
clinical characteristics based on previous literature on 
comorbidities of SPS (e.g., autoimmune processes) were 
evaluated via t-tests and Fisher’s exact tests in SPSS [15, 
16].

To identify the key features that best characterize SPS 
among the 319 binarized items, we applied a contribution 
selection algorithm (CSA), an iterative process that opti-
mizes a classifier’s performance by progressively evaluat-
ing and reranking features [17]. We adopted a backward 
elimination approach with a support vector machine 
(SVM) classification model featuring a Gaussian kernel 
for its superior versatility relative to linear or polynomial 
kernel functions [18].

Beginning with 319 features, each iteration of the CSA 
performs three tasks: 1) computes the SHapley Additive 
exPlanation (SHAP) values, which reflect the relative 
contribution of individual features, 2) assesses classifier 
performance, and 3) eliminates the feature with the low-
est SHAP value. Derived from cooperative game theory, a 
feature’s SHAP value signifies the feature’s impact on the 
model’s prediction, reflecting the shifts in prediction in 
response to the presence or absence of that feature [19].

Using the “shap” package and custom scripts in 
Python3, we implemented our algorithm, iterating 
through 319 models of progressively fewer features [19]. 
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We overcame our small sample size limitation by rigor-
ously training our Gaussian kernel-based SVM model 
with both SPS and non-SPS patient cases and validating 
its predictions via a repeated-stratified fourfold valida-
tion scheme. Performance metrics and 95% confidence 
intervals for each model were calculated from 200 rounds 
of bootstrapping. The features employed by the highest-
performing model were subsequently identified, and 
their respective impact on the models’ decision was visu-
alized. The overall architecture for our feature identifica-
tion pipeline is shown in Fig. 1.

Results
Subject characteristics
Baseline demographics and relevant clinical features of 
23 patients with SPS and 25 anti-GAD65 controls were 
analyzed. No statistically significant differences were 
detected in terms of demographics, serum anti-GAD65 
titer, or clinical/psychiatric characteristics/comorbidities 
(p > 0.05) (Table 1).

Identification of relevant features
For each step of CSA, an SVM model was trained using 
the remaining features and validated using a stratified 
fourfold cross-validation scheme. Generally, filtering out 
non-discriminatory features from the models increased 
prediction metrics, as expected.

The model’s performance was enhanced through itera-
tive removal of non-discriminatory features, as depicted 
in Fig.  2A-C. Area under the curve (AUC) reached its 
highest peak of 0.808 (95% CI, 0.791 to 0.825) when using 
5 features: depression, joint pain, hypothyroidism, gas-
troesophageal reflux disease (GERD), and asthma. Sensi-
tivity of 0.766 (95% CI, 0.743 to 0.790), F1-score of 0.761 
(95% CI, 0.744 to 0.778), and accuracy of 0.775 (95% CI, 
0.759 to 0.790) were achieved with the subsequent feature 
set, after excluding asthma. Finally, precision reached a 

peak of 0.817 (95% CI, 0.795 to 0.840), with the following 
feature set, after excluding joint pain. For model inter-
pretation, we focused on the model involving 4 features 
(depression, joint pain, hypothyroidism, and GERD), as it 
achieved the highest number of best performing metrics.

Model interpretation
Throughout the feature selection process, the SHAP 
values of each feature were calculated. A positive SHAP 
value of a feature indicates a shift in the model’s decision 
to characterize an individual as having SPS. To visualize 
the impact of identified features (depression, joint pain, 
hypothyroidism, GERD) on the optimal model’s decision 
to characterize patient as having SPS or not, their SHAP 
values were plotted in a beeswarm plot (Fig.  3A). It is 
noteworthy that the absence of each of these four items 
consistently influenced the classifier’s decision toward 
anti-GAD controls. Figure  3B shows bar graphs calcu-
lated from averaged SHAP values indicating the abso-
lute impact of the features, regardless of their directional 
contribution. Depression emerged as the final remaining 
feature, highlighting its dominant influence in character-
izing SPS.

Discussion
We leveraged EHR and employed a data-driven feature 
selection approach (i.e. CSA) to identify medical his-
tory items that optimally characterize SPS. By using ML 
models to classify patients with SPS and anti-GAD65 
controls, our methodology allowed us to determine clini-
cal features that may be linked with the diagnosis of SPS: 
depression, hypothyroidism, GERD, and joint pain. This 
study, to the best of our knowledge, is the first attempt 
to identify features and disease interrelationships from 
otherwise underutilized health information in a primary 
RND.

Fig. 1 Architectural overview of support vector machine-based contribution selection algorithm (CSA) pipeline. After binarization of 319 
medical history items from all subjects, each iteration of CSA computes the SHapley Additive exPlanation (SHAP) values for each feature, assesses 
the model’s performance in classifying patients with stiff person syndrome vs controls, and eliminates feature with the lowest SHAP value. Features 
in the best-performing model are identified
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Our findings align with results from comorbidity 
studies and case reports pertaining to SPS [16, 20, 21]. 
Depression emerged as the most characteristic fea-
ture, which corroborates the established higher risk 
of depression and other psychiatric comorbidities in 
patients with SPS compared to the general population 
[16]. Given the chronic nature of SPS, the persistent 
pain these patients endure may render them more sus-
ceptible to depression [22]. Hence, characterizing the 

quality and progression of depression patients with SPS 
experience (e.g. depressed mood from chronic pain, 
anhedonia, sleep difficulties, etc.) may help guide the 
diagnosis of SPS. Furthermore, there is growing evi-
dence that inflammatory neurologic disorders, like 
multiple sclerosis, may increase the risk of affective 
dysregulation [23, 24]. Given the presence of depres-
sion as the strongest characterizer of SPS, studying 
the relationship between neuro-inflammation and 

Table 1 Demographics and clinical characteristics

Statistical differences were computed via Welch’s t-tests or Fisher’s exact tests

SPS + (N = 23) SPS- (N = 25) p-value

Demographic Characteristics
 Age – years, mean (SD) 54.3 (10.7) 45.9 (21.6) 0.090

 Female sex – no./total no. (%) 13/23 (57) 12/25 (48) 0.578

 White ethnicity – no./total no. (%) 18/23 (78) 18/25 (72) 0.743

Clinical Characteristics (Known comorbidities)
 Anti-GAD65 titer (serum) nM, mean (SD) 161.7 (521.1) 93.8 (299.1) 0.588

 Diabetes mellitus type 1 no./total no. (%) 1/23 (4) 2/25 (8) 1.000

 Graves disease no./total no. (%) 1/23 (4) 1/25 (4) 0.180

 Hashimoto’s thyroiditis no./total no. (%) 2/23 (9) 2/25 (8) 0.180

 Celiac disease no./total no. (%) 0/23 (0) 2/25 (8) 0.180

 Epilepsy no./total no. (%) 1/23 (4) 2/25 (8) 0.180

 Limbic encephalitis no./total no. (%) 1/23 (4) 1/25 (4) 0.180

 Autoimmune encephalitis no./total no. (%) 0/23 (0) 1/25 (4) 0.180

Clinical Characteristics (Psychiatric)
 Trauma/stress spectrum no./total no. (%) 4/23 (17) 2/25 (8) 0.407

 Anxiety spectrum no./total no. (%) 9/23 (39) 7/25 (28) 0.543

 Schizophrenia spectrum no./total no. (%) 4/23 (17) 1/25 (4) 0.180

 Unipolar mood spectrum no./total no. (%) 12/23 (52) 7/25 (28) 0.140

 Bipolar mood spectrum no./total no. (%) 2/23 (9) 0/25 (0) 0.224

 OCD spectrum no./total no. (%) 2/23 (9) 0/25 (0) 0.224

 Personality disorders no./total no. (%) 3/23 (13) 0/25 (0) 0.102

 Somatic symptom disorders no./total no. (%) 3/23 (13) 0/25 (0) 0.102

Fig. 2 Determination of Ideal Feature Set Through Evaluation of Model Performance. Model performance was calculated at every iteration 
of the backward elimination feature selection process. A F1-score and sensitivity are optimized at four features with 0.761 (95% CI, 0.744 to 0.778) 
and 0.766 (95% CI, 0.743 to 0.790), respectively, while precision reached a peak with three features with 0.817 (95% CI, 0.795 to 0.840). B Area 
under the curve (AUC) is optimized at five features with 0.808 (95% CI, 0.791 to 0.825). C Accuracy is optimized at four features with 0.775 (95% CI, 
0.759 to 0.790)
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depression in SPS patients may lead to more targeted 
interdisciplinary therapies.

The primary utility of our approach is less to develop 
a diagnostic algorithm for immediate use, but to gener-
ate new hypotheses for RNDs even when the pathologi-
cal mechanisms are not yet fully characterized. This is 
exemplified by our identification of hypothyroidism as 
one of the final discriminative features of SPS. This not 
only supports the suspected autoimmune pathogenesis 
of SPS [12], but also prompts further inquiry to examine 
a potential genetic association between SPS, type I dia-
betes mellitus, and autoimmune thyroid disorders (e.g. 
Hashimoto thyroiditis) through a common HLA sub-
type. Similarly, our identification of GERD, which has 
been reported to be significantly associated with depres-
sion [21], as one of the final characteristic features of 
SPS highlights the utility of our framework in uncover-
ing poorly understood extra-axial dysautonomic mani-
festation of SPS involving the gastrointestinal tract [25, 
26]. As the recognized role of autoantibodies in multiple 
gastrointestinal dysmotility disorders, including anti-
GAD65 in diseases implicated in GERD [26, 27], con-
tinues to increase, further research may shed light on a 
potential pathophysiology that is common in both central 
and autonomic nervous system dysfunctions of SPS.

RNDs are one of the most frequently studied groups 
of rare diseases [28]. However, patients with a broad 
spectrum of RNDs continue to experience delays 
(approximately 4 years) in accurate diagnosis follow-
ing symptom onset, which is particularly concerning for 
illnesses where early intervention improves prognosis 
and quality of life [3]. ML is transforming medicine by 
unearthing previously unrecognized disease associations 

and enriching physicians’ fund of knowledge [7]. And 
together with artificial intelligence, such innovation syn-
ergistically complement physicians’ diagnostic precision 
and accuracy whilst optimizing their anticipation of rel-
evant comorbidities. Our feature identification strat-
egy via CSA represents a scalable application of ML in 
maximizing the utility of EHR to inform future research 
for RNDs, thereby circumventing the constraints of sta-
tistical underpowering. Together with hypothesis-driven 
investigations, the integration of ML can accelerate trans-
lational research and accommodate personalized care for 
patients with RNDs.

One limitation of our study is the high features-to-
instances ratio intrinsic to the epidemiology of SPS, 
which amplified the complexity of feature selection. As a 
proof-of-principle study, we sought to mitigate this con-
straint, which also affects traditional statistical models, 
as well as the absence of an external validation cohort 
by implementing a repeated-stratified validation scheme 
within our available cohort. Some forms of SPS may be 
linked with other immune processes (e.g., myasthenia 
gravis or progressive encephalomyelitis with rigidity and 
myoclonus) or represent a paraneoplastic process, such 
as in the context of positive anti-amphiphysin antibodies 
[29–31]. Our sample size limitation restricts our ability 
to identify such associations. Future work should aim to 
optimize this features-to-instances ratio and externally 
validate the ML models by applying the identified fea-
ture set on more comprehensive data formed by multiple 
institutions and networks. Another shortcoming of our 
study pertains to the heterogeneity inherent to EHR. We 
addressed this by categorizing and, in some instances, 
combining some symptoms and diagnoses. For example, 

Fig. 3 Beeswarm plot and bar graph summarizing SHapley Additive explanation (SHAP) values of the optimal model. A The beeswarm plot 
presents the SHAP values for key features—namely depression, hypothyroidism, GERD, joint pain—ranked according to their relative valence. 
This set of features was selected from the model with the highest performance indices. Each dot represents a predicted case, and color reflects 
the original value of a feature (red = feature present, blue = feature absent). For each prediction, a positive SHAP value on the x-axis indicates 
an increase in the model’s tendency to characterize the patient as having stiff person syndrome (SPS) and vice versa. Notably, the absence of any 
of these features tends to steer the classifier’s prediction towards anti-GAD65 controls. B The bar graph demonstrates the overall absolute impact 
of the selected features in the models’ decision-making process. Depression emerges as the feature with the highest impact on the optimized 
model’s decision. Collectively, the plots visually underscore the discriminative power of these features in SPS diagnosis
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due to the paucity of cases under each category, depres-
sive symptoms and major depressive disorder were con-
solidated into a single category: “depression.” Future 
interdisciplinary studies that incorporate multimodal 
data including neuropsychiatric questionnaires and elec-
tromyography findings will provide a more complete 
understanding of the individual subjects.

Conclusions
Our ML-based feature selection approach enabled the 
processing of underutilized EHR and identified per-
tinent medical items that warrant further research to 
fully characterize SPS: depression, hypothyroidism, and 
GERD may reflect comorbid conditions of SPS linked by 
inflammation, genetics, and the autonomic nervous sys-
tem. This data-driven approach can complement more 
targeted investigations to explore RNDs and refine their 
diagnostic criteria.
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