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Abstract
Background Approximately 70% of patients receiving neurotoxic chemotherapy (e.g., paclitaxel or vincristine) will 
develop chemotherapy-induced peripheral neuropathy. Despite the known negative effects of CIPN on physical 
functioning and chemotherapy dosing, little is known about how to prevent CIPN. The development of efficacious 
CIPN prevention interventions is hindered by the lack of knowledge surrounding CIPN mechanisms. Nicotinamide 
adenine dinucleotide (NAD+) and cyclic-adenosine diphosphate ribose (cADPR) are potential markers of axon 
degeneration following neurotoxic chemotherapy, however, such markers have been exclusively measured in 
preclinical models of chemotherapy-induced peripheral neuropathy (CIPN). The overall objective of this longitudinal, 
observational study was to determine the association between plasma NAD+, cADPR, and ADPR with CIPN severity in 
young adults receiving vincristine or paclitaxel.

Methods Young adults (18–39 years old) beginning vincristine or paclitaxel were recruited from Dana-Farber Cancer 
Institute. Young adults completed the QLQ-CIPN20 sensory and motor subscales and provided a blood sample 
prior to starting chemotherapy (T1) and at increasing cumulative vincristine (T2: 3–5 mg, T3: 7–9 mg) and paclitaxel 
(T2: 300–500 mg/m2, T3: 700–900 mg/m2) dosages. NAD+, cADPR, and ADPR were quantified from plasma using 
mass spectrometry. Metabolite levels and QLQ-CIPN20 scores over time were compared using mixed-effects linear 
regression models and/or paired two-sample tests.

Results Participants (N = 50) were mainly female (88%), white (80%), and receiving paclitaxel (78%). Sensory and 
motor CIPN severity increased from T1–T3 (p < 0.001). NAD+ (p = 0.28), cADPR (p = 0.62), and ADPR (p = 0.005) values 
decreased, while cADPR/NAD+ ratio increased from T1–T3 (p = 0.50). There were no statistically significant associations 
between NAD + and QLQ-CIPN20 scores over time.

Conclusions To our knowledge, this is the first study to measure plasma NAD+, cADPR, and ADPR among patients 
receiving neurotoxic chemotherapy. Although, no meaningful changes in NAD+, cADPR, or cADPR/NAD+ were 
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Introduction
The symptoms of chemotherapy-induced peripheral 
neuropathy (CIPN) following neurotoxic chemotherapy 
administration (e.g., vincristine or paclitaxel) include 
bilateral, upper/lower extremity sensory (e.g., numbness, 
tingling, pain) and/or motor impairments (e.g., muscular 
weakness) [1] that may negatively affect physical function 
[2–4]. Resultantly, CIPN-induced reductions in physical 
function may necessitate chemotherapy dose modifica-
tions, thereby increasing mortality risk because patients 
are not receiving the optimal chemotherapy dose. Despite 
the known negative effects of CIPN, there are no recom-
mended treatments for CIPN prevention [5]. The devel-
opment of efficacious CIPN prevention interventions is 
hindered by the lack of knowledge surrounding CIPN 
mechanisms [6]. The first step towards designing effec-
tive CIPN prevention clinical trials is to gain a greater 
understanding of CIPN mechanisms.

Chemotherapy-induced peripheral neuropathy is 
characterized by a dying back axon degeneration [7], 
in which the most distal nerve endings are affected and 
intraepidermal nerve fiber innervation decreases [8]. 
Vincristine and paclitaxel, microtubule-targeting chemo-
therapy agents, are thought to induce axon degeneration 
by interfering with anterograde and/or retrograde axonal 
transport of proteins, organelles, and mRNAs [8–10]. 
Deficits in axonal transport of nicotinamide nucleotide 
adenylyltransferase 2 (NMNAT2) are thought to lead to 
the activation of sterile-α and Toll/interleukin 1 receptor 
motif containing protein 1 (SARM1), which is the main 
executioner of axon degeneration [10, 11]. Other poten-
tial contributors to vincristine or paclitaxel-induced axon 
degeneration include mitochondrial toxicity and altera-
tions in intracellular calcium homeostasis [7].

One potential therapeutic target of axon degenera-
tion is nicotinamide adenine dinucleotide (NAD+) [12], 
a cofactor that plays important roles in cell metabolism 
and signaling [13]. NAD+ decreases following axonal 
injury in part due to loss in active NMNAT2 function, 
which synthesizes NAD from nicotinamide mononucleo-
tide [NMN] [10]. Recent evidence demonstrates that an 
increase in NMN/NAD+ ratio following NMNAT2 loss 
activates SARM1 [14]. Subsequently, SARM1 activation 
further accelerates NAD+ loss and breaks down NAD+ 
to cyclic-adenosine diphosphate ribose (cADPR), or 
ADPR and nicotinamide [11, 15, 16]. Increased SARM1-
mediated cyclic ADPR production leads to an influx of 

calcium in the axons and accelerates SARM1 dependent 
axon degeneration, while loss of NAD + results in a lower 
energetic state [17]. Currently, the ratio of cADPR/NAD+ 
is thought to be a promising marker of relative SARM1 
activity as the ratio accounts for SARM1 enzymatic 
activity (i.e., SARM1 breaks down NAD+ into cADPR) 
and substrate depletion (i.e., NAD+ rapidly decreases in 
response to SARM1 activity) [14, 18].

While NAD+ and cADPR are potential markers of 
SARM1 activity [19], to date, such markers have been 
exclusively measured in nerves [18, 19]. To our knowl-
edge, no studies to date have explored the relationship 
among NAD+, cADPR, and ADPR with CIPN severity 
in peripheral blood among patients receiving neurotoxic 
chemotherapy. The primary purpose of this longitudinal, 
observational study was to determine the association 
between plasma NAD+ levels and CIPN severity in young 
adults receiving vincristine or paclitaxel. An exploratory 
aim was to determine the association between cADPR 
and ADPR with CIPN severity.

Materials and methods
Sample and setting
Young adults beginning vincristine or paclitaxel were 
recruited from the breast cancer, leukemia, and lym-
phoma disease centers at Dana-Farber Cancer Institute. 
Patients were eligible if they were 15–39 years old, Eng-
lish speaking, had a diagnosis of lymphoma, leukemia, or 
breast cancer, and planned to receive a cumulative vin-
cristine dose of ≥ 7 mg or a cumulative paclitaxel dose of 
≥ 700 mg/m2. Participants were excluded from study par-
ticipation if they had a prognosis ≤ 3 months, neuropathy 
due to other causes (e.g., diabetes), planned to receive 
other neurotoxic agents (e.g., platinums) concurrently 
with vincristine and paclitaxel, were enrolled in symp-
tom management trials that may alter CIPN severity, or 
previously received neurotoxic chemotherapy. While 
axon degeneration may be a common pathophysiologi-
cal mechanism of CIPN among all neurotoxic agents, 
we only recruited young adults receiving vincristine or 
paclitaxel because both agents exert their antineoplas-
tic effects via microtubule interference [7]. In addition, 
as there is mixed evidence surrounding whether young 
or old age predicts CIPN severity [20–22], by testing 
our aims in a young adult population, we attempted to 
decrease the possibility of participants’ age confound-
ing the analyses. Study oversight was provided by the 

observed among young adults receiving paclitaxel or vincristine. Future research in an adequately powered sample 
is needed to explore the clinical utility of biomarkers of axon degeneration among patients receiving neurotoxic 
chemotherapy to guide mechanistic research and novel CIPN treatments.
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Dana-Farber/Harvard Cancer Center Office for Human 
Research Studies (19–862). Verbal consent was obtained 
from all study participants. A waiver of documentation 
of informed consent was approved by the institutional 
review board due to the minimal risk nature of the study 
and the need for social distancing due to the COVID-19 
pandemic. Clinical trial number: not applicable.

Measures
European Organization of Research and Treatment of 
Cancer Quality of Life Questionnaire-Chemotherapy-
Induced Peripheral Neuropathy Sensory and Motor Sub-
scales (QLQ-CIPN20). The QLQ-CIPN20 sensory (nine 
items) subscale measures participants’ self-reported 
severity of numbness, tingling, and pain in the hands/
feet, while the motor subscale (eight items) measures 
participants’ self-reported loss of strength and/or asso-
ciated functional limitations. Both subscales are scored 
from 0 to 100 (higher scores = worse CIPN) [23]. While 
there is evidence supporting the reliability and valid-
ity of the original subscales [24], recent data has called 
into question the stability of the subscale structure of the 
QLQ-CIPN20 and rather, provided support for scoring 
the measure as an additive checklist [25]. As such, numb-
ness and tingling severity was also explored using the 
four items of the sensory subscale that ask about numb-
ness or tingling in the hands and feet, respectively.

NAD+and related metabolites. Plasma was separated 
from whole blood according to standard operating pro-
cedure [26] by the Clinical Research Laboratory at Dana-
Farber Cancer Institute following the participants’ blood 
draw. NAD+, cADPR, and ADPR were quantitatively 
profiled from plasma using a mass spectrometry-based 
metabolomics platform developed by the Dana-Far-
ber Cancer Institute Metabolomics Core. Specifically, 
1–3 ml of human plasma was extracted in 80% final vol-
ume methanol spiked with 13.5 nM isotopically labelled 
13C5 NAD (Cambridge Isotope Laboratories, Inc). After 
extraction, samples were dried down in a centrifu-
gal vacuum unit and reconstituted in 80% acetonitrile 
with 1% formic acid. Proteins and phospholipids were 
removed via Ostro pass-through plates (P/N 186005518, 
Waters). Of the resulting mixture, 20 ul of each sample 
was transferred to a glass vial for LC/MS analysis, and 5 
ul of each sample was pooled together for a QC sample. 
Targeted measurements were conducted on a QExac-
tive HF-X mass spectrometer equipped with a HESI II 
probe. The mass spectrometer was coupled to a Van-
quish binary UPLC system (Thermo Fisher Scientific, San 
Jose, CA). For chromatographic separation prior to mass 
analysis, 5 ul of each metabolite extract was injected 
into an Atlantis Z-HILIC column (2.5  μm, 2.1  mm x 
100 mm, Waters) equipped with a guard column (1.7 μm, 
2.1 × 5 mm). Mobile phase B was 95% acetonitrile with 15 

mM ammonium bicarbonate and Mobile phase A was 
95% water with 15 mM ammonium bicarbonate. A gra-
dient was applied as follows: 0–0.75  min, 95% B; 0.75–
2.50 min, 77% B; 2.50–4.00 min, 77% B; 4.00–6.00, 50% B; 
6.00–7.00 min, 50% B; 7.1 min, 95% B, 10.00 min, 95% B. 
Flow rate for chromatography was 500 µl min− 1. Full scan 
(m/z 70–900) negative mode data were acquired from 0 
to 3.33 min and from 4.5 to 10 min; from 3.33 to 4.5 min, 
data were acquired in 4-plexed tSIM-mode with a 1.5 Da 
isolation window, 60,000 resolution, including the follow-
ing ions: 558.06450, ADPR; 662.10250, NAD; 540.05380 
cADPR; 667.11900, 13C5 NAD. The sheath gas flow was 
set to 40 units, the auxiliary gas flow to 8, and the sweep 
gas flow to 1 unit. Spray voltage was set to -3  kV. The 
injection order was randomized, a blank injection was 
conducted between each sample, and every 10 samples 
a QC block consisting of reference standards (purchased 
from Sigma; ADPR A0752; NAD 100-RO; NIST SRM 
1950), and the pooled study sample was measured. A 
PRM experiment was performed on pooled study sample 
as well as authentic chemical standards for each analyte 
(N(CE) 25, 35, 45  V, resolution 30,000). For each sam-
ple, the retention time was determined based on reten-
tion time of the chemical standards in the preceding QC 
block. The target analytes were low abundance in many 
samples; therefore, an expert curation was performed 
to empirically establish a lower limit for the number of 
spectra in which a given analyte needed to be present. In 
most samples, seven or more scans over the chromato-
graphic peak was deemed to result in good peak quality, 
and samples with fewer than seven scans were removed 
from subsequent analyses.

Demographic and cancer treatment-related measures. 
Participants self-reported demographic information 
such as age, gender, race, ethnicity, education, marital 
status, smoking status (i.e., current/never/former) [27, 
28], and employment status. Alcohol use was measured 
using the three alcohol consumption items, modified 
for the United States standard drink size and guidelines 
[29, 30], of the Alcohol Use Disorders Identification Test 
(AUDIT) [31–33]. Each item is scored from 0 to 6 (0–18 
total score; scores ≥ 7 for women and ≥ 8 for men indicate 
excessive drinking) [29, 30]. Self-reported anxiety and 
depression [34] were measured as potential confounders 
of CIPN development. The Patient-Reported Outcomes 
Measurement Information System (PROMIS®) Depres-
sion 4a measures participants’ perceptions of mood, 
views of self, and affect over the past week. Each item is 
scored from 1 to 5 (41.0–79.4 transformed total; higher 
scores = worse depression) [35–37]. The PROMISⓇ Anxi-
ety 4a measures self-reported fearfulness, worry, ner-
vousness, and uneasiness over the past week. Each item 
is scored from 1 to 5 (40.3–81.6 transformed total; higher 
scores = worse anxiety) [35, 37]. Study staff abstracted 
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information about cancer type and stage, chemotherapy 
type and dose, medication use, and comorbid conditions 
from the participants’ electronic medical record.

Procedures
Prior to the first paclitaxel or vincristine infusion, 
enrolled participants completed the QLQ-CIPN20, PRO-
MIS Depression 4a, PROMIS Anxiety 4a, AUDIT, and 
the demographics questionnaire (T1). A blood sample 
was also obtained during the participants’ routine labo-
ratory draw prior to chemotherapy at T1. The T2 and 
T3 follow up assessments were administered based on 
cumulative vincristine [38] (T2: 3–5 mg; T3: 7–9 mg) and 
paclitaxel [39] (T2: 350–450 mg/m2; T3: 700–900 mg/m2) 
dosages associated with increased CIPN incidence. At T2 
and T3, participants completed the QLQ-CIPN20, PRO-
MIS Depression 4a, PROMIS Anxiety 4a, and provided a 
blood sample. NAD+ and related metabolites were quan-
tified from plasma at each time point.

Statistical analysis
NAD+, cADPR, ADPR, and cADPR/NAD+ ratio levels 
and QLQ-CIPN20 scores (i.e., sensory subscale, motor 

subscale, and numbness and tingling items) at T2 and T3 
were compared with T1 using a Wilcoxon signed-rank 
test. A generalized estimating equations (GEE) model 
accounting for repeated measures over time, and pre-
liminarily assuming an independence correlation struc-
ture across time points was used to assess the association 
among NAD+ and QLQ-CIPN20 scores adjusting for 
anxiety and depression severity. Exchangeability between 
observations at specific time points was also tried as a 
sensitivity analysis, producing results very similar to the 
ones obtained assuming independence. The model out-
comes were preliminarily transformed using a fourth root 
to approach as much as possible a normal distribution 
(tested using a Shapiro-Wilk test, p-value: 0.719). The 
analysis was stratified by chemotherapy type to deter-
mine changes in NAD+ and CIPN severity among young 
adults receiving paclitaxel or vincristine, respectively.

Results
Sample characteristics
Figure  1 describes participant flow through the study. 
The primary reason for declining participation was 
related to being too busy to participate in research 

Fig. 1 Participant flow diagram. This figure describes participants’ progress through the study
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(e.g., overwhelmed with diagnosis or number of other 
appointments). Fifty-six participants were recruited from 
October 30, 2020 to September 7, 2022. Ultimately, 50 
participants completed the study and were available for 
analysis. Table  1 describes the demographic and cancer 
treatment-related characteristics of the analyzed sample.

Association between metabolite levels and patient-
reported CIPN
Table 2 describes changes in CIPN patient-reported out-
comes scores and metabolite levels as the cumulative 
chemotherapy dose increased from T1 to T3. Overall, 
QLQ-CIPN20 sensory, motor, and numbness and tin-
gling (p < 0.001) severity scores significantly increased 
from T1 to T3. NAD+ (p = 0.28), cADPR (p = 0.62), 
and ADPR (p = 0.005) values decreased from T1 to T3, 
while the cADPR/NAD+ ratio increased from T1 to T3 
(p = 0.50). There was no statistically significant associa-
tion between NAD + and QLQ-CIPN20 sensory score 
over time (p = 0.28). Similar relationships were observed 
among changes in QLQ-CIPN20 motor and numb-
ness and tingling item scores with NAD+, respectively 
(Table 3).

Among young adults treated with paclitaxel, NAD+ 
(mean = -7.1e− 09, p = 0.42, n = 22), cADPR (mean = 
-1.4e− 09, p = 0.94, n = 29), and ADPR (mean = -2.42e− 07, 
p = 0.02, n = 22) decreased from T1 to T3, while the 
cADPR/NAD+ ratio increased (mean = 0.1, p = 0.35, 
n = 20) from T1 to T3. cADPR/NAD+ ratio increased 
by 0.21 from T1 to T2 (p = 0.19, n = 15) (Supplementary 
Table 1). Results of the GEE models indicated that for 
each one-point increase in QLQ-CIPN20 sensory scores, 
NAD+ decreased by 0.02 (p = 0.41). Similar relationships 
were observed among changes in QLQ-CIPN20 motor 
and numbness and tingling item scores with NAD+, 
respectively (Table 3).

Among young adults treated with vincristine, NAD+ 
(mean = -6.43e− 08, p = 0.50, n = 3) cADPR (mean = 
-1.79e− 08, p = 0.31, n = 6), ADPR (mean = -3.57e− 08, 
p = 0.22, n = 7) and the cADPR/NAD+ ratio (mean = -0.11, 
p = 0.75, n = 3) decreased from T1 to T3 (Supplementary 
Table 2). Results of the GEE models indicated that for 
each one-point increase in QLQ-CIPN20 sensory scores, 
NAD+ decreased by 0.05 (p = 0.61). Similar relationships 
were observed among changes in QLQ-CIPN20 motor 
and numbness and tingling item scores with NAD+, 
respectively (Table 3).

Discussion
To our knowledge, this is among the first human stud-
ies to measure longitudinal changes in plasma NAD+, 
cADPR, and ADPR as markers of axon degeneration 
among patients receiving neurotoxic chemotherapy. 
Inconsistent with prior preclinical studies [10, 11, 15, 

16], results of the GEE models revealed non-significant 
decreases in NAD+ levels as CIPN severity worsened 
over time. A difference between prior preclinical work 
and the present study is that the preclinical work dem-
onstrated changes in NAD+ following axon injury at 
one time point [11, 15, 40], whereas the present study 
explored changes in NAD+ over time. It is plausible that 
plasma NAD+ levels were influenced by other variables 
not controlled for in the analysis (e.g., diet, exercise, sleep 
habits, aging [41], other NAD+ cleaving enzymes) [19]. 
For such reasons, NAD+ is currently not considered to be 
the best biomarker of SARM1 activity [18].

cADPR and ADPR levels also decreased from T1 to 
T3 along with NAD+, which is inconsistent with prior 
studies demonstrating that SARM1-induced breakdown 
of NAD+ leads to the increased generation of nicotin-
amide, cADPR, and ADPR [15]. SARM1 activity gen-
erates cADPR and Li et al. (2022) demonstrated that 
increased cADPR production following SARM1 activ-
ity promoted intra-axonal calcium influx that precedes 
paclitaxel-induced axonal degeneration [17]. ADPR may 
not be considered the most promising candidate bio-
marker of SARM1 activity as ADPR is largely produced 
by CD38 [42] and can be quickly metabolized in the cell 
following increased SARM1-induced ADPR genera-
tion [19], which may be a rationale for why we observed 
decreases in ADPR. Nonetheless, despite the conflict-
ing patterns in NAD+, cADPR, and ADPR changes over 
time, we observed non-significant increases in the ratio 
of cADPR/NAD+, particularly between T1 and T2 among 
patients receiving paclitaxel. Thus, while preliminary, the 
changes observed in the ratio of cADPR/NAD+ over time 
provide evidence supporting increased SARM1 activity 
among patients receiving paclitaxel.

Further research to explore the ratio of cADPR/NAD+ 
as a biomarker of axon degeneration related to CIPN may 
be worthwhile and would provide complimentary data to 
the information provided by neurofilament light chain 
levels (i.e., structural components of axons) [43]. The 
measurement of cADPR and the cADPR/NAD+ ratio are 
currently thought to measure subdegenerative levels of 
SARM1 activity and may be useful in mechanistic studies 
[19], while neurofilament light chain levels are thought to 
measure axonal loss [19]. Several studies have explored 
neurofilament light chain levels in peripheral blood as a 
biomarker of axonal damage among patients receiving 
paclitaxel (N = 349 across approximately five studies) [43]. 
Study results have generally shown that neurofilament 
light chain levels increase as cumulative paclitaxel dose 
increases and changes in neurofilament light chain levels 
are associated with worsening CIPN [43]. Clinically, the 
biomarkers are not routinely used in practice for CIPN 
monitoring and treatment decision making [44]. The 
potential validation of the ratio of cADPR/NAD+ and 
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Characteristic Frequency (%)
Age at Consent
Emerging Adults (18–25 years old) 2 (4%)
Young Adult (26–39 years old) 48 (96%)
Median (Range) 35 (21–39)
Sex
Female 44 (88%)
Male 6 (12%)
Race
Asian 6 (12%)
Black or African-American 4 (8%)
White 40 (80%)
Ethnicity
Hispanic or Latino 4 (8%)
Not Hispanic or Latino 43 (86%)
Missing 3 (6%)
Education
Completed high school 4 (8%)
Some college or technical training 9 (18%)
University undergraduate degree 18 (36%)
University post graduate degree 19 (38%)
Marital Status
Single 20 (40%)
Married/Partnered 28 (56%)
Divorced 1 (2%)
Missing 1 (2%)
Employment Status
Working full time 22 (44%)
Working part-time 1 (2%)
Working at home 1 (2%)
Working, but on medical leave 16 (32%)
Not working 7 (14%)
Student 3 (6%)
Smoking Status
Former Smoker 11 (22%)
Never Smoked 37 (74%)
Missing 2 (4%)
Alcohol Use Disorders Identification Test
Positivea 5 (10%)
Negative 45 (90%)
Median (Range) 4 (0–13)
PROMIS Anxiety 4a
T1 Median (Range) 59.8 (40.5–70.2)
T2 Median (Range) 52.9 (40.5–70.2) (n = 49)
T3 Median (Range) 54.5 (40.5–79.7)
PROMIS Depression 4a
T1 Median (Range) 48.9 (41–71.1)
T2 Median (Range) 41 (41–74.4) (n = 49)
T3 Median (Range) 48.9 (41–79.3)
Cancer Type
Leukemia 2 (4%)
Lymphoma 9 (18%)
Breast 39 (78%)
Cancer Stage

Table 1 Demographic characteristics of the enrolled sample at the time of consent (N = 50)



Page 7 of 11Knoerl et al. BMC Neurology          (2024) 24:366 

neurofilament light chains as biomarkers of CIPN and the 
timing of such changes will provide clinicians with mech-
anistic data to corroborate patients’ report of CIPN and 
to potentially guide decisions as to when to dose reduce 
chemotherapy or initiate other treatments for CIPN.

Limitations
There are several limitations to this research. CIPN sever-
ity was measured using patient-reported outcomes only 
and the timing of CIPN measures may have been subopti-
mal given that 58% of participants completed neurotoxic 
chemotherapy by the T3 time point. The high number of 
participants that completed neurotoxic chemotherapy 

Characteristic Frequency (%)
Stage I 6 (12%)
Stage II 27 (54%)
Stage III 8 (16%)
Metastatic 6 (12%)
Unknown 3 (6%)
Chemotherapy Type
Vincristine 11 (22%)
Paclitaxel 39 (78%)
Cumulative Dose Paclitaxel (mg/m2) (n = 39)
T1 Median (Range) 0
T2 Median (Range) 350 (175–480)
T3 Median (Range) 700 (630–800)
Cumulative Dose Vincristine (mg) (n = 11)
T1 Median (Range) 0
T2 Median (Range) 4 (2–6)
T3 Median (Range) 8 (6–10)
Percentage of Planned Treatment at T3
Received < 1/3 of planned treatment 2 (4%)
Received ≥ 1/3 of planned treatment 1 (2%)
Received ≥ 2/3 of planned treatment 18 (36%)
Completed treatment 29 (58%)
Days between T1 and T2
Median (Range) (n = 48) 28.5 (19–116)
Days between T2 and T3
Median (Range) (n = 48) 33.5 (8–129)
Days between T1 and T3
Median (Range) 72 (27–157)
Days between end of treatment and T3
Median (Range) (n = 29) 35 (4–101)
Baseline Medicationsb

Yes 2 (4%)c

None 48 (96%)
T3 Medicationsb

Yes 8 (16%)d

None 42 (84%)
Neurotoxic Chemotherapy Dose Reduction
Yes, neuropathy-related 2 (4%)
Yes, other reasonse 7 (14%)
No 41 (82%)
Notes
a Scores ≥ 7 and 8 indicate a positive score for women and men, respectively (e.g., at risk of hazardous drinking behaviors)
b Represent medications that were documented in participants’ medical records at a given time point that could potentially influence CIPN severity
c One participant was receiving gabapentin and cryotherapy, while another was receiving gabapentin
d Seven participants were receiving gabapentin, one participant was receiving vitamin B complex
e Other reasons for neurotoxic chemotherapy dose reduction or delay included rash, diarrhea, neutropenia, elevated liver function testes, weight loss/failure to 
thrive

Table 1 (continued) 
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by T3 may explain why a decrease in CIPN sever-
ity occurred at T3 in comparison to T2 (i.e., CIPN has 
been demonstrated to decrease after neurotoxic chemo-
therapy completion) [45]. We may have observed more 
severe CIPN among the sample if patient-reported CIPN 
severity was measured at the last paclitaxel or vincristine 
infusion for each individual instead of at specific cumu-
lative dosages. We were unable to initiate recruitment 
from the pediatric oncology clinic at Dana-Farber Can-
cer Institute during the COVID-19 pandemic and thus, 
no adolescents (< 18 years old) were enrolled. Plasma was 
extracted from whole blood approximately one hour after 

the blood draw. It is unclear if this is the best timing for 
plasma extraction from whole blood to optimally mea-
sure the metabolites of interest or if we would have seen 
different changes if the plasma was extracted from whole 
blood immediately after the blood draw. Similarly, given 
that blood was drawn prior to neurotoxic chemotherapy 
administration, we were unable to capture immediate 
changes in metabolite levels in response to neurotoxic 
chemotherapy exposure (e.g., does NAD+ decrease in 
response to NMNAT2 loss and/or as a result of increased 
SARM1 activity) [11, 14]. While the results suggest a 
trend in cADPR/NAD+ ratio from T1 to T2, simulations 

Table 2 Patient-reported outcome scores and metabolite levels from T1 to T3 (N = 50)
Measure T1 T2 T3 T1 – T2 Change T1 – T3 Change
QLQ-CIPN20 Sensory 2.22

(7.7)
9.15 (13.44) 7.41 (10.26) 6.88 (12.87)* 5.19 (10.23)*

QLQ-CIPN20 Motor 2.35 (8.17) 9.06 (18.24) 6.95 (11.26) 6.67 (14.22)* 4.61
(8.47)*

QLQ-CIPN20 Numbness and Tingling 3.17 (10.36) 14.12 (19.19) 13.17 (16.76) 10.88 (18.18)* 10.0 (16.92)*
NAD+ a 1.34e− 07 (9.22e− 08) 1.28e− 07 (1.02e− 07) 1.2e− 07 (1.23e− 07) 1.08e− 8 (1.49e− 07) -1.4e− 08 (1.24e− 07)
cADPRb 6.65e− 08 (6.96e− 08) 6.10e− 08 (5.17e− 08) 6.23e− 08 (7.34e− 08) -3.8e− 09 (8.47e− 08) -4.2e− 09 (7.68e− 08)
ADPRc 2.44e− 07 (6.43e− 07) 7.98e− 08 (9.26e− 08) 1.83e− 07 (5.17e− 07) -1.64e− 07

(-6.26e− 07)
-1.93e− 07 (9.95e− 07)*

cADPR/NAD+ d 0.63 (0.33) 0.79
(0.50)

0.71
(0.40)

0.13
(0.60)

0.08
(0.39)

Notes:

Table 2 describes mean (SD) metabolite and patient-reported CIPN scores at T1, T2, and T3. NAD+, cADPR, ADPR, and cADPR/NAD+ ratio levels and QLQ-CIPN20 scores 
at T2 and T3 were compared with T1 using a Wilcoxon signed-rank test. Relative abundance as normalized mass spectrometer signal intensity is shown for NAD+, 
cADPR, and ADPR

*p < 0.05
a T1 & T3 n = 25, T2 n = 20
b T1 & T3 n = 35, T2 n = 32
c T1 & T3 n = 31, T2 n = 29
d T1 & T3 n = 23, T2 n = 19

Table 3 Association among NAD+ levels and QLQ-CIPN20 subscales scores over Time
Variable Whole Sample Paclitaxel Vincristine

Estimate p Estimate p Estimate p
QLQ-CIPN20 Sensory Subscale -0.02 0.28 -0.02 0.41 -0.05 0.61
Anxiety -0.02 0.60 0.009 0.84 -0.08 0.24
Depression -0.05 0.27 -0.08 0.12 -0.01 0.96
Time 0.09 0.79 -0.02 0.96 0.63 0.54

Estimate p Estimate p Estimate p
QLQ-CIPN20 Motor Subscale -0.02 0.17 -0.01 0.57 -0.07 0.08
Anxiety -0.02 0.54 0.01 0.82 -0.08 0.23
Depression -0.04 0.30 -0.08 0.13 -0.001 0.99
Time 0.09 0.79 -0.02 0.95 0.57 0.52

Estimate p Estimate p Estimate p
QLQ-CIPN20 Numbness and Tingling Items -0.02 0.22 -0.02 0.15 -0.01 0.81
Anxiety -0.02 0.58 0.003 0.94 -0.08 0.29
Depression -0.05 0.26 -0.07 0.16 -0.003 0.98
Time 0.12 0.71 0.01 0.97 0.60 0.58
Notes:

A GEE model accounting for repeated measures across the three time points (time), and preliminarily assuming an independence correlation structure across time 
points was used to assess the association among the 4th root of the NAD+ area and QLQ-CIPN20 scores adjusting for anxiety and depression severity. The values 
approximate the change in the 4th root of the NAD+ area associated with a one-point increase in the respective variables
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based on our pilot data reveal that we would need cADPR 
and NAD+ metabolite data from 174 participants at each 
respective time point to have adequate power to detect 
a ~ 25% difference in mean change of cADPR/NAD+ ratio 
over the same time points during neurotoxic chemo-
therapy in a future study. Finally, while we attempted to 
control for confounding variables in our eligibility crite-
ria, several other factors (e.g., lifestyle, nutrition, physi-
cal activity, or genetics) [46] that were not measured may 
have influenced CIPN severity and hindered the ability to 
determine the relationship between CIPN severity and 
the axon degeneration-related biomarkers of interest in 
this small sample.

Conclusions
Overall, study results demonstrated that plasma NAD+ 
and cADPR did not significantly change over time among 
young adults receiving paclitaxel or vincristine. The 
results also suggested that cADPR/NAD+ ratio increased 
over time, a potential biomarker of SARM1 activity, but 
the changes were not statistically significant and the 
increases were mainly observed among patients receiv-
ing paclitaxel. The study results are revealing, as this is 
the first study to measure plasma NAD+, cADPR, and 
ADPR among patients receiving neurotoxic chemother-
apy. Future research is needed to validate and explore the 
clinical utility of biomarkers of axon degeneration, such 
as cADPR/NAD+ ratio, among patients receiving neuro-
toxic chemotherapy to guide mechanistic research and 
novel treatments for CIPN.
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