Isaias et al. BMC Neurology 2011, 11:88
http://www.biomedcentral.com/1471-2377/11/88

BMC
Neurology

RESEARCH ARTICLE Open Access

Enhanced catecholamine transporter binding in
the locus coeruleus of patients with early
Parkinson disease

loannis U Isaias'**", Giorgio Marotta®, Gianni Pezzoli?, Osama Sabri®, Johannes Schwarz®, Paolo Crenna’,
vallari
Joseph Classen® and Paolo Cavallari’

Abstract

Background: Studies in animals suggest that the noradrenergic system arising from the locus coeruleus (LC) and
dopaminergic pathways mutually influence each other. Little is known however, about the functional state of the
LC in patients with Parkinson disease (PD).

Methods: We retrospectively reviewed clinical and imaging data of 94 subjects with PD at an early clinical stage
(Hoehn and Yahr stage 1-2) who underwent single photon computed tomography imaging with FP-CIT (['*l] N-o-
fluoropropyl-2B-carbomethoxy-3B-(4-iodophenyl) tropane). FP-CIT binding values from the patients were compared
with 15 healthy subjects: using both a voxel-based whole brain analysis and a volume of interest analysis of a priori
defined brain regions.

Results: Average FP-CIT binding in the putamen and caudate nucleus was significantly reduced in PD subjects
(43% and 57% on average, respectively; p < 0.001). In contrast, subjects with PD showed an increased binding in
the LC (166% on average; p < 0.001) in both analyses. LC-binding correlated negatively with striatal FP-CIT binding

-0.29, p < 0.01 and ipsilateral p = -0.29, p < 0.01).

degeneration of dopaminergic nigrostriatal projections.

values (caudate: contralateral, p = -0.28, p < 0.01 and ipsilateral p = -0.26, p < 0.01; putamen: contralateral, p =

Conclusions: These findings are consistent with an up-regulation of noradrenaline reuptake in the LC area of
patients with early stage PD, compatible with enhanced noradrenaline release, and a compensating activity for

Background

The pontine nucleus locus coeruleus (LC) is the major
site of noradrenaline (NA) neurons in the central ner-
vous system, hosting almost half of the NA-producing
neurons in the brain [1].

The LC may play an important role in the pathophy-
siology of Parkinson disease (PD) for several reasons: (i)
as a site of neuronal degeneration as part of PD pathol-
ogy; [2] (ii) as the anatomical origin of projections mod-
ulating dopaminergic action of the substantia nigra; [3]
(iii) as a structure under putative dopaminergic inhibi-
tory control from the ventral tegmental area (VTA)
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which is known to degenerate in PD [4,5]. Based on
physiological functions ascribed to the noradrenergic
system, impaired functioning of LC in PD has been
associated primarily to affective disorders, [6] cognitive
disturbances, [7] sleep disorders, [8] sensory impairment
[2] and autonomic dysfunction [9]. Through its interac-
tions with the dopaminergic system however, the LC
may also have a less direct role in the pathogenesis of
PD via (i) an interplay of catecholamine systems with
one amine cross-talking with receptors belonging to the
other system [10,11] or (ii) extra-synaptic neuro-modu-
latory, metabotroic and trophic activities of noradrena-
line itself [12].

Information on the LC in PD is mainly based on post-
mortem examination of histopathological specimens,
while information on its in vivo function is largely
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absent. Ideally, the LC-NA system and noradrenaline
molecular transporters (NET) should be investigated in
vivo by dedicated, highly specific radiotracers displaying
low background non-NET binding, high sensitivity to
variations in NET density and fast kinetics. As such a
radiotracer is not available for large clinical studies, [13]
we employed single photon computed tomography
(SPECT) with FP-CIT ([***I] N-o-fluoropropyl-2B-car-
bomethoxy-3f3-(4-iodophenyl) tropane) in a large, homo-
geneous cohort of early stage PD patients. Although FP-
CIT is mainly used for assessing striatal dopamine reup-
take transporters, it has shown sensitivity, albeit lower,
to NET [14]. Therefore, when applied to an anatomical
region with known low dopamine reuptake transporter
capacity such as the LC, it allows investigation of the
NA-dependent synaptic activity.

Methods
Subjects
We retrospectively reviewed clinical and imaging data of
94 subjects with idiopathic PD in whom FP-CIT SPECT
was performed at the “Ospedale Maggiore Policlinico”
in Milano within five years of the onset of motor symp-
toms. Fifteen healthy subjects (healthy controls, HC)
were prospectively enrolled for comparisons of FP-CIT
binding. At the time of SPECT, HC did not suffer from
any disease and were not taking any medications. Clini-
cal inclusion criteria for subjects with PD were: (a) diag-
nosis according to the UK Parkinson Disease Brain
Bank criteria; (b) absence of any signs indicative for aty-
pical parkinsonism (e.g. gaze abnormalities, autonomic
dysfunction, significant psychiatric disturbances, etc.)
over a follow-up period of at least three years after
symptoms onset; (c) Hoehn and Yahr (H&Y) stage 1 or
2 in drugs-off state (i.e. after overnight withdrawal of
specific drugs for PD; no patients were taking long-act-
ing dopaminergic drugs) at the time of SPECT; (d) posi-
tive clinical improvement at Unified Parkinson Disease
Rating Scale (UPDRS) after L-Dopa intake (i.e. > 30%
from drug-off state) at some point during the three
years of follow up; (e) a normal Magnetic Resonance
Imaging (MRI) (no sign of white matter lesion or atro-
phy). Finally, given a putative role of LC and noradrena-
line in cognition and mood (including depression) we
excluded from this study patients with a positive score
at UPDRS part L

A quantitative profile of each patient’ motor impair-
ment was obtained from clinical assessment performed
before SPECT by means of the UPDRS motor part (part
III). L-Dopa daily dose and L-Dopa Equivalent Daily
Doses (LEDDs) were also recorded, with the latter
expressed as follows: 100 mg levodopa = 1.5 mg prami-
pexole = 6 mg ropinirole. None of the subjects (both
PD and HC) were taking or stated to have ever been
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treated with antipsychotics or drugs known to affect the
noradrenergic system (e.g., noradrenaline reuptake inhi-
bitors). Drug naive patients at the time of SPECT were
not included in the study. The Ethics Committee of the
Department of Human Physiology approved the study
and all subjects gave informed consent.

SPECT data acquisition and processing

Intravenous administration of 110-140 MBq of FP-CIT
(DaTSCAN, GE-Healthcare, UK) was performed 30-40
minutes after thyroid blockade (10-15 mg of Lugol oral
solution) in the control subjects and in patients after
overnight withdrawal of dopaminergic therapy [15].
Brain SPECT was performed 3 hours later by means of
a dedicated triple detector gamma-camera (Prism 3000,
Philips, Eindhoven, the Netherlands) equipped with low-
energy ultra-high resolution fan beam collimators (4
subsets of acquisitions, matrix size 128x128, radius of
rotation 12.9-13.9 c¢m, continuous rotation, angular sam-
pling: 3 degree, duration: 28 minutes). Brain sections
were reconstructed with an iterative algorithm (OSEM,
4 iterations and 15 subsets) and then processed by 3D
filtering (Butterworth, 5™ order, cut-off 0.31 pixel™) and
attenuation correction (Chang method, factor 0.12).

Imaging data analysis

Two different and complementary image analyses were
performed: a voxel-based whole brain analysis using Sta-
tistical Parametric Mapping SPM2 (Wellcome Depart-
ment of Imaging Neuroscience, London, UK)
implemented in MATLAB R2007a (The Mathworks Inc,
USA), and a volume of interest (VOI) analysis of a
priori defined brain regions.

SPM analysis

A group-specific FP-CIT template was created by (i)
spatially normalizing the FP-CIT images of 15 healthy
subjects onto a FP-CIT MNI-based template, [16] (ii)
subsequent averaging of the normalized images and
their symmetric (mirror) images resulting in a mean
image, and finally (iii) a smoothing of the mean image
using a 3-dimensional Gaussian kernel with 8-mm full
width at half maximum (FWHM). To increase the sig-
nal-to-noise ratio and account for subtle variations in
anatomic structures, the individual subject’s FP-CIT
images were spatially normalized to this group-specific
template and smoothed with a FWHM 10-mm Gaussian
kernel. A reference region in the occipital cortex was
defined as the union of the superior, middle and inferior
occipital gyri along with the calcarine gyri VOIs defined
by automated anatomical labelling (AAL), using the
Wake Forest University (WFU) PickAtlas 2.4 software.
Binding values for each subject’s FP-CIT image were
then computed in a voxel-by-voxel manner (voxel -
occipital reference)/(occipital reference). Using the
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General Linear Model in voxel-based statistical analysis
of SPM2, a two-sample t-test contrast was used to eluci-
date group difference between PD and HC. No global
normalization, or grand mean scaling, were applied, and
the masking threshold was set to zero. Clusters of at
least 35 voxels with the height threshold set at p <
0.001, were considered significant.

VOI analysis

The LC FP-CIT binding values were for two VOIs (for
left and right part of LC) created, using WFU Pick Atlas
Tool, through the union of six distinct, contiguous
Boxes (of 3 mm on the z axis for each side), centered in
the mean values on the x and y axis and dimensioned
according to the standard deviation as proposed in
Table 1 of Keren and coll., 2009 [17]. FP-CIT binding
values for the caudate nucleus (CN) and putamen (PT)
were calculated on the basis of VOIs defined with the
Basal Ganglia Matching Tool [18]. Student’s ¢-test was
then applied. We defined as contralateral, those brain
regions opposite to that of PD most severe sign presen-
tation. For HC, we referred to the right side as ipsilat-
eral [15].

General statistical analysis

Unless otherwise stated, data are reported as median
and range. Normality of data distribution was tested
by means of Shapiro-Wilks test. Chi-Square was used
to test gender distribution among groups. Demo-
graphic data were compared by means of Wilcoxon
two-group test. The Spearman correlation coefficient
was calculated to investigate statistical dependence
among average binding values, demographic and clini-
cal variables.

Table 1 Demographics and clinical data

PD HC
Subjects N. (male/female) 94 (67/27) 15 (4/11)*
Age at SPECT 60 (38 - 75) 63 (51 -

74)

Age at motor symptoms onset 57 (37 -72)
Disease duration 3(1-5)
UPDRS motor score (part-lll) [range O - 19 (8 - 56)
108]
Hoehn and Yahr stage [range 1 - 5] 2(1-2)
L-Dopa in mg/day 400 (0 - 850)
LEDDs in mg/day 250 (70 -

1200)

Data are reported as median and range (brackets). Age at SPECT, age at
motor symptoms onset and disease duration are in years. All patients were
evaluated with the Unified Parkinson Disease Rating Scale motor part (UPDRS
part Ill) in drugs-off state (i.e. after overnight withdrawal of specific drugs for
PD, no patients was taking long-acting dopaminergic drugs). LEDDs were
calculated as follow: 100 mg levodopa = 1.5 mg pramipexole = 6 mg
ropinirole. * p = 0.0005.
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Statistical analyses were performed with the JMP sta-
tistical package, version 8.0 (SAS Institute, Inc., Cary,
NC, USA).

Results
Table 1 shows the demographic and clinical characteris-
tics of the study cohorts.

SPM analysis detected one large cluster of 6819 voxels
(peaks at coordinates: 28 -8 -4 and at -31 -8 -4) of sig-
nificantly reduced FP-CIT binding involving the PT and
the CN bilaterally (Figure 1, left). A cluster of 37 voxels
(peak at coordinates: 2 -36 -26) with higher FP-CIT
binding values was found in the LC of PD subjects (Fig-
ure 1, right).

Volumes of interest analysis revealed reduced average
binding values in the striatum and increased average
binding value in LC area, bilaterally (Table 2).

FP-CIT binding in the striatum showed a weak, but
significant, negative correlation with binding values of
the corresponding LC (caudate: contralateral, p = -0.28,
p = 0.004 and ipsilateral p = -0.26, p = 0.008; putamen:
contralateral, p = -0.29, p = 0.004 and ipsilateral p =
-0.29, p = 0.003) (Figure 2). LC binding did not show
other significant correlations. Finally, results for the FP-
CIT binding value in the LC area proved to be statisti-
cally independent when weighted for demographic (age
at SPECT, age at onset, gender) and clinical characteris-
tics (disease duration, disease severity and L-Dopa daily
dose and LEDDs).

Discussion

Increased FP-CIT binding in the LC area

The present study provides in vivo evidence of higher
baseline catecholamine transporter binding in the LC
region in a large and homogeneous cohort of subjects
with early PD. Our findings are consistent with an up-
regulation of noradrenaline reuptake in the LC area,
which is well compatible with enhanced noradrenaline
release [19,20].

Our results are derived from the analysis of the bind-
ing of FP-CIT, a 1231 _labeled cocaine derivative with
high affinity for dopamine (DAT; Kp = 2nM) and a les-
ser affinity towards noradrenaline transporter (NET; Kp
= 140 nM) [14]. Despite the higher affinity of FP-CIT
for DATS, it is unlikely that the higher binding observed
in the LC area is due to an enhanced dopaminergic,
rather than noradrenergic, transporter for two main rea-
sons: (i) in LC, DAT represent a minor and inconsistent
component of the midbrain-derived dopaminergic term-
inals which degenerates in PD, along with other dopa-
minergic projections, [4] and (ii) in the LC a major NET
component is synthesized in the cell body of pigmented
neurons and exposed on their membrane to be trans-
ferred toward axonal terminals, [20] with a less
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Figure 1 Overlay on a MRI showing the loss of FP-CIT binding bilaterally in the striatum (cluster of 6819 voxels, peaks at coordinates:
28 -8 -4 and at -31 -8 -4) (left in the figure) and increased FP-CIT binding in the locus coeruleus area (cluster of 37 voxels, peak at
coordinates: 2 -36 -26) (right in the figure) of the whole group of PD patients compared to controls.

consistent NET component localized on terminal pro-
jections arising from more caudal noradrenergic cell
groups [21].

In PD, reduced dopamine release from nigro-striatal
projections results in loss and adaptive down-regulation
of DAT binding sites in the striatal region [22]. In line
with this notion, and in agreement with studies in de
novo and early PD, where 40 to 60% of nigral dopami-
nergic neurons are lost, [15,23] we found a significantly
reduced FP-CIT binding in the caudate and putamen of
PD patients. In contrast to the striatal compartment,
analysis of FP-CIT labeling in the upper brainstem
revealed significantly increased binding in a pontine area
adjacent to the floor of the fourth ventricle and extend-
ing into the midbrain to the level of the inferior

Table 2 Binding values obtained with the analysis of
volumes of interest

Region of interest PD HC p values
CN contralateral 318 (1.2 - 3.84) 527 (351 -6.15) < 0.0001
CN ipsilateral 3.29 (0.98 - 6.26) 527 (351 - 66) < 0.0001
PT contralateral 1.86 (065 - 4.72) 483 (3.07 - 6.04) < 0.0001
PT ipsilateral 197 (0.76 - 465) 483 (362 -637) < 0.0001
LC contralateral 3135 (81 -663) 13143 (59 - 371) 0.001

LC ipsilateral 321.17 (87 - 632) 1236 (38 - 354) 0.0004

Data are reported as median and range (brackets). Average FP-CIT binding in
the caudate nucleus (CN) and putamen (PT) was significantly reduced in
subjects with PD subjects compared to HC. On the contrary, PD patients
showed a significantly increased binding in the LC area (both right and left
regions). We defined contralateral brain regions opposite to that of PD signs
presentation. For HC, we referred to the right side as ipsilateral [15].

colliculi. This area corresponds topographically to the
LC coordinates identified by other studies including
those employing neuromelanin-sensitive MRI methods
[6,17,24,25]. In addition, the LC is the sole structure in
the posterior rostral pons housing monoamine transpor-
ters [1], thus further supporting our claim of anatomical
targeting of the LC.

Only two prior studies with PET have specifically
investigated the LC in PD patients. A first, [24] reported
a reduced '®F-dopa intake in patients with advanced PD
when compared to patients at an early stage of the dis-
ease. Because '®F-dopa intake is more specifically related
to dopaminergic neurotransmission, this study does not
provide information on noradrenergic functioning of
LC. In a second study, [6] PD subjects with depression
showed a reduced binding of [''C]RTI-32, a marker of
both DAT and NET, when compared to non-depressed
patients. Interestingly, the noradrenergic activity of early
non-depressed PD patients was within normal range in
most patients and enhanced in few of them. In line with
these findings, and having enrolled a larger and more
selected cohort of subjects, we were able to reveal a sig-
nificantly higher LC activity at an early stage of PD for
the first time.

An acute effect of drugs on FP-CIT binding values
appears unlikely since SPECT was performed after over-
night withdrawal of anti-parkinsonian drugs. In addition,
in animal studies, systemic administration of D,/D3
receptor agonists, such as pramipexole or apomorphine,
showed little or no effect on the firing rate of LC-NA
neurons [26]. Finally, a persistent treatment with
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Figure 2 Scatter plots and linear correlations of ipsilateral (left in the figure) and contralateral (right in the figure) FP-CIT binding
values of the locus coeruleus and striatum (caudate nucleus and putamen). A statistically significant negative correlation was found
between FP-CIT binding values in the locus coeruleus area and the corresponding striatum (both caudate nucleus and putamen).
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dopaminergic drugs will eventually down-regulate,
rather than up-regulate, the surface expression of DAT
and NET through internalization of the transporters
[27,28]. Accordingly, the average FP-CIT binding values
in the LC remained enhanced when data were L-Dopa
weighted for equivalent daily dose and L-Dopa daily
dose.

In vivo versus anatomopathological studies

Enhanced noradrenergic binding, and possibly activity,
in PD might be considered at odds with neuropathologi-
cal findings, where frank neuronal degeneration has
been recognized within LC, based on detection of speci-
fic cellular markers. Indeed, morphologic hallmarks of
sporadic PD (Lewy bodies and dystrophic neurites con-
taining pathologic a-synuclein) may appear initially in
the lower brainstem [2].

However, Lewy pathology can correlate poorly with
neuronal loss in specific areas, thus its validity in pre-
dicting neuronal disintegration is questionable [29]. In
fact, noradrenergic neurons in the LC are relatively pre-
served in early PD and do not exhibit the same intracel-
lular changes as in the substantia nigra [30].

Accordingly, neuromelanin-sensitive imaging methods
in vivo, [25] as well as anatomopathological studies sug-
gested that the loss of NA neurons in PD may be con-
fined to the larger, pigmented cells localized in the
caudal part of the nucleus, whereas small unpigmented

cells are increased in number, as if derived from shrink-
age of larger neurons [31].

However, available information on the LC, so far
derived from anatomopathological studies in subjects
with PD, is poorly comparable with our findings. In par-
ticular, the limited number of PD subjects investigated
and the lack of clinical information (e.g. disease duration
and the presence of depression or cognitive impairment)
of patients in anatomopathological studies prevent a
direct comparison between these studies and our results
[31,32].

Implications of enhanced LC-NA functioning in PD at an
early stage

Based on anatomical and histochemical data, along with
neuropharmacological evidence, higher activity of the
LC in PD may suggest: (i) in the striatum, noradrenaline
plays a compensatory role cross targeting dopaminergic
receptors (synaptic action); while (ii) in the substantia
nigra, noradrenaline has a neuroprotective bolstering
dopaminergic cells (extra-synaptic paracrine action).

As for the compensatory role, there is no absolute
specificity for catecholaminergic substrate-receptor
interactions, implying that one catecholamine can cross-
talk with the pharmacologically defined receptors or
transporters belonging to other catecholamines. Indeed,
noradrenaline binds to pharmacologically defined dopa-
minergic receptors [11,33,34]. Therefore, enhanced
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noradrenaline release may be able to partially compen-
sate a dopaminergic innervation loss due to degenera-
tion of the substantia nigra.

With reference to a putative neuroprotective activity,
noradrenaline suppresses pro-inflammatory and ele-
vates anti-inflammatory molecules [35] and has the
ability to scavenge superoxide and reactive oxygen spe-
cies, which are thought to contribute to cellular
damage and dopaminergic cell death [36]. Further-
more, the tottering mouse, which has noradrenergic
hyperinnervation and increased levels of noradrenaline
throughout the forebrain, appears to be protected from
MPTP toxicity [37] while MPTP-induced damage to
nigrostriatal dopaminergic neurons was potentiated by
pretreatment with DSP-4, a selective LC neurotoxin
[38]. Therefore, we speculate that enhanced LC-NA
may be regarded as an endogenous paracrine agent
promoting dopaminergic neuron survival [39,40]. This
hypothesis would predict that degeneration of LC nor-
adrenergic neurons in later stages of the disease might
accelerate degeneration of substantia nigra dopaminer-
gic neurons. The negative correlation between FP-CIT
binding in the striatum and LC area is consistent with
the above considerations of LC-NA compensatory and
protective activity.

Conclusions

The present study suggests higher baseline catechola-
mine transporter binding in the LC area of patients with
early stage PD. We propose that enhanced noradrener-
gic activity may be one factor modulating the severity of
motor symptoms and may even influence progression of
dopaminergic neurodegeneration.
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