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Abstract

Background: This paper provides a strategy to obtain a reliable estimate of the incidence rate for Amyotrophic
lateral sclerosis based on data from the National Registry of Rare Diseases (NRRD). In fact, unobserved cases may be
due to the fact that “a long time” may intercour between the suspect of having the disease (onset) and the date the
disease is diagnosed. Potential factors that may influence the probability of experiencing the event (diagnosis)
conditionally on the onset (suspected) are investigated. Since we are treating rare diseases, the role of social and
economic factors is not that obvious; latent as well as observed factors may influence the delay to diagnosis.

Methods: We use a semiparametric estimator based on the distribution of delay to diagnosis to account for potential
underreporting. In particular, we propose to adopt an Horvitz-Thompson based estimator to correct the incidence
figure that can be derived for the period 2007-2009 from the NRRD, Italy.

Results: The incidence estimates obtained by adopting the proposed approach are about 1 case per 100000
inhabitants and despite they let recovering a good part of underreporting, they are still far from ALS incidence
international ranges between 1.5 and 2.5. However, by looking only at northern Italy, the incidence estimates we can
derive are coherent with those known internationally.

Conclusions: These results confirm the existence of substantial differences in reporting accuracy, and point out
where the system of data collection must be improved. In particular, when reliable individual characteristics will be
available, they could be employed to refine the proposed estimator.
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Background
The National Registry for Rare Diseases (in the follow-
ing NRRD), see http://www.iss.it/cnmr/, includes more
than 90.000 (year 2009) diagnosed cases and provides
information about the date of (suspected) disease onset,
the date of diagnosis and other individual details such as
age, educational level, professional status. The registry has
been established according to article 3, decreto ministe-
riale 279/2001 (see [1]), to provide information about the
distribution of rare diseases in the general population. A
disease is considered as rare when it affects no more than
5 individuals per 10,000 people. According to the World
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Health Organization (WHO), the number of known rare
diseases ranges from 7,000 to 8,000.
The NRRD collects epidemiological information about

the number of cases for a given pathology and has been
established to study the corresponding geographical dis-
tribution, to plan health services organization, to pursue
better/more efficient care pathways. Given the available
information, it helps estimate the time elapsed between
the onset (date of first occurrence of symptoms that can be
univocally linked to the disease) and the diagnosis, which
is often termed delay to diagnosis. All patients reported
in the registry have experienced the event of diagnosis for
a rare disease; the onset date is ascertained at the time of
diagnosis.
Administrative registries may fail to answer epidemio-

logical questions; in particular, prevalence and incidence
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estimates can be quite difficult to be provided. This is
due to the quality of such registries: they may be incom-
plete, they may not provide a correct registration of the
analyzed event, they may not cover the whole national
territory and/or the whole time window, leading to geo-
graphical and temporal coverage problems, respectively.
These issues characterize the NRRD as well: for example,
only 17 Regions out of 20 (corresponding to approximately
80% of the total population) did send rare disease data
to the Institute of Public Health (ISS) which is respon-
sible for data collection; not all the presidiums in these
regions may be active in collecting data. To get reli-
able prevalence and/or incidence rate estimates, we need
to develop statistical methods to handle the problem of
underreporting.
The problem of underreporting can be linked to differ-

ent aspects; in our case, a high geographical variability in
registration coexists with a high variability in the observed
distribution of delay to diagnosis. The reasons are differ-
ent: for example regions started to register rare diseases
data in different periods: therefore, registrations identify
both “historical cases” (cases whose information exists
from a long time) and “new cases” and this may influ-
ence the quality of the NRRD and the precision of the
estimates. Different approaches can be adopted to provide
reliable incidence estimates; for example we may derive
information on the registration probability for units in the
population of interest, by looking at similar studies devel-
oped in comparable settings. When several registries are
available, we may apply capture-recapture methods (see
[2,3]): given a set of registries, we observe how many lists
have registered the same unit. In this case, it is possible
to assume that this value is a realization of a counting
random variable with a known distribution (e.g. Bino-
mial, Poisson, homogeneous or overdispersed, etc.). This
distribution can be used to derive an estimate for the
probability of not registering a generic unit.
Here, we aim at estimating the incidence rate for

amyotrophic lateral sclerosis (ALS) in Italy, based on data
derived from the NRRD only; the reason to focus on
ALS is that it represents the second most frequent single
pathology notified by the NRRD, after “hereditary coag-
ulation disorders”. Due to privacy reasons, we could not
consider other sources than the NRRD. In the follow-
ing, we will show how to use the distribution of delay
to ALS diagnosis to provide an estimate of the num-
ber of unregistered incident cases for the onset cohort
2007-2009.

Methods
Incidence and prevalence rate estimates are often the
main goals in epidemiological studies on disease distribu-
tion and themost difficult to get as well. Incidence conveys
information about the risk of contracting the disease while

prevalence indicates how widespread the disease is. Our
aim is to give an estimate of the number of ALS inci-
dent units for 2007-09 in Italy starting from the cases
registered in the NRRD. Due to the limited knowledge
on the distribution of “risk” of diagnosis, we provide a
non parametric estimate for the probability of a missing
unit. The delay is calculated from the suspected disease
onset (first referred symptoms) to the diagnosis for the
disease. Thus, caution is needed since the date of first
reported symptoms can be only a rough estimate of the
true onset date; in particular, this date is based on indi-
viduals’ memory at the time of diagnosis. Therefore, it
could be biased and the bias may increase with the dis-
tance from the first symptoms to the diagnosis date. The
idea behind the proposed approach is that incident cases
are only partially observed due to underreporting; that
is, lack of a timely ascertainment may lead to a delayed
diagnosis.
Potential reasons for late diagnosis include medical

practice contributes: to enable earlier diagnosis, general
practitioners should be informed of the usefulness of early
referral for multidisciplinary care of patients, see [4,5].
We only observe people who have already been diag-

nosed, and therefore crude incidence rates will be proba-
bly downward biased for the most recent years since the
observational window is too narrow.
Registries can be seen as endogenous mechanisms

which identify n units from a population of (unknown)
sizeN (in this context the “true” ALS incident population).
The population size is given by the sum of the number
of registered units n and the number of units which have
not been registered by the mechanism/s n0. That is, the
following equation holds

N = n + n0

If a single registry is available, (the NRRD in this
case) this empirical setting is described by the N-tuple
(δ1, . . . , δN ), where δi = 1 if the i−th unit has been iden-
tified by the registry and δi = 0 otherwise. If the identifi-
cation occurs independently for each unit with probability
1 − p0, where p0 is the probability of not registering the
unit, the conditionalML estimator ofN is known to be the
integer part of the Horvitz-Thompson estimator

N̂ =
⌊

n
(1 − p0)

⌋

To get an estimate for N, p0 must be known; oth-
erwise, it should be estimated from observed data. As
mentioned before, we adopt a non parametric estimator



Rocchetti et al. BMC Neurology 2012, 12:160 Page 3 of 14
http://www.biomedcentral.com/1471-2377/12/160

based on the distribution of the delay to ALS diagno-
sis. To define the estimator, the following assumptions are
made:

1. Conditionally on observed risk factors, all the cohorts
are homogeneous, i.e. the distribution of the delay to
ALS diagnosis does not vary over the observed time
period (described by the cohort of onset).
This means that the probability of experiencing the
event “diagnosis of ALS” after a given time t from the
onset is the same for individuals in the onset cohorts
2001-03, 2004-06, 2007-09. This is the most
important assumption: if it holds, onset cohorts are
“homogeneous” and we can use the information from
older cohorts to estimate ALS incidence for the
youngest one.

2. The registration of a subject does not depend on
unobserved individual characteristics.
This means that all individuals have the same
proneness to be registered; therefore we may account
only for observed heterogeneity trough considering
variables in the NRRD, should these be reliable (i.e.,
compulsory and not voluntary etc.).

3. A generic unit may not be registered due, only, to
delay to diagnosis (we do not consider ALS related
deaths or migrations, i.e. the population is closed).
This hypothesis holds only if the observational period
is not too long, making negligible the probability of
deaths, migrations etc. The occurrence of early death
and/or faster disease course could influence the
observed distribution of delay to diagnosis; also
underreporting due to the lack for a definitive testing
or possible mimicing of more common diseases may
influence the observed distribution. As discussed by
[6], ALS shows almost invariably a subtle onset, and
this may lead to difficulties in early diagnosis, despite
the growing number of clinical trials which
undoubtedly encourage researchers to put much
effort on a timely identification of the disorder.
Previous studies have shown, in fact, little change in
the diagnostic delay in ALS, with a median delay
from onset to diagnosis of about 9–13 months, see
also [5], which is clearly consistent with our data.
Further factors that may influence a delayed
diagnosis include mismanagement by general
practitioners as well as by neurologists, see [6]. They
have performed a logistic regression analysis which
shows that initial misdiagnosis in ALS is unrelated to
variables as gender, age at onset, diagnostic delay, site
of onset, and being first observed by a neurologist.
They suggest that cognitive errors, with particular
reference to framing effects and anchoring heuristics
may play a relevant role in the diagnostic delay in
ALS. In fact, symptoms and signs of ALS can easily

be framed in and anchored to more common
pathological conditions, see also [7].

The statistical problem is to make inference about right
truncated data, given that we condition on a given calen-
dar time which represents the date the archive has been
closed and data have been made available.
Solutions to this problem have been discussed, for

example, by [8] who adjusted for reporting delay to pro-
vide a timely estimate of suicide incidence in Hong Kong;
[9] present a parametric model for analysing the reporting
delay for multiple sclerosis (MS) based on the approach
discussed in [10].
An extensive literature treats about incidence and/or

prevalence estimates (see for example [11-14]) especially
in the context of AIDS, where the delay to diagnosis is pro-
jected back to get incidence estimates. Some studies are
based on truncated failure time models, in semiparamet-
ric and non-parametric settings. Just to give an example,
[15,26] aim at estimating the total number of HIV infected
individuals: in fact only those who develop AIDS by a cer-
tain date are identified. They focus on situations where
the AIDS is diagnosed is known and, at that time, the
date of the initiating event (infection) is ascertained. The
statistical problem is to make inferences about a stochas-
tic process of infection and disease where realizations
are right truncated in chronologic time. They consider
the process in reverse time, transforming observed (right-
truncated) data to survival data that are left-truncated in
internal time; following their approachwe use theML esti-
mator of the cumulative distribution function (cdf) F(t |
τ) of the delay between onset and diagnosis (condition-
ally on the truncation point), for a theoretical discussion
see [9,15-17]. Here, the hypotheses are a bit different:
we are interested in estimating the number of ALS peo-
ple missed at registration because of delay to diagnosis,
while [15,16] are interested in predicting the number of
people infected (onset) but not reported yet in AIDS reg-
istries. Individuals who experience the first event do not
necessarily experience the second one; in our formulation
people experiencing the first event are supposed to nec-
essarily experience the second one but they might not be
observed due to a long delay to diagnosis (at least from
a purely formal point of view). Deaths and censored data
can not be observed. In the present context all observed
cases are diagnosed or lost to the study due to death, a
long delay to diagnosis, or failed ascertainment. [16] sug-
gest to consider a bivariate process for inference, where
the first process models the onset time and the other
one describes the lag between infection and diagnosis. A
bivariate Poisson process could be used also in the present
context to simultaneously model the onset process and
the time to diagnosis. However if a non parametric dis-
tribution is used for the process describing the arrivals,
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i.e. the onset times, the estimates described by equations
(11) and (12) of [16] are identical to those proposed by
[15] by looking only at the distribution of the delay to
diagnosis regardless of the distribution used for the delay
to diagnosis. The estimation approach developed by [15]
is based on a truncated likelihood approach in reverse
time, thus a relation between non parametric estimation
based on the full likelihood and parametric estimation
via the truncated likelihood (with a bivariate Poisson pro-
cess) can be established. In our case a non parametric
approach is preferred given that, unlike [18], we do not
consider the whole observational period (e.g. 2001-2009)
but are interested in estimating the incidence rate for
ALS for the cohort with onset in 2007-2009 by using
information from the older onset cohorts (2001-2003 and
2004-2006). Since information on onset cohort 2001-2003
and 2004-2006 is quite small due to the reduced sample
sizes, we decided not to use a parametric approach for
the arrival (onset) times, which could be an efficient and
probably preferable approach, should we be able to select
the appropriate parametric form for the corresponding
distribution.
Given modeling assumptions, let T denote the random

variable (rv) “time to diagnosis” and ti be the correspond-
ing observed value for the i-th individual; furthermore,
let xi be the time of disease onset for that individual.
As mentioned before, tend denotes the end of the obser-
vation period (say the upper bound of the time period
covered by the available data, in the present case, 21
December 2009).
In the following, we will assume that the i-th subject

would have not been registered should the corresponding
diagnosis date be greater than tend , i.e. if ti + xi > tend, see
[19]. Thus the probability of being registered is

1 − p0i = Pr(ti ≤ tend − xi) = F(tend − xi) = F(τi)

Following the retro-hazard approach proposed by [9],
we project this probability from older cohorts to the
youngest one to account for potential underreporting of
cases with a more recent onset. This choice is motivated
by the fact that, when considered alone, the 2007-09 onset
cohort accounts for about 50% of the total number of reg-
istered cases; therefore, considering the whole period to
estimate the cdf would over represent cases with shorter
delays.
Given the introduced notation, t will be referred to as

the reporting delay; according to [9] we assume that X
and T are independent discrete random variables; these
are observed only if X + T ≤ tend. Since we are inter-
ested in the distribution of T, we condition on the events

(X + T ≤ tend) and (X = x) and define τ = tend − x. The
retro hazard function can be estimated by the ratio

ρ̂(u) = D∗
u

R∗
u

u = 1, . . . , τ ∗

where τ ∗ = max(τ1, . . . , τn), Du = {i | ti = u} is the
set of people who experience the diagnosis at time u,
D∗
u = �Du, Ru = {i | ti ≤ u ≤ τi} is the set of people

at risk (in backwards) at time u,and R∗
u = �Ru. The part

of the distribution function we are able to identify can be
estimated by

F̂T (t | τ ∗) =
τ∗∏

u=t+1
(1 − ρ̂(u))

see [9].
With a sufficiently wide time window i.e. with a suffi-

ciently high τ ∗, FT (t) can be well approximated by F̂T (t |
τ ∗). This implies that F(τ ) � 1; should not this be the
case, F̂T (t | τ ∗) = F̂T (t)

1−θ
and, therefore, (1−θ)F̂T (t | τ ∗) =

F̂T (t).
The retro hazard approach could be applied to the whole

sample after stratifying according to potential risk factors
such as gender. While a known gender effect in inci-
dence of ALS has been elsewhere reported, see among
others [20], the available data do not support differences
in the distribution of the delay to diagnosis between males
and females. The samples are substantially homogeneous
both in size and for the retro hazard estimates; therefore,
gender does not seem to play a significant role. See the
discussion on this point in the exploratory data analysis
section below.
By associating to each individual the value of the cor-

responding cdf estimate, i.e. the value at ti, we may
approximate the probability of being registered until
tend as

1 − p̂0i = F̂(ti) = (1 − θ)F̂(ti | τ ∗)

and provide the following Horvitz-Thompson (HT)
estimator

N =
n∑

i=1

ni
1 − p̂0i

=
n∑

i=1

ni
(1 − θ)F̂(ti | τ ∗)

where ni identifies all units with the same onset time (in
general ni = 1), see [19].
Themethod is designed to deal with homogeneous pop-

ulations where individual variables have similar effects on
the probability of the event at a given time. This hypothe-
sis is unlikely when dealing with real data where individu-
als differ for observable (i.e. age, gender, socio-economical
status) and/or unobservable (i.e. different proneness to be
registered) characteristics. In particular, when handling
diseases, socio-economic variables may play an important
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role since they could be related to the timeliness in access
to health services and in the disease ascertainment.
The presence of heterogeneity could be further inves-

tigated through a discrete time regression model which
would allow to estimate the cdf conditionally on some
covariates, see [9]; in this context, the current unreliabil-
ity of socio economic variables in the NRRD (education
and professional status) does not suggest to pursue this
approach further, but we hope this could be done in a next
future.
Another important issue in this context concerns mor-

tality. The role of mortality is not negligible and related
information would be useful to provide more precise inci-
dence estimates; features specific to ALS disease led many
researchers to use mortality to indirectly estimate inci-
dence (see e.g., [21]: death percentages due to ALS as first
death cause vary from about 34% to 92%. The relation
between incidence and mortality is obviously bidirec-
tional; a strong correlation between these two measures
is present for the elderly. Given that the ALS diagnosis is
difficult to be recognized in the elderly (due to the poten-
tial presence of comorbidities), this selection mechanism
could lead to underestimate mortality; in this sense, sur-
vival analysis stratified by age or age groups would be
important. The NRRD contains information about the
date of death but this variable is not reliable since it is not
compulsory and the corresponding information is only
rarely recorded. Should the quality of mortality informa-
tion be improved through permanent link with census
archives, it could be possible to consider the observed
(registered) removals to provide more precise incidence
and prevalence estimates. In particular, it could be pos-
sible to register the number of people affected by ALS
having a certain onset date but lost due to death/ migra-
tion and remove them to get more reliable prevalence
measures. Should a link with Death causes survey (DCS)
be possible, we could also try to understand how many
incident units have not been registered by the NRRD but
died of ALS, or with ALS registered as a comorbidity.
This could help get a more reliable incidence measure as
well. A probabilistic record linkage could be carried out
between NRRD and survey of causes of death (DCS) by
using appropriate matching variables; however this has
not been possible yet due to privacy reasons (individual
data can not be joined). Mortality can affect incidence
and be affected by changes in health services which may
lead to overestimation of death cases; improvements over
recent years in ALS diagnosis may, at least hypothetically,
explain the rise in death rates (see [21]) with ageing of the
population.
As mentioned above, an important variable is the age

at onset and the issue in this case is to verify whether it
affects the delay to diagnosis and indirectly the incidence
estimates. From an exploratory analysis, the percentage

distribution of ALS cases for the following age groups
“0-17”; “18-48”, “49-64”, “65-74”, “75+” has been carried
out for each onset cohort (2001-03, 2004-06, 2007-09).
The greatest percentage characterizes the class 49-64 in
all the onset cohorts; in particular, this class weights
about 44% for the onset 2001-03, about 36% for the
cohorts 2004-06 and 2007-09. The age group 65-74
represents the second for size in all the onset classes
(about 27%, 39% and 35% respectively). The percent-
ages in the other age groups (0-17, 18-48 and 75+) are
much less relevant, in particular the first group varies
from 0% to 0.27% when 2001-03 and 2007-09 onset are
considered.
Cdf estimates stratified by age at onset for each cohort

are reported below (see Figure 1, 2 and 3).
As it can be noticed, as long as we consider the youngest

onset cohort, characterized by greater sizes, the differ-
ences between cdf estimates by age at onset get smaller
and smaller. This means that the age-specific estimates
for each onset period are similar; this (approximate)
homogeneity implies that age at onset does not seem
to influence the delay to diagnosis for the considered
data.

Exploratory data analysis
Due to the registry quality, the following analysis are con-
ducted considering only diagnoses occurred after 1993.
The number of units who have experienced an ALS diag-
nosis between 1993 and 2009 is equal to 1799; if a unit has
received the diagnosis twice, e.g. in two different presidi-
ums or in two different Regions, only the first (less recent)
diagnosis date has been retained. Only 26 units have been
registered twice by the NRRD.
An higher portion of the 1799 registered cases are res-

ident in Northern regions; 22.5% in Toscana, 21.68% in
Piemonte and 13.67% in Emilia Romagna (see Table 1);
southern regions are characterized by lower percentages,
Sicilia 0.28% and Basilicata 0.89% (see Table 1).
According to the improvements in the ascertainment

and in the registration procedures which have been
observed in the last few years, the number of registered
cases increases over time (see Table 2, Figure 4). The per-
centage of cases by year of diagnosis is 0.22% for 1993,
21.85% for 2007, 23.79% for 2008 and 18.29% for 2009. The
number of cases registered in 2009 is lower than those in
2007 and 2008, highlighting the effect of underreporting
due to delays in delivering data to the registry. Just to give
an example, cases registered in the last semester of 2009
could not be uploaded yet at 21 December.
Considering the last years, the greatest percent-

ages of ALS cases have been registered in Emilia
Romagna (16.54%, 21.26% and 27.05% in 2007, 2008
and 2009 respectively) and Piemonte (26.97%, 16.12%,
23.40% respectively).
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Figure 1 Cdf estimates for delay to ALS diagnosis; cohort 2001-03 stratified by age at onset. Time measured in days since first reported
symptoms (onset). Legend: red line: Age [18,49) green line: Age [49,65) blu line: Age [65-75) black line: Age [75+).

As far as the onset date is concerned, 1.83% of total cases
have reported a suspected onset in 1999, 21.01% in 2007
and 4.06% in 2009 (see Table 3, Figure 5).
The decrease in the last years is more evident; registra-

tions by year of onset decrease in 2008 and 2009 when

compared to 2007. This evidence could be due to the
effect of delay to diagnosis: incident cases for years 2008
and 2009 have not yet been registered. This could be bet-
ter explained by looking at the distribution of observed
delay to diagnosis (i.e. corresponding to already registered
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Figure 2 Cdf estimates for delay to ALS diagnosis; cohort 2004-06 stratified by age at onset. Time measured in days since first reported
symptoms (onset). Legend: Red line: Age [18,49) Green line: Age [49,65) Blu line: Age [65-75) Black line: Age [75+).
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Figure 3 Cdf estimates for delay to ALS diagnosis; cohort 2007-09 stratified by age at onset. Time measured in days since first reported
symptoms (onset). Legend: Red line: Age [18,49) Green line: Age [49,65) Blu line: Age [65-75) Black line: Age [75+).

units). The whole sample is almost homogeneous: the size
of the male sub sample is 980, while the female sub sample
consists of 819 units. The mean delay to diagnosis is equal
to 458 (se=11.53) days and agrees with data from inter-
national literature; other descriptive statistics are shown
in Table 4. The median delay to diagnosis is equal to 316
days which corresponds to less than 1 year (around 10
months); the 25th percentile is 183 days (6 months) while
the 75th percentile is 519 days (17 months). Tables 5–6
present summary statistics by gender; the median delay
to diagnosis for females is equal to 334 days with 95%
CI=(304;345), while the median delay to ALS diagnosis for
males is equal to 306 days, 95% CI=(292;333). As it can
be noticed by looking at the tables, the median delay for
males is included in the 95% confidence interval of the
median delay for females.
From now on, cases with unknown onset or diagnosis

date will not be considered. The NRRD has been estab-
lished in 2001 but contains data corresponding to previ-
ous time periods; for example,for ALS, the first known
(registered) suspected onset dates back to 1987. How-
ever, only few cases (7% of the total number of registered
cases) with onset before 2000 have been registered. The
remaining 93% has been registered with the following time
detail: 13% with onset in 2001-03, 39% in 2004-06 and
41% in 2007-09. We may argue that, before 2001, times
to diagnosis were probably longer due to a less developed
framework, to a reduced ability in recognizing the disease,

to a lower quality of the health organization and to a lack
of a unified framework for registering cases.
The analysis has been conducted by stratifying the

sample according to the time of suspected onset, defin-
ing three cohorts of onset: 2001-03, 2004-06, 2007-09.
To assess whether a significant difference exists between
the cohort-specific distribution of delay to diagnosis, we
estimated the three cdf (one for each cohort) adopting
the same length for the observation period; given that
the cohort of patients with onset after 01/01/2007 has
been observed until 21/12/2009, we estimated for all the
cohorts the cdf of delay times corresponding to the first
1000 days from the beginning of the corresponding onset
period. Figure 6 shows the estimates.
As it can be noticed by looking at the figure, the trends

of the three curves are quite similar, they overlap in most
of the points; however, the corresponding sample sizes are
quite different and several ties can be observed at the end
of the period.
A Kolmogorov-Smirnov (KS) test has been used to test

for homogeneity of the cdf estimates. In particular, the
cdf estimate for the most recent onset (2007-09) has
been compared with the estimate for 2001-03 and 2004-
06. While the first two functions (2007-09 vs 2001-03)
do not seem to be significantly different (p-value=0.10),
the cdf estimates for 2007-09 and 2004-06 seem to show
substantial differences (p-value=0.0078). For the KS test
comparing the cdf estimates corresponding to 2001-03
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Table 1 Number of registered ALS cases and population by
Region of residence: details on Region sending ALS data to
the NRRD (∗= Regions has sent data,−= Region has not
sent data)

Region of Number % Population Regions
residence of cases of cases (%) sending ALS

data

Abruzzo 9 0.50% 2, 22% -

Basilicata 16 0.89% 0, 98% *

Calabria 24 1.33% 3, 33% *

Campania 22 1.22% 9, 65% -

Estera 2 0.11% - -

Emilia Romagna 246 13.67% 7, 28% *

FVG 5 0.28% 2, 05% *

Lazio 195 10.84% 9, 42% *

Liguria 15 0.83% 2, 68% -

Lombardia 95 5.28% 16, 28% *

Marche 33 1.83% 2, 58% *

Molise 3 0.17% 0, 53% -

Piemonte 390 21.68% 7, 37% *

Puglia 148 8.23% 6, 77% *

Sardegna 3 0.17% 2, 77% *

Sicilia 5 0.28% 8, 36% -

Toscana 405 22.51% 6, 18% *

TAA 23 1.28% 1, 70% *

Umbria 18 1.00% 1, 49% -

ValledAosta 3 0.17% 0, 21% -

Veneto 139 7.73% 8, 14% *

Italy - 100% 100%

and 2004-06, the p-value is 0.17. The p-value for the com-
parison between the curve 2007-09 and the curve 2001-03
may be influenced by the differences in sample sizes (733
observation in 2007-2009 and 107 in 2001-2003).
The similarity between the cdf estimates stratified by

onset cohort for the diagnoses within the first 1000 days
from the beginning of the onset period , is the key result
to produce a reliable ALS incidence rate estimate for the
period 2007-09. In fact, conditional homogeneity of the
different cohorts with respect to delay to diagnosis is
the basic assumption beneath the proposed estimation
approach. In this respect, our approach differs from that of
[9]: while they used the whole time period (in the present
case it would be 2001-09) to provide an estimate for the
cdf, we feel this could lead to overestimate the weights
associated to shorter delays since the size of the cohort
2007-09 is much greater than the previous ones. On the
other hand, we build the weight on a few reported cases

Table 2 Distribution of registered ALS cases by year of
diagnosis

Year of diagnosis Number of cases Percentage

1997 12 0.67%

1998 11 0.61%

1999 12 0.67%

2000 34 1.89%

2001 31 1.72%

2002 37 2.06%

2003 71 3.95%

2004 85 4.72%

2005 122 6.78%

2006 223 12.40%

2007 393 21.85%

2008 428 23.79%

2009 329 18.29%

(for example those with onset in 2001-2003) and this could
produce a higher variability in the resulting estimates.
Just to give additional insight on the geographical vari-

ability in the incidence rate estimates, we report in
Figure 7 the cdf estimates for Piemonte, Emilia-Romagna
and Toscana; these reagions account for around 58% of the
total number of registered cases in 2007-09. Some differ-
ences do exist; however, they do not seem to be substantial
even if the median delay to diagnosis for Emilia-Romagna
is quite lower than the other two. This obviously points
out the need to record richer information on newly reg-
istered cases since the proposed approach only accounts
for a national behaviour in the delay to diagnosis distri-
bution. As far as we know, the geographical variability in
access to health services, in the health resources available
to citizens as well as in the presence of highly specialized
centers where more appropriate care pathways are estab-
lished, could be a substantial factor influencing individual
probability of being registered by the NRRD.

Results
In this section, we show how current incidence rate crude
estimates can be corrected for underreporting by using an
Horvitz-Thompson (HT) approach. From the exploratory
analysis, we saw that the cdf estimates referring to onset
cohort 2001-03 is very similar to the one observed for
2007-09 when only patients with diagnosis within the first
1000 days from the beginning of the onset period are con-
sidered. This finding justifies the use of the HT approach
detailed in section “Exploratory data analysis” to estimate
the number of incident ALS units with onset in 2007-
09; the individual probabilities of not being observed in
the analyzed period have been estimated using the cdf
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Figure 4 Number of observed cases by year of diagnosis, period 1993-2009.

estimate for the 2001-03 cohort. This onset cohort has
been observed for a longer time (at least 6 years); for this
reason we may assume that F̂2001−03(t | τ) � F̂2001−03(t),
i.e. θ � 0. We also give results based on the cohort
2004-06 estimate.

Table 3 Distribution of registered ALS cases by year of
onset

Onset year Number of cases Percentage

1994 6 0.33%

1995 8 0.44%

1996 9 0.50%

1997 14 0.78%

1998 17 0.94%

1999 33 1.83%

2000 38 2.11%

2001 49 2.72%

2002 75 4.17%

2003 109 6.06%

2004 142 7.89%

2005 212 11.78%

2006 347 19.29%

2007 378 21.01%

2008 282 15.68%

2009 73 4.06%

By using the cdf estimate from the 2001-03 cohort to
weight the cases with onset in 2007-09, the HT estima-
tor provides N̂ = 1344 incident units, while the estimate
obtained by considering the cdf estimate for the 2004-06
cohort is N̂ = 1206 (obviously lower given that in the last
case θ > 0).
Since it is more likely that a higher part of incident

cases with onset in 2001-03 have experienced the diag-
nosis before the end of 2009 as compared with 2004-06,
and given the similarity between the cdf estimates for the
cohorts 2001-03 and 2007-09, the HT estimate based on
the cdf estimate for cohort 2001-03 may be considered as
more reliable.
To assess the robustness of the proposed estimator, we

applied this procedure to units with onset in 2001-2003 by
weighting the cases registered before 21/12/2003, accord-
ing to the approach described above, and compared this
quantity with the number of units with onset in 2001-
2003 and diagnosis date up to the 21 december 2009. In
this way, we can see whether the underreporting observed
in the first 1000 days from the beginning of the onset
period can be due to delay to diagnosis. We used the same
procedure for the onset cohort 2004-06 and found the fol-
lowing results. The estimated number of incident units
with onset in 2001-03 is equal to 255, vs the observed
233; the estimated number of incident units with onset
in 2004-2006 is equal to 744, vs 701 observed cases from
the same onset cohort. The last comparison shows a
greater difference which is probably due to the fact that
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Figure 5 Number of observed cases by year of suspected onset, period 1993-2009.

the cohort with onset in 2004-06 has been observed for
a shorter time period (when compared to the 2001-03
cohort). The resulting estimates are very similar to the
observed counts, suggesting that the proposed procedure
is adequate in estimating the number of units lost to the
registration due to long delay to diagnosis; nevertheless
this does notmeanwe are able to estimate the “total” num-
ber of units missed at registration due to other reasons, eg
death, migration, uncorrect diagnosis, co-morbidities, etc.
To provide incidence estimates, we need to divide N̂ by
the corresponding population at risk; as previously men-
tioned, the NRRD is incomplete from a geographical point
of view; in fact not all regions have sent rare diseases data
to the national archive. In particular, for ALS, only infor-
mation from 13 regions is available: Basilicata, Calabria,
Emilia Romagna, Friuli Venezia Giulia, Lazio, Lombardia,
Marche, Piemonte, Puglia, Sardegna, Toscana, Trentino
Alto Adige and Veneto. Only 11 regions sent data where
both onset and diagnosis dates are present (all but FVG
and Sardegna). The corresponding number of person-year
at risk amounts to 124,842,678 considering years 2007,

Table 4 Distribution of the delay to ALS diagnosis:
percentiles, point estimates and relative CI (95%)

Quantiles Point estimate 95% CI (LB) 95% CI (UB)

75 519 490 556

50 316 304 334

25 183 181 193

2008 and 2009 [22]; the observed crude ALS incidence
rate calculated only through observed cases amounts to
0.59 per 100,000 people.
The annual ALS incidence rate estimated through the

proposed approach is equal to 1.08 and 0.97 per 100,000
inhabitants considering the onset cohorts 2001-03 and
2004-06 as input for cdf estimates, respectively. The esti-
mated 95% CI’s are (0.99;1.16) and (0.89;1.04) respec-
tively. These results are not completely in line with those
provided by the international literature, where annual
incidence rates vary between 1.5 and 2.5 per 100,000
people.

Discussion
The estimated incidence rates are however affected by
a high regional variability in registration, as shown by
the exploratory analysis. This means that underreporting
might be due to delay to diagnosis and to geographical
variability in reporting accuracy. If we do not consider
Lombardia, given that the corresponding data come from

Table 5 Distribution of the delay to ALS diagnosis:
percentiles, point estimates and relative CI (95%)

Quantiles Point estimate 95% CI (LB) 95% CI (UB)

75 520 489 565

50 334 304 345

25 194 182 212

Female sample.
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Table 6 Distribution of the delay to ALS diagnosis:
percentiles, point estimates and relative CI (95%)

Quantiles Point estimate 95% CI (LB) 95% CI (UB)

75 517 458 580

50 306 292 333

25 181 164 184

Male sample.

local health unit registries and information related to
onset and diagnosis dates are often not recorded, the esti-
mated incidence rates for ALS are higher and closer to the
international range: 1.32 and 1.19 with 95% CI’s equal to
(1.21;1.43) and (1.09;1.29) as far as estimates from cohorts
2001-03 and 2004-06 are considered.
To verify the influence of geographical variability on

incidence rate estimates, we calculated regional incidence
rates through the sameHT estimator, considering cdf esti-
mates for cohorts 2001-03 and 2004-06. Results show very
different values: in particular, incidence rates are higher
in the northern regions and significantly lower in the
southern regions of Italy.
Piemonte shows the highest incidence rate estimate:

2.43 per 100,000 people considering the 2001-2003 onset
cohort and 2.25 per 100,000 as far as the cdf estimate
from the 2004-2006 onset cohort is used. Emilia Romagna
presents an estimated rate equal to 2.13 and 1.86 per
100,000 people for the two onset cohorts respectively.

Southern regions show rates lower than 1 per 100,000: the
rate estimates for Abruzzo are equal to 0.15 and 0.13 per
100,000; the estimates for Basilicata are 0.55 and 0.47, for
Calabria 0.32 and 0.28 per 100,000 inhabitants.
These results confirm the existence of substantial dif-

ferences in reporting accuracy, and point out where the
system of data collection must be improved. In particu-
lar, by looking only at nothern Italy (Piemonte, Lombardia,
Trentino Alto Adige, Veneto, Emilia Romagna) we get
incidence rate estimates that are very close and even
greater than the national ones; in particular they are equal
to 1.24 and 1.11 per 100,000 inhabitants considering the
2001-03 and 2004-06 onset cohorts respectively. If we
do not consider Lombardia, the incidence rate estimates
in nothern Italy are higher: 1.89 and 1.70 per 100,000
respectively.
To give a comparison, a study performed in Piemonte

and Valle d’Aosta during 1995-1996 by means of a
prospective design estimated a mean annual ALS crude
incidence rate of 2.5/100,000 population with a 95%
CI=(2.2;2.9), see [23]. Few studies have comprehensively
analyzed the time trend in ALS incidence; a prospective
(population-based) study in Rochester, Minnesota, (USA)
examined ALS incidence over time and showed that ALS
incidence has been constant at 1.7 per 100,000 person
year between 1925 and 1998. Increasing ALS incidence
over time has been reported by other non-population
based studies, but this could be due to improvements in
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Figure 6 Cdf estimates for delay to ALS diagnosis (2001-2009). First 1000 days from the onset (time measured in days). LEGEND: Red line: Onset
cohort 2001-03 Green line: Onset cohort 2004-06 Blu line: Onset cohort 2007-09.
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Figure 7 Cdf estimates for delay to ALS diagnosis (2001-2009). First 1000 days from the onset (time measured in days). LEGEND: Red line:
Piemonte Green line: Toscana Blu line: Emilia Romagna.

case ascertainment and diagnostic methods rather than
to a genuine increase in incidence, see [24]. A study con-
ducted in Lombardia, see [25], where patients with newly
diagnosed ALS were enrolled from 1998 to 2002 through
a prospective regional register, revealed a standardized
(with respect to age and gender) incidence rate of 2.09 per
100,000/year.
Recently, international and national studies focused on

estimation of incidence rates stratified by gender and age
etc.; for example, ALS incidence is known to be higher for
males and at older ages. [24] reports ALS incidence rates
in years 1988-1999 in selected studies with a prospective
cohort design where age is adjusted to the 1990 US pop-
ulation and the age group 45-74 is considered. The rate
estimates are equal to 5.2 in Scotland, 6 in Ireland, 5.5 in
Washington, 5.4 in Piemonte and 4.2 in Puglia always per
100,000 person year.

Conclusions
The aim of this study is to provide an estimate of the inci-
dence rate for ALS (Amyotrophic Lateral Sclerosis) in Italy
during the period 2007-09. ALS data are collected in the
NRRD (National Registry of Rare Diseases) held by the ISS
(National Institute of Public Health) with information on
demographic, socio-economic and clinical characteristics.
Due to low geographical and time coverage, registration
quality, etc., the NRRD, like other pathology registries, is
partially incomplete; a portion of incident ALS units has
not been registered and needs to be estimated to achieve

a reliable incidence rate estimate. Estimating the num-
ber of units missed at registration means estimating the
probability of not registering a unit through the NRRD.
Following [15,16,26] and [9], this probability is estimated
through a reverse hazard model for the delay to ALS
diagnosis, where delay represents the time intercurring
between the onset and the diagnosis of the disease. The
novelty consists in using information from cdf estimates
corresponding to older onset cohorts (2001-03 and 2004-
06) to give estimates for the youngest one (2007-09), after
testing for homogeneity between the different cohort cdf
estimates.
This approach is based on the assumption that a long

delay to diagnosis may cause underreporting in the reg-
istry and influence the quality of the registry as well. The
delay to diagnosis can also be linked to socio/economic
status, age at onset, regional organization, etc. These
determinants might be investigated through a pro-
portional hazard regression model, see [10]; however,
information available in the NRRD on socio-economic
characteristics is not compulsory yet, therefore cannot be
considered reliable.
In this case, we considered only the information on

clinical variables and corrected the observed counts by
providing an incidence estimate based on a HT type esti-
mator for the number of ALS incident units. Incidence
estimates are about 1 case per 100000 inhabitants and
despite they let recovering a good part of underreporting,
they are still far from ALS incidence international ranges
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between 1.5 and 2.5. This gap could be due to substan-
tial regional variability in the NRRD: not all regions have
sent data to the NRRD and not all regional presidiums are
active in sending data as well. For these reasons, the pop-
ulation at risk would be lower and the estimated incidence
rate could be higher, getting closer to the international val-
ues, as shown if we look at estimates for Northern Italy
alone.

Appendix A: Somemore technical details
The conditional probability of observing an event exactly
at time t is

fτ (t | τ , x) = Pr(T = t | X = x,X + T ≤ tend) = f (t)
F(τ )

= fτ (t | τ) 0 ≥ t ≤ τ

which depends on x only through τ .
As discussed by [15], we are only able to identify part of

the distribution function, namely

FT (t | τ) = F(t)
F(τ )

0 ≥ t ≤ τ

which can be written also as

FT (t | τ) = fT (t | τ)

ρ(t)

where ρ(t) = f (t)
F(t) is the retro-hazard or the reverse time

hazard; it can be shown to be the same in the marginal
distribution of T and in the distribution right truncated
by τ . It follows that

FT (t | τ) =
τ∏

u=t+1
(1 − ρ(u))

The set {ρ(t) | 0 ≥ t ≤ τ } describes the part of F that
we can identify, see [15]. The likelihood function over n
independent observations t1, t2, . . . , tn is given by

�(t) =
n∏

i=1
fT (ti | τi) =

τ∗∏
u=1

ρ(u)D
∗
u(1 − ρ(u))R

∗
u−D∗

u

Appendix B: Variance estimate for corrected
incidence rate
As already mentioned, the crude ALS incidence rate Ic for
a given year is calculated as the ratio of the number D of
new ALS cases to the person-time at risk, S, in the same
period, Ic = D/S. The proposed approach to adjust for the
delay to ALS diagnosis is based on weighting each individ-
ual for the inverse of the probability of being observed and
thus for the inverse of the cdf; in this way, each individual
represents not only himself but also other units not regis-

tered. The proposed adjusted estimated incidence rate is
given by

Î =
∑n

i=1 1
1 − p̂0iS

=
∑n

i=1 1
F̂iS

=
∑n

i=1 Ŵi
S

i = 1, . . . , n where F̂i is the estimated cdf for the i-th indi-
vidual and Ŵi = 1

F̂i
. The standard variance estimate of the

crude incidence rate is (see [27])

ˆvar(Ic) = D̂
S2

In the present context, to estimate the variance of I we
use the marginal variance rule

var(I) = ES[ var(I|D, S)]+varS[E(I|D, S)] (1)

Using the idea that an estimate of E(X) is X,
E(var(I|D, S) may be estimated using

ES[ var(I|D, S)] = var
(∑n

i=1Wi
S

|D, S
)

= 1
S2

( n∑
i=1

var(Wi)

)

= 1
S2

( T∑
t=1

var(Wti)

)

Denoting with Du and Ru the number of observed indi-
viduals with ALS and the population at risk in the sample
at time u, respectively, and knowing that (see [27])

var(Ft) = (F̂t)2
T∑

u=t+1

Du
Ru(Ru − Du)

(2)

According to [28], the delta method procedure help us
approximate the variance of the transform 1

Ft as follows

var(Wt) = var
(
1
Ft

)
= ̂Var(Ft)

(
−1
F̂2
t

)2

(3)

plugging equation (2) into equation (3) we obtain

var
(
1
Ft

)
= (F̂t)2

T∑
u=t+1

Du
Ru(Ru − Du)

1
F̂4
t

=
∑T

u=t+1
Du

Ru(Ru−Du)

F̂2
t

(4)

Furthermore, following [27] we can estimate varS
(E(I|N , S)) as

varS[E(I|N , S)]= W 2 ̂var(Ic) =
(
1
F̂

)2 D
S2

whereW 2 = (∑n
i=1Wi/D

)2
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Thus, we obtain

var(I) = 1
S2

T∑
t=1

[∑T
u=t+1

Du
Ru(Ru−Du)

F̂2
t

]
+

(
1
F

)2 D
S2
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Millul A, Benn E, Beghi E: Incidence of amyotrophic lateral sclerosis in
Europe. J Neurol Neurosurg Psychiatry 2010, 81:385–390.

21. Marin B, Couratier P, Preux P-M, Logroscino G: CanMortality Data Be
Used to Estimate Amyothophic Lateral Sclerosis Incidence?
Neuro-epidemiology 2011, 36:29–38.

22. Statistiche demografiche ISTAT. [http://demo.istat.it/].
23. Piemonte and Valle d’Aosta Register for Amiotrophic Lateral Sclerosis

(PARALS): Incidence of ALS in Italy, evidence for a uniform
frequencyin Western countries. Neurology 2001, 56:239–244.

24. Logroscino G, Beghi E, Zoccolella S, Palagano R, Fraddosio A, Simone IL,
Lamberti P, Lepore V: Serlenga L and the SLAP registry: Incidence of
amiotrophic lateral sclerosis in southern Italy: a population based
study. J Neurol Neurosurg Psychiatry 2005, 76:1094–1098.

25. Beghi E, Millul A, Micheli A, Vitelli E, Logroscino G: Incidence of SLA in
Lombardy, Italy. Neurology 2007, 68:141–145.

26. Kalbfleisch JD, Lawless JF: Regression models for right truncated data
with applications to AIDS incubation times and reporting lags.
Statistica Sinica 1991, 1:19–32.

27. Clayton D, Hills M: Stat Models in Epidemiol. New York: Oxford University
Press; 1993.

28. Oehlert GW: A note on the Delta Method. The Am Statistician 1992,
46:27–29.

doi:10.1186/1471-2377-12-160
Cite this article as: Rocchetti et al.: Modeling delay to diagnosis for Amy-
otrophic lateral sclerosis: under reporting and incidence estimates. BMC
Neurology 2012 12:160.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://demo.istat.it/

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Exploratory data analysis
	Results
	Discussion
	Conclusions
	Appendix A: Some more technical details
	Appendix B: Variance estimate for corrected incidence rate
	Competing interests
	Authors' contributions
	Author details
	References

