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Pretreatment with intrathecal amitriptyline
potentiates anti-hyperalgesic effects of post-injury
intra-peritoneal amitriptyline following spinal
nerve ligation
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Abstract

Background: Amitriptyline, a tricyclic antidepressant and potent use-dependent blocker of sodium channels, has
been shown to attenuate acute and chronic pain in several preclinical modes. The purpose of this study was to
investigate whether intrathecal pretreatment with amitriptyline combined with post-injury intra-peritoneal
amitriptyline is more effective than post-injury treatment alone on L5 spinal nerve ligation (SNL)-induced
neuropathic pain.

Methods: 96 adult male Sprague-Dawley rats were allocated into 4 groups: group S, Sham; group L, L5 spinal
nerve Ligation with vehicle treatment; group A, SNL and post-injury intra-peritoneal (Abdominal) amitriptyline twice
daily x 3 days; group P, intrathecal Pretreatment with amitriptyline, SNL and intra-peritoneal amitriptyline twice
daily X 3 days. Responses to thermal and mechanical stimuli, as well as sodium channel expression in injured dorsal
root ganglion (DRG) and activated glial cells in spinal dorsal horn (SDH) were measured pre-operatively and on
post-operative day (POD) 4, 7, 14, 21 and 28.

Results: SNL-evoked hyper-sensitivity responses to thermal and mechanical stimuli, up-regulated Nav1.3 and down-
regulated Nav1.8 expression in DRG, and activated microglia and astrocytes in SDH. In group A, intra-peritoneal
amitriptyline alone alleviated thermal hypersensitivity on POD7, reversed Nav1.8 and reduced activated microglia on
POD14. In group P, intrathecal pretreatment with amitriptyline not only potentiated the effect of intra-peritoneal
amitriptyline on thermal hypersensitivity and Nav1.8, but attenuated mechanical hypersensitivity on POD7 and
reduced up-regulated Nav1.3 on POD14. Furthermore, this treatment regimen reduced astrocyte activation on
POD14.

Conclusions: Concomitant intrathecal pretreatment and post-injury intra-peritoneal amitriptyline was more
effective than post-injury treatment alone on attenuation of behavioral hypersensitivity, decrease of activated
microglia and astrocytes and dysregulated Nav1.3 and 1.8.
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Background

Peripheral neuropathic pain caused by nerve injury is
a common event after trauma, amputation or surgery
[1-4]. To relieve neuropathic pain after surgery, medi-
cines are generally administered through systemic or
regional routes peri-operatively [1,4]. In preclinical mod-
els, voltage-gated sodium channel (Nav) blockers admi-
nistered at the site of injury and on injured dorsal root
ganglion (DRG), either before or immediately after nerve
damage, inhibit upward transmission of noxious stimuli
and play a major role in attenuating acute and chronic
neuropathic pain [5-8].

Injured DRG neurons are likely to have a more hyper-
polarized threshold for overshooting action potential
with the presence of Nav1.3 in place of Nav1.8 after per-
ipheral nerve axotomy. The hyperpolarized threshold
brings the neurons requiring less depolarization for acti-
vation and easy firing under the actions of Navl.3 and
Nav1.7 [9]. Amitriptyline, a tricyclic antidepressant, acts
as a potent, use-dependent blocker of sodium channels
at therapeutic doses [10]. Amitriptyline has also been
demonstrated to attenuate acute and chronic pain after
surgery [11,12]. It inhibits ectopic and bursting dis-
charges from injured nerves and modulates activation
and inactivation kinetics of sodium channels in sensory
neurons [13]. In addition, systemic or intraspinal admin-
istration of amitriptyline has been demonstrated to pro-
duce an anti-hyperalgesic effects on same sensory
endpoints [12,14,15]. However, the mechanism by which
amitriptyline exerts its effect on the prevention of mech-
anical allodynia remains controversial. Peripheral admin-
istration of sodium channel blockers can alleviate
mechanical allodynia [16,17] and peripheral administra-
tion of amitriptyline produces anti-allodynic effects [18].
In addition, intrathecal amitriptyline (0.21 mg in 90 pl)
produces a complete motor and sensory blockade with a
potent and long duration [19]. Hence, amitriptyline pos-
sesses anti-allodynic effect through its potent activity as
a sodium channel blocker.

Recent reports have demonstrated that neuropathic
pain is associated with dysregulation of Nav expression,
namely up-regulation of Navl.3 and down-regulation of
Navl.8 in injured DRG [20,21] as well as over-activation
of microglia in the spinal dorsal horn (SDH) [22]. In
view of the above reports, we hypothesized that con-
comitant intrathecal pretreatment with post-injury intra-
peritoneal amitriptyline could attenuate nerve damage-
induced hyperalgesia and allodynia. In the present study,
both thermal and mechanical stimulations were used to
investigate the effect of a concomitant administration of
intrathecal and intra-peritoneal amitriptyline on spinal
nerve ligation-induced neuropathic pain. We also evalu-
ated the effect of amitriptyline on sodium channel ex-
pression in injured DRG, and activation of glial cells in
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SDH. This study found that intrathecal pretreatment in
combination with post-injury intra-peritoneal amitriptyl-
ine was more effective than post-injury treatment alone
on attenuation of thermal and mechanical hypersensitiv-
ity as well as reduction of microglia and astrocyte activa-
tion in SDH, and reduction of dysregulated Navl.3 and
Navl.8 in DRG.

Methods

Experimental animals and groups

Ninety-six adult male Sprague—Dawley rats weighing
280-300 g were used. Ethical approval for this study
(Approval No. 95105) was provided by the Institutional
Animal Care and Use committee, Kaohsiung, Taiwan.
The experimental rats were allocated into four groups
(n=24/group) (Figure 1): (1) sham group (group S), re-
moval of left sixth lumbar transverse process; (2) ligation
group (group L), surgery with left L5 spinal nerve
ligation (SNL) followed by treatment with vehicle; (3)
intra-peritoneal (Abdominal) group (group A), left L5
SNL followed by treatment with amitriptyline intra-peri-
toneally at 12.5 mg/kg twice daily for 3 days after nerve
injury; (4) Pretreatment group (group P), pretreatment
with 90 pl of 7.5 mM (0.21 mg in 90 pl) amitriptyline
hydrochloride (Sigma) intrathecally followed by left L5
SNL, and then treatment with amitriptyline intra-perito-
neally at 12.5 mg/kg twice daily for 3 days after nerve in-
jury. Behavioral testing to noxious thermal stimuli and
to mechanical stimuli applied to the hind paws was per-
formed in all rats on day -1 and on post-operative days
4 and 7 (POD4 and POD?7) and then weekly thereafter
for the next 3 weeks (POD14, POD21 and POD28).

Intrathecal injection of amitriptyline

Following an optimal flexion of the lumbar spine in a
prone position, 100 pl of 1% lidocaine was injected sub-
cutaneously into the lumbar 4-5 (L4-5) intervertebral
space. After local infiltration, 90 pl of 7.5 mM amitrip-
tyline was administered by intrathecal injection through
the L4-5 intervertebral space using a 100 pl syringe with
a 30-gauge needle (Hamilton, Reno, NV, USA). Amitrip-
tyline injection was considered successful if dragging of
hind limbs during movement was observed [19].

Spinal nerve ligation

All surgical procedures were performed under isoflur-
ane/O, anesthesia. Each rat was placed in a prone pos-
ition, and the left paraspinal muscles were separated
from the spinous processes at the L4-S2 level. The left
L6 transverse process was removed with a small Ron-
geur to expose the L4 and L5 peripheral spinal nerves,
and the L5 spinal nerve was isolated and tightly ligated
with 6-0 Dexon. The wound was then sutured with 3-0
silk thread. In group S, all surgical procedures were
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Figure 1 Flow chart of the study. DRG: dorsal root ganglion; D: day; m: minute; POD: postoperative day; S: Sham; L: Ligation followed by
vehicle treatment; A: ligation followed by treatment with amitriptyline intra-peritoneally post-injury; P: Pretreatment intrathecal amitriptyline,

identical except for ligation of the left L5 spinal nerve.
Based on time course responses reported by Chen et al.
[19], SNL surgery was performed 10 minutes after suc-
cessful intrathecal amitriptyline administration in group P.

Intra-peritoneal (abdominal) administration of
amitriptyline

In this study, rats of group A and group P were adminis-
tered intra-peritoneal amitriptyline hydrochloride in saline
(50 mg/ml, Sigma, Taufkirchen, Germany) at 12.5 mg/kg
twice daily for 3 days. In group L, rats were administered
isotonic saline intra-peritoneally twice daily for 3 days.

Behavioral responses

Latency of foot withdrawal in response to noxious heat
stimuli

The latency of foot withdrawal from noxious heat stim-
uli was measured using the method described previously
[23]. Briefly, an infrared light beam emitted from a
moveable light box was projected through a hole
(2x5 mm) to heat the glass plate under one hind paw
(Ugo Basile Model 7370, Italy). Abrupt lifting, with-
drawal, licking of the hindpaw or guarding posture was
considered a positive response. A photocell was used to
turn off the light beam automatically when the rat lifted
the paw. The time from application of light beam to

lifting of the hind paw was recorded and was defined as
foot withdrawal latency. Measurements were performed
at five-minute intervals and repeated 5 times on each
hind paw, alternating between the two paws.

Force of foot withdrawal response to mechanical stimuli
Rats were first acclimated to the environment for testing
mechanical stimuli, which was a metal mesh floor cov-
ered by a transparent plastic dome (8 x 8 x 18 cm). A Dy-
namic Plantar Aesthesiometer (UgoBasil, Italy) filament
underneath the metal mesh was applied perpendicular
to the outer mid-plantar surface of the paw. An auto-
mated test machine was used to apply mechanical stim-
uli with a 2 mm diameter metal rod in increments of
2.5 g/s (to a maximum of 50 g) to either hind paw until
an abrupt foot withdrawal was elicited. When rapid
withdrawal of the paw was observed, duration and force
intensity were recorded with approximately 0.1 g sensi-
tivity. For each hind paw, measurements were repeated
5 times at intervals of approximately 3 minutes. The
paw withdrawal force was determined by averaging mea-
surements for each hind paw.

Determination of protein expression
On POD4, POD7, POD14, POD21 and POD28 the left
L5 DRGs were removed from rats in all 4 groups (n=4-
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5/group for each time point). The tissues were homoge-
nized in RIPA buffer (50 mM Tris, pH 7.4, 150 mM
NaCl, 1 mM EDTA, 0.1% SDS, 1% NP-40, 0.5% sodium
deoxycholate) containing complete protease inhibitor
mixture (Roche Diagnostics GmbH, Mannheim Germany).
Fifty micrograms of total protein was loaded onto 8% so-
dium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) and
were transferred to polyvinylidene fluoride membranes
(PVDE, Millipore, Bedford, MA). The expressions of
Nav1.3, Navl.7 and Navl.8 protein were detected using
rabbit primary antibodies (Alomone Labs, Jerusalem, Is-
rael) followed by reaction with horseradish peroxidase-
conjugated mouse anti-rabbit antibody (Santa Cruz, Bio-
technology, Santa Cruz, CA). The intensity of each band
was visualized by ECL Western blotting detection reagents
(Amersham Biosciences, Tokyo, Japan). Protein expres-
sions were normalized using [-actin as internal control,
and quantification of Nav level at each time point for each
group were normalized against the Nav levels of the sham

group.

Tissue preparation and immunofluorescence of microglia
and astrocytes in the spinal cord

Activation of spinal microglia and astrocytes in L5 SDH
were evaluated on POD4 POD7, POD14, POD21, and
POD28. Rats from each group (n =4-5/group for each time
point) were anesthetized with thiopentone (60 mg/kg) and
perfused with 0.9% saline followed by 4% paraformalde-
hyde in 0.1 M phosphate buffer (pH 7.4). The L5 spinal
cord tissues were dissected out, fixed in 4% paraformalde-
hyde then saturated in 10 to 30% sucrose in 0.02 M phos-
phate-buffered saline (pH 7.4). The tissues were embedded
in optimum cutting temperature (O.C.T.) compound, and
16-um thick sections were cut for immunostaining. To
visualize the proliferation of microglia in the spinal cord,
mouse monoclonal anti-OX-42 antibody (mouse anti-rat-
cd 11, 1:200, Serotec, Oxford, UK) and goat anti-mouse
IgG Alexa Fluor 488 (Invitrogen, UK) secondary antibody
were used. In addition, the primary anti-glia fibrillary acidic
protein antibody (1:200; Millipore, Temecula, CA) and
Cy3- conjugated goat anti-rabbit secondary antibody were
used to detect the activation of astrocytes. Quantification
of immunofluorescence staining in the spinal cord was per-
formed by means of a computerized imaging system to
analyze positive staining for microglia or astrocytes on the
ipsilateral side of the dorsal horn of the spinal cord. Six
sections were evaluated in each rat, and average density of
microglia and astrocytes in each group was obtained.

Histological staining

Spinal cord specimens were collected, fixed in 10% for-
malin in neutral buffer for several hours, embedded in
paraffin, sliced to a thickness of 3—4 um, stained with
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hematoxylin and eosin (H&E), and viewed under a
microscope.

Statistical analysis

Group differences in behavioral and Western blot data
were compared by ANOVA followed by Scheffe test of
multiple post hoc analyses. Microglia and astrocytes data
were analyzed by Mann—Whitney U test. These statis-
tical tests were performed using SPSS 18.0 (SPSS Inc.,
USA).

Results

Surgery and histo-pathologic assessment

After surgery, no rats exhibited ventroflexion or drag-
ging of the hind paw during forward movement, and
there were no signs of autotomy. In sham rats, ipsi-(left)
and contra-lateral (right) behavioral responses were
similar, and there was no significant difference in with-
drawal latency between left and right hind paws. In
addition, intrathecal treatment with amitriptyline did not
show obvious or extended infiltration of inflammatory
cells in the spinal cord in group P (results not shown).

Amitriptyline blunted hypersensitive responses to
thermal and mechanical stimuli after SNL

Spinal nerve ligation induced thermal and mechanical
hypersensitivity as indicated by a significant difference in
withdrawal latency and withdrawal force between left
and right hind paws to both thermal and mechanical
stimuli, respectively (Figure 2, group S vs. group L,
p<0.001). Intra-peritoneal amitriptyline alone blunted
the hypersensitive responses to thermal stimuli for one
week, but had no effect on mechanical responses
(Figure 2, group A vs. group L). Pretreatment with intra-
thecal amitriptyline in addition to the intra-peritoneal
regimen prolonged the effect of attenuating thermal
hypersensitivity for 2 weeks (Figure 2A, p<0.001)
and reduced mechanical hypersensitivity for 1 week
(Figure 2B, p < 0.001). However, regardless of the treat-
ment with amitriptyline, the thermal and mechanical
hypersensitivity responses in group A and group P have
comparable results to group L on POD21.

Inhibition of altered Nav1.3, Nav1.7 and Nav1.8
expressions by amitriptyline in injured DRG

Spinal nerve ligation significantly up-regulated Nav1.3 and
down-regulated Nav1.8 protein expression for 28 days in
injured DRG (Figure 3A and 3B, group S vs. group L).
Expression of Navl.7 in injured DRG was initially down-
regulated on POD4 (Figure 3C, group S vs. group L,
p=0.026), but gradually returned to baseline level. Treat-
ment with amitriptyline intra-peritoneally for 3 days post-
injury preserved Nav1.8 expression for 2 weeks (Figure 3B,
P=0.005) but did not attenuate Navl.3 up-regulation
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Figure 2 Differences in withdrawal latency between left and right hind paws after thermal (A) and mechanical (B) stimulation. There
are no significant differences in withdrawal latencies between hindpaws in the sham group (S). Spinal nerve ligation (group L) produced a
significant difference in withdrawal latencies between hindpaws. Intra-peritoneal amitriptyline post-injury (group A) alleviated thermal
hypersensitivity for one week. Pretreatment intrathecal amitriptyline in combination with post-injury intra-peritoneal amitriptyline (group P)
alleviated thermal hypersensitivity for 2 weeks and attenuated mechanical hypersensitivity for 1 week. POD: postoperative day, (red accent
diamond: group S, red down-pointing triangle: group L, green circle: group A, olive green square: group P, n=24/group, 4-5/each time point). L vs. S,
Ye: P<0.001; Avs. L, c: P<0.001; P vs. L#: P<0.001. Group differences were compared by ANOVA followed by Scheffe test of multiple post hoc
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(Figure 3A, P> 0.05, group A vs. group L). Pretreatment
with intrathecal amitriptyline in addition to the post-in-
jury intra-peritoneal administration not only prolonged
the effect of post-injury intra-peritoneal amitriptyline on
reversal of Nav1.8 down-regulation for 3 weeks (Figure 3B,
P=0.024), but also significantly reduced up-regulation of
Navl.3 for 2 weeks (Figure 3A, P<0.001, group P vs.
group L). Treatment with both regimens of amitriptyline
(groups P and A) preserved Navl.7 expression on POD4
when compared with group L (Figure 3C, P=0.033).

Amitriptyline inhibited glial cell activation in the spinal
dorsal horn

Spinal nerve ligation resulted in activation of microglia
cells and astrocytes in the SDH and the increased activa-
tion was most pronounced until POD21 (Figures 4 and 5
group S vs. group L). Administration of amitriptyline
intra-peritoneally post-injury reduced the intensity of
immunoreactivity induced by SNL in microglia for 2 weeks
(Figure 4, p = 0.013, group A vs. group L), but had no obvi-
ous effect on the activation of astrocytes (Figure 5, group
A vs. group L). Addition of intrathecal pretreatment with
amitriptyline reduced the increased intensity of microglia
activation as well as the activation of astrocytes for 2 weeks
(p<0.05).

Discussion

Peripheral neuropathic pain is characterized by an
increased activation of afferent nociceptors and sensi-
tized afferent information through spinal processing
[4,24]. Mechanical allodynia, a central sensitization
caused by peripheral noxious barrage to the spinal cord,
is characterized by a painful sensation evoked by light

touch, a normally innocuous stimulation. Touch-evoked
pain is a hallmark of neuropathic pain and is triggered
by spontaneous ectopic discharges from injured periph-
eral nerves to sensitized spinal dorsal horn cells. Al-
though mechanisms of allodynia are not entirely
understood, they may involve A-beta myelinated affer-
ents [25], activated microglia and astrocytes [26-30], and
dorsal horn neuron cells [28]. It has been shown that so-
dium channel blockers applied to the injured site [31],
DRG [32] or the spinal cord [33] all effectively decrease
neuropathic pain and attenuate hyperalgesia and allody-
nia. The present study demonstrates that intrathecal pre-
treatment with amitriptyline, a sodium channel blocker,
enhances the effect of systemic amitriptyline on mechan-
ical and thermal hypersensitivity when compared to sys-
temic administration alone.

Without intrathecal pretreatment, systemic amitriptyl-
ine administration showed an effect only on thermal
hypersensitivity. The mechanisms by which amitriptyline
alleviates hypersensitivity were not determined. Amitrip-
tyline may act, not only as a potent blocker of voltage-
gated sodium channels [5] but also as a 5-hydroxytrypta-
mineand noradrenaline reuptake inhibitor, and blocker
of al-adrenergic, nicotinic, muscarinic cholinergic, and
N-methyl-D-aspartate receptors [24]. In the present
study, the effects of systemic amitriptyline administra-
tion to blunt thermal hypersensitivity responses lasted
only 7 days. A report by Arsenault and Sawynok [12]
showed that a perioperative systemic amitriptyline for
7 days prevents hindpaw hyperalgesic effects for up to
42 days through inhibition of noradrenaline uptake, and
increased glial-derived neurotrophic factors as well as
brain-derived neurotrophic factors. It also indicates that
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both pre-injury and post-injury amitriptyline are needed
to prevent sensory changes and to blunt chronic neuro-
pathic pain.

Activated glial cells in the dorsal horn have been iden-
tified to be closely associated with neuropathic pain
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[28,34] regardless of whether microglia and astrocytes
are activated through cytokines, chemokines, or MAP
kinase [34]. Amitriptyline inhibits the secretion of inter-
leukin (IL)-1beta and tumor necrosis factor (TNF)-alpha
in rat mixed glial and microglial cell culture [35] and
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Figure 3 Protein expressions of Nav1.3, Nav1.8, and Nav1.7 in left L5 DRG by western blot analyses. Quantification of Nav levels at each
time point for each group was normalized against the Nav levels of the sham group. SNL (group L) induced up-regulation of Nav1.3 (A) and
down-regulated Nav1.8 (B) for 28 days. Treatment with amitriptyline intra-peritoneally (group A) did not have a significant effect on SNL-induced
up-regulation of Nav1.3. Pretreatment with intrathecal amitriptyline together with post-injury treatment with the same compound intra-
peritoneally (group P) decreased SNL-induced up-regulation of Nav1.3 for 2 weeks (A). Significant inhibition of SNL-induced down-regulated
Nav1.8 was found in groups A and P; the effect lasting for 2 and 3 weeks, respectively (B). Furthermore, both amitriptyline regimens reversed the
SNL-induced down-regulation of Nav1.7 on POD4 (C). Data represent mean + SE. One way ANOVA (n = 24/group, 4-5/each time point). *p < 0.05;
*p < 007; ¥e;p < 0.001,NS: not significant. POD: postoperative day; S: Sham; L: Ligation followed by vehicle treatment; A: ligation and treatment
with amitriptyline intra-peritoneally (Abdomen) post-injury; P: Pretreatment with intrathecal amitriptyline, ligation and intra-peritoneal amitriptyline
post-injury.
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Figure 4 Immunofluorescence staining (A) and quantification of the expression of OX-42 (B) in microglia of the spinal dorsal horn
(SDH). SNL (group L) induced a dramatic increase in OX-42 positive microglia in the SDH. Both amitriptyline regimens (group A and P) reduced
the expression of OX-42 immunoreactivity in microglia for 2 weeks (B). Group P showed a greater effect than group A on reduction of activated
microglia in SDH on PODA4. Scale bars=200 um. Data represent mean + SE, the Mann-Whitney U test was used for statistical comparison. (n =24/
group, 4-5/each time point). *p < 0.05; **p < 0.01, NS: not significant. POD: postoperative day; S: Sham; L: Ligation; A: post-injury intra-peritoneal
amitriptyline; P: Pretreatment with intrathecal amitriptyline in addition to post-injury intra-peritoneal amitriptyline.
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in the SDH. Intra-peritoneal treatment with amitriptyline (group A) had no effect on decreasing the SNL-induced activation of astrocytes.
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astrocytes. Interestingly, the effect of systemic amitriptyl-
ine was potentiated by intrathecal pretreatment with the
compound.

Mechanical allodynia has been demonstrated to be
closely associated with activated astrocytes. For example,
increased allodynia was found in GFAP-TNF transgenic
mice in the L5 SNL animal model [30]. Moreover, dorsal
root transection also resulted in intense mechanical allo-
dynia. However, glial responses were almost exclusively in
astrocytes, and astrocytic activation was always observed
following axotomy and reliably correlated with behavioral
responses [29]. Similar to these results, the present study
showed that glial cells were activated after nerve damage,
and inhibition of glial cell activation was correlated with
modulation of mechanical hypersensitivity.

Peripheral nerve axotomy leads to an increased expres-
sion in Navl.3 with a concomitant decrease in Navl.8

expression in injured DRG neurons [37], and it redistri-
butes sodium channels from sensory neuron soma to per-
ipheral axons at the site of injury [38]. The role of Nav1.3
in neuropathic pain is not clear [21,39,40]. However, an
up-regulated Nav1.3 expression in injured DRG is accom-
panied by the emergence of a rapidly repriming current in
these cells and may generate action potentials from a sub-
threshold input [41]. On the other hand, the expression of
Nav1.8 in injured DRG is significantly decreased, while its
expression in adjacent un-injured DRG is increased [37].
In the present study, up-regulated Nav1.3 and down-regu-
lated Navl.8 were simultaneously found in injured DRG
upon peripheral nerve axotomy. These results were sig-
nificantly reversed after intrathecal pretreatment amitrip-
tyline together with intra-peritoneal post-injury treatment
by amitriptyline. These data corroborate our hypothesis
that the sodium channel blocker amitriptyline could blunt
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noxious stimuli transmission, decrease dysregulated ex-
pression of voltage-gated sodium channels, and prevent
over-excitability and ectopic firing in injured DRG.

Although intrathecal amitriptyline 90 pl of 7.5 mM is
tolerable to all rats in our study, and in the study of
Chen et al. [19], supra-spinal effects of amitriptyline can-
not be excluded from this study. The total volume of
rat’s CSF in this study is about 250 ul, calculated from
body weight, and intrathecal amitriptyline 90 pl is more
than 1/3 of CSF volume. As 90 pl is large volume, the
injectate may reach the basal cisterns and ventricles [42].
Further research should be undertaken to elucidate
whether the spinal or supra-spinal effects of intrathecal
amitriptyline attenuates mechanical hypersensitivity.

Whether intrathecal amitriptyline induces neurotoxicity in
the CNS is still unknown. There is no direct neural damage
observed for 3% amitriptyline-saline intraspinal administra-
tion to dogs, though adhesive arachnoiditis appears [43].
Intrathecal amitriptyline 60 pg in 3 pl was administered via
a catheter showing no immediate sensory or motor func-
tional impairment [44]. In rats of morphine tolerance, intra-
thecal amitriptyline and morphine 15 pg/hr for 5 days
maintains anti-nociceptive effect by increase of anti-inflam-
matory cytokine interleukin-10 expressions [36]. However,
high concentrations of amitriptyline infiltrate on the sciatic
nerve easily damage peripheral nerve fibers, causing direct
injury to axons and producing wallerian degeneration of the
nerve fibers [45]. Although intrathecal amitriptyline showed
no obvious or extended infiltration of inflammatory cells in
spinal cord in the present study, based on evidence in
related literature, it is important that low concentrations of
amitriptyline be administered either peripherally or centrally
to prevent neurotoxicity.

Conclusion

In the present study, intra-peritoneal administration of
amitriptyline twice daily for 3 days following nerve in-
jury attenuated thermal hypersensitivity, reversed down-
regulated Nav1.8 and decreased activated microglia, but
did not inhibit up-regulation of Navl.3, mechanical
hypersensitivity, or astrocyte activation. However, a com-
bination of intrathecal pretreatment and post-injury
intra-peritoneal amitriptyline not only attenuated ther-
mal hypersensitivity but also suppressed mechanical
hypersensitivity for one week. It also inhibited the up-
regulation of Nav1.3 in injured DRG and reduced the in-
tensity of immunoreactivity in astrocytes induced by
SNL. These results suggest that concomitant intrathecal
pretreatment and post-injury intra-peritoneal amitriptyl-
ine potentiates the attenuation of neuropathic pain than
given intra-peritoneally post-injury only.
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