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Abstract

Background: Retired athletes with a history of sports concussions experience cognitive and motor declines with
aging, and the risk of severe neurodegenerative conditions is magnified in this population. The present study
investigated the effects of aging on motor system metabolism and function in former university-level athletes who
sustained their last concussion several decades prior to testing.

Methods: To test the hypothesis that age and remote concussions induce functional as well as metabolic
alterations of the motor system, we used proton magnetic resonance spectroscopy to detect metabolic
abnormalities in the primary motor cortex and the serial reaction time task (SRTT) to evaluate motor learning.

Results: Our results indicate that motor learning is significantly reduced in former concussed athletes relative to
controls. In addition, glutamate/H,0 ratio in M1 was disproportionately reduced in concussed athletes with
advancing age and was found to strongly correlate with motor learning impairments.

Conclusion: Findings from this study provide evidence that the acquisition of a repeated motor sequence is
compromised in the aging concussed brain and that its physiological underpinnings could implicate
disproportionate reductions of M1 glutamate concentrations with advancing age.
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Background

Sports concussions are alarmingly prevalent and their
long-term and cumulative effects increasingly recognized
in the sports culture [1]. The demonstration of chronic
alterations of brain mechanisms and functions after
sports concussions [2-14] has brought increased aware-
ness and concerns about the safety hazards associated
with the practice of contact sports due to its inherent
risks of sustaining sports concussions. Perhaps even
more disquieting is the recent association between re-
mote sports concussions and neurodegenerative diseases.
For example, there is a fivefold increase in the preva-
lence of mild cognitive impairments (MCI) in retired
professional athletes who sustained three or more con-
cussions [15], a condition that converts at a rate of 10-
20% annually into dementia [16]. Likewise, several cases
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of chronic traumatic encephalopathy (CTE) involving se-
vere motor manifestations have been reported in athletes
who sustained repetitive contact sport-related head in-
jury [17-20]. Although more common to boxing and
wrestling, contact sport-related CTE has also been found
in retired football, soccer and ice hockey players [18-20].
A recent study provided the first pathological evidence
that CTE might be associated with the development of a
motor neuron disease [21], characterized by severe
weakness, atrophy, spasticity, and fasciculations several
years before death combined with extensive tau neuro-
fibrillary changes, motor neuron loss, and corticospinal
tract degeneration [22]. This is consistent with the
known elevated incidence of amyotrophic lateral scler-
osis (ALS) in varsity athletics [23], football [24] as well
as professional soccer players [25]. At a subclinical level,
otherwise healthy former athletes with remote concus-
sions exhibit significant motor execution slowness
(bradykinesia) relative to unconcussed counterparts [9].
These bradykinesia symptoms in former concussed
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athletes were found to be closely related to excessive
intracortical inhibition of the primary motor cortex
(M1), the latter finding also being reported in young
concussed athletes [7,8,10]. Recently, asymptomatic
concussed university-level football players who were
tested more than nine months after their last concussion
presented suppressed LTP/LTD-like plasticity (long-term
potentiation and long-term depression) that strongly as-
sociated with reductions in motor sequence learning.
The extent of LTP/LTD suppression was found to be dir-
ectly related to lifelong M1 intracortical inhibitory dys-
function in the concussed brain.

This prompted us to examine how aging combined
with a history of remote concussions interact to affect
M1 metabolism and function in former university-level
athletes. Knowing that both sports concussion [10] and
age [26] alter motor sequence learning, we tested
whether concussion and age would further impair motor
sequence learning in former athletes who sustained their
last concussions more than three decades ago relative to
unconcussed former university-level athletes of equiva-
lent age. Likewise, in light of recent evidence suggesting
that age and concussions both reduce cortical NAA and
glutamate levels [27-29], this study sought to determine
whether neurometabolic abnormalities are observed in
M1 of former concussed athletes, and if so, whether they
relate to possibly reduced M1-dependent motor se-
quence learning.

Methods

Participants

All 30 participants included in this study were former
university-level athletes between the ages of 51 and 75
recruited through university athletics organizations
(refer to Table 1 for participants demographics). All par-
ticipants were Caucasian males who played for their
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respective college or university hockey/football team.
Participants were included if they met all of the follow-
ing criteria: no history of alcohol abuse and/or substance
abuse; no medical condition requiring daily medication
or radiotherapy (malignant cancers, diabetes, hyperten-
sion and/or other cardiovascular diseases); no previous
history of psychiatric illness, learning disability, neuro-
logical disorder (seizure or brain tumour) or TBI unre-
lated to contact sports. T2 MRI images were collected
for diagnostic purposes and read by a neuroradiologist
blinded to group classification. No anatomical anomalies
were detected in any participant. Participants included
in the present study were all right-handed and had no
history of concussion after their university years. To bet-
ter control for data contamination due to the protective
properties of regular physical activity on the develop-
ment of Alzheimer’s disease (Lindsay et al., 2002), partic-
ipants had to engage in 1-hour physical activity session,
such as playing recreational non-contact hockey and/or
football, tennis, golf, hiking, skiing or taking walks, at
least three times weekly at the time of testing. The na-
ture of physical activities that participants engaged in
was comparable in both experimental groups. Two par-
ticipants were excluded because they could not recollect
sufficient information about their concussion history to
enable group classification. Finally, performance at the
Mini-Mental Status Examination (MMSE) had to be > 27
out of 30 for participants to take part in this study. The
MMSE cutoff score was set particularly high as high cut-
offs allow greater sensitivity to cognitive impairment
[30], especially in highly educated participants [31], to
avoid potential contamination from early cognitive
impairment.

Participants were divided into two groups. The experi-
mental group consisted of 15 former university-level
athletes with a mean age of 60.87 years (SD 7.51) and a

Table 1 Participants demographics and concussion history information

Former University-level athletes

Concussed (n=15)

Controls (n=15)

Age at recruitment (yrs), mean (SD)
Level of Education, mean = SD
Mean number concussions sustained
Mean time since last concussion
Mean concussion severity

Age range frequency (50-56)

Age range frequency (57-63)

Age range frequency (63+)

Apoe4 allele frequency

60.87 (7.51) 58.13 (5.28)
16.67 (4.07) 17.27 (345)
207 (1.22) -
37.07 (7.93) -
2.19 (1.06)

6 5

5 5

4 5

2 2

Abbreviations: yrs years; Apoe Apolipoprotein E; SD standard deviation.

Participants concussion history information and demographics by experimental groups. Age range frequency refers to participants count stratified by age range.
Apoe4 allele frequency refers to Apoe4 allele carriers count by experimental groups. Mean concussion severity refers to the group average of the most severe

concussion sustained for each concussed athlete.
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mean level of education of 16.67 years (SD 4.07) who
sustained their last sports concussion in early adulthood.
Concussion history information was collected by a certi-
fied neuropsychologist. The number of concussions
sustained ranged from 1 to 5 and the time elapsed since
the last concussion spanned from 29 to 53 years (mean
37.08 SD 7.10). The severity of concussions sustained in
former athletes ranged from Grade 1 (concussion symp-
toms or mental status abnormalities on examination that
lasted for less than 15 minutes, no loss of consciousness
(LOQ)) to Grade 3 (LOC, either brief (seconds) or
prolonged (minutes)) according to the American Acad-
emy of Neurology practice parameters [32]; they all clas-
sified as mild traumatic brain injury on the Glasgow
Coma Scale (scoring between 13 to 15).

The control group included 15 former university-level
athletes with a mean age of 58.13 (SD 5.28) and a mean
level of education of 17.27 (SD 3.45) who reported no
prior history of concussion or neurological insult. The
two groups did not differ according to age (t; »5=1.15,
p=.259) or level of education (t; »3=0.44, p=.666).
The study was approved by the University of Montreal
ethics committees and all participants provided written
informed consent prior to testing. This study was
performed with the ethical standards laid down in the
1964 Declaration of Helsinky. Participants received
a financial compensation of $60 CDN for their
participation.

Procedure

Participants underwent a single testing session including
the administration of the concussion history question-
naire, the general health questionnaire (refer to the fol-
lowing reference for a more detailed description [9]), the
motor sequence learning task, magnetic resonance spec-
troscopy and saliva sample collection.

General health questionnaire

A semi-structured health questionnaire was adminis-
tered to screen for pre-determined inclusion criteria
about lifestyle characteristics, life events and medical
conditions that are known to exert an influence on gen-
eral brain function. More specifically, the assessment of
lifestyle and life habits included open and more struc-
tured questions about physical and cognitive activities
engaged in as well as a history of substance abuse. This
general health questionnaire also inquired about cardio-
vascular, neurological and psychiatric illnesses experi-
enced during and after the university years as well as
daily medications or treatment therapies that are known
to exert an impact on brain function. Participants were
also asked whether they suffered from chronic medical
conditions altering motor system functions. Lastly,
former athletes were asked to report recent subjective
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changes with their memory and other issues related to
changes in cognition.

Serial reaction-time task (SRTT)

The SRTT used in this study was identical to that previ-
ously used with young concussed athletes tested in our
laboratory [10]. Participants were seated on a straight
back chair with elbows flexed at an angle of 90°. They
performed a modified SRTT [33] running on SuperLab
(version 4.0; Cedrus, San Pedro, CA). The GO signal
was displayed on the computer screen and consisted of
one asterisk and three dots evenly spaced on an invisible
horizontal plane, all appearing simultaneously. The pos-
ition of the asterisk varied across trials among the four
possible locations and indicated the required key press
[33]. Participants were instructed to respond as fast and
accurately as possible to the position of the asterisk by
pressing the corresponding key with the predetermined
finger (index finger for key 1, middle finger for key 2,
ring finger for key 3, and little finger for key 4). A cor-
rect key press was required for the next trial to appear
on the computer screen. Response time was defined as
the time interval between stimulus presentation and the
correct key press. Participants performed a total of 14
blocks separated by pauses and each block consisted of
10 presentations of the same 12-item sequence for a
total of 120 key presses per block. They were instructed
to perform the task with their dominant hand and to
keep the appropriate finger on each predetermined key
at all times. The two initial blocks consisted of stimuli
presented in random order (random blocks) that differed
from the predetermined repeating sequence. The first
two random blocks (R1 and R2) were provided for par-
ticipants to get familiar with the task. Blocks 3 to 7 and
9 to 13 corresponded to training blocks during which
participants were presented with the following
predetermined, repeating 12-item sequence (Sequence
(S) : 4-2-3-1-1-3-2-1-3- 4-2- 4). Learning blocks
were named according to their respective order preceded
by the letter S. Sequence-specific learning was computed
as the difference in median response time between the
last sequence block (S10) and the last random block
(R4) [34]. Total practice-related learning was calculated
as the median response time difference between the first
sequence block (S1) and the last sequence block (S10).
Refer to Figure 1 for a graphical presentation of the
SRTT paradigm.

Magnetic resonance spectroscopy (H-MRS)

All MR examinations were performed on a Siemens 3 T
Magnetom TIM TRIO scanner with a 12-channel head
coil (Siemens, Erlangen, Germany). 3D high resolution
T1-weighted images of the brain were acquired using a
sagittal MP-RAGE sequence (TR=2300 ms; TE-=
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Total practice-related learning

/Sequcnce-speciﬁc learning

Median RT (ms)

R1 R2 S1 S2 S3 S4 S5 R3 S6 S7 S8 S9 S10 R4
Blocks
Figure 1 Representative serial reaction time task (SRTT) design.

2,91 ms; Slices=176) with a 1 mm® resolution. T2-
weighted images were obtained using a turbo spin-echo
sequence (TR=3000 ms; TE =78 ms; Slices=48) for
diagnostic purposes. Proton magnetic spectra (‘H-MRS)
were obtained from voxels (voxel size of 16 mm x
20 mm x 32 mm) localized over the hand representation
of the left primary motor cortex via high resolution T1
images using the anatomical landmarks proposed by
Yousry and colleagues [35] (Figure 2). The position of a
fixed-dimension virtual acquisition box was individually
adjusted over the ROI in order to maximize the amount
of gray matter included. All voxels contained a mixture
of grey and white matter while investigators and MRI
technicians conjointly performed online monitoring of
potential signal artefacts from ventricles, fatty tissues
and bones. Investigators as well as MRI technicians
closely monitor signal artefact rejection Proton signal
detection using the point-resolved spectroscopy pulse
sequence (PRESS) was performed after suppression of
the water signal with the chemical shift selective se-
quence. Consistent with a previous H-MRS study from
our group conducted with an aging population [36],
H,O signal was acquired for internal reference using a
PRESS sequence with unsuppressed water signal [37].
Acquisition parameters were the following: TR =
1200 ms; TE =30 ms; 128 averages. Free induction de-
cays were transferred to a Silicon Graphics workstation

and processed with the LCModel software version 6.1
[38]. N-Acetylaspartate (NAA), glutamate and H,O were
quantified.

DNA extraction

DNA extraction from saliva samples was performed
using Oragene OG-250 s kits (DNA Genotek, Ottawa,
Canada) and participants were genotyped for APOE 112
(rs429358)-158 (rs7412) polymorphisms. We carried out
polymerase chain reaction (PCR) amplification as de-
scribed previously [39]. APOE polymorphisms were sub-
sequently determined via an established pyrosequencing
protocol [39] with the following oligo sequencing
(APOE 158: 5'-CCGATGACCTGCAGA-3"). Sequences
to analyze were GT/CGCGGCCGC and AGT/CGCCTG
for the multiplex APOE 112-158 polymorphisms.

Statistical analysis

All values are expressed as means (SD). Data were ana-
lyzed with SPSS 16 (SPSS, Chicago, IL). Significance was
defined as p < .05, bilaterally. Effect sizes for mean differ-
ences are estimated with partial eta squared. Motor se-
quence learning ratios at the SRTT task and H-MRS
data were subjected to between-group ANCOVAs with
age, level of education and APOE genotype as covariates.
Two-tailed Pearson correlations, corrected for multiple
comparisons with False Discovery Rate (FDR), were

-

Figure 2 Region of interest for H-MRS examination.
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computed between SRTT and H-MRS data that signifi-
cantly discriminated groups. The combined effects of
concussions with age on M1 metabolite concentration
ratios were explored using standard two-way ANOVA
models.

Results

Serial reaction time task

Data for one concussed athlete had to be excluded from
further analyses as the participant did not keep his fin-
gers on predetermined press buttons at all times. The
Training block effect was significant when percent
change in median reaction times ((S1-S10)/S1) for each
participant was used to compute a between-group
ANCOVA with age, level of education and APOE geno-
type as covariates (Fj, 9 =4.342; P=.048; partial eta
squared (r]f,) =0.164; Figure 3). This indicates that
former concussed athletes improved significantly less
than controls after 10 training blocks of the repeating
12-item sequence. The sequence-specific effect of learn-
ing was also significant when percent change in median
reaction times ((S10-R4)/S10) for each participant was
used to compute a between-group ANCOVA with age,
level of education and APOE genotype as covariates
(F1, 29 =4.906; P =.036; partial eta squared (r]lz,) =0.164;
Figure 3). This indicates that former concussed athletes
benefited significantly less than controls from 10 training
blocks of a repeating sequence relative to the subsequent
random block.

The main effect of group on median reaction times from
the Group X Block (all 10 training blocks) ANCOVA was
not significant (F;, 29=2.396; P=.134; partial eta
squared (r]lz,) =0.087. Median reaction times across ran-
dom blocks did not differ between groups (F; 9=
1.841, P=.187). There was no group difference in mean
response accuracy in sequence blocks [concussion
group: 88.2% +5.6; controls: 89.1% +4.5; (F}, 29=0.32;
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P =.471) or random blocks [concussion group: 86.8% +
7.8; controls: 88.2% + 6.9; (F}, 29 =0.41, P =.426).

Magnetic resonance spectroscopy

H-MRS data from two participants had to be excluded
from further analyses due to technical difficulties during
data acquisition. Prior to using H,O as a reference for
other metabolites of interest, we found that mean abso-
lute water concentration in the ROI was non-statistically
different across groups (t; 57 = .255; P = .40).

H-MRS data collected in M1 revealed a near signifi-
cant between-group effect on NAA/H,O (Fy, 57 =4.01;
P =.057; nf,:0.143) [Mean NAA/H,O: (Control group:
1.61E-4 + 1.63E-5; Concussion group: 1.85E-4 + 3.37E-5)],
but the ANCOVA with age, level of education and
APOE genotype as covariates failed to reach significance.
Glutamate concentration ratios with H,O as reference did
not differ between groups (F;, ,;=.458; P=.505; r]f,:
0.018) [Mean Glutamate/H,O: (Control group: 1.24E-4 +
1.97E-5; Concussion group: 1.19E-4 +1.74E-5)]. Since
brain glutamate as well as NAA concentrations are known
to reduce as a function of age [28], we tested whether
the concussed brain experiences further glutamate/
NAA concentration declines with advancing age. We
found a significant Age * Group interaction for M1
glutamate concentration (Fy, 54 = 4.616; P = .048; r]lz, =0.755;
Figure 3), indicating that the effect of aging on M1 glu-
tamate levels was significantly exacerbated in former
concussed athletes. In contrast, the Age * Group inter-
action for NAA levels in M1 did not reach significance
(F1, 24 =3.50; P =.074; r]ﬁ =0.132). Figure 4 depicts rep-
resentative, water-suppressed 1H-MRS spectra from
each group.

Finally, the M1 glutamate/H,O ratio was strongly cor-
related with sequence-specific learning (R4 vs S10) in
concussed athletes (r =0.727; P =.007; Figure 5), while a
similar association with training block effects (510 vs S1)
(r=0.016; P =.962) was not significant.

* W Controls

900 -
H
=
Y 650 -
£
=
]
=
400 -

R1 R2 A1 A2 A3 A4 A5 R3 A6 A7 A8 A9 A10 R4
Blocks
Figure 3 Response time in random and sequence blocks of the SRTT across groups.
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Correlational analyses with concussion history
information

Among concussed athletes, we found that the number of
concussions sustained was negatively correlated with
relative M1 glutamate/H,O levels (r = -.631; P =.021) as
well as sequence-specific learning (r=-.597; P =.029)
(ref to Figure 6). In contrast, neither concussion sever-
ity index nor the time elapsed since the last concussion
significantly correlated with either relative M1 glutam-
ate/H,O levels [Concussion severity (r = —.231; P > .05);
Time since last concussion (r=-.179; P>.05)]
or sequence-specific learning [Concussion severity

Discussion

This study shows that the acquisition of a repeated se-
quence is significantly reduced in former university-level
athletes with a reported history of sports concussion
sustained more than three decades ago relative to
unconcussed counterparts with equivalent demograph-
ics. In addition, glutamate/H,O ratio in M1 was found
to be disproportionately reduced in former concussed
athletes as they age, a finding that strongly correlated
with decrements on M1-dependent motor sequence
learning. Finally, strong negative correlations were
drawn between the number of concussions sustained

(r=-.168; P>.05); Time since last concussion and both sequence-specific learning and relative M1 glu-
(r=-.211; P> .05)]. tamate/H,O levels.
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Figure 6 Correlation M1 glutamate and sequence-specific learning in concussion group.
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The main finding of this study is the alteration of
motor sequence learning in former university-level ath-
letes with a remote history of sports concussions. These
data are in keeping with those collected at the same task
in asymptomatic, active university-level athletes who
were concussed more than nine months prior to testing
[10]. This suggests that motor sequence learning impair-
ments may be an early and long-lasting manifestation of
concussive injury in former athletes who sustained
sports concussions in early adulthood. Abnormal motor
sequence learning has been linked to suppressed LTP/
LTD-like plasticity in M1 of active concussed university-
level football players that were asymptomatic at the time
of testing [10]. The extent of M1 LTP/LTD suppression
was found to be directly related to M1 intracortical in-
hibitory dysfunction [10]. Importantly, a previous study
confirmed the chronicity of M1 intracortical inhibition
impairments in a sample of former university-level
concussed athletes comparable to those recruited in the
present study [9]. Taken together, these data suggest that
chronic impairments of motor sequence learning found
in former concussed athletes could be linked to altered
M1 intracortical inhibition mechanisms possibly via
compromised LTP/LTD synaptic plasticity in M1.

Equally important is the strong relationship found in
former concussed athletes between impaired motor
learning and reductions in glutamate concentration
within M1. A previous H-MRS study conducted with
normal subjects aged between 24 and 68 years demon-
strated that older subjects had lower glutamate concen-
trations in the motor cortex compared to younger
participants [28]. This finding corroborated histological
evidence of increased deficits of the glutamatergic sys-
tems in the aging animal brain [40-42]. Since most of
glutamate is found in neurons, with extracellular con-
centrations being relatively low under normal conditions
due to its excitotoxic properties [43], declining glutam-
ate concentration levels with aging is therefore expected
to alter neuronal metabolism and function over affected
brain regions [28]. Glutamate being heavily involved in
functions such as motor behavior and cognition [44,45],
high intracellular glutamate concentration levels are
consistently associated with better performance on cog-
nitive as well as motor learning tasks [46]. The associ-
ation between altered motor sequence learning and M1
glutamate concentration reductions in former concussed
athletes from this study provide further evidence for the
crucial role of intracellular glutamate in motor learning.

In parallel, knowing that glutamate/H,O concentration
ratios did not significantly differ by remote concussion
history alone in former athletes, the present findings
suggest that advancing age potentiates latent changes of
M1 metabolism after sports concussions. Interestingly, a
previous H-MRS study looking at neurometabolic
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changes in young university-level athletes in the acute
post-concussion phase found reduced glutamate levels
in M1 that related significantly with self-reported symp-
tom severity [27]. A follow-up study later revealed, how-
ever, that these acute glutamatergic system anomalies
found in M1 return to normal within 6 months of the
injury [47]. Findings from this study suggest that H-
MRS can only detect post-acute M1 glutamate concen-
tration abnormalities after sports concussion when ath-
letes reach a more advanced age.

Another secondary finding from this study shows that
among concussed athletes, the number of remote con-
cussions negatively correlates with both sequence-
specific learning and relative M1 glutamate/H,O levels,
such that former athletes who presented with a history
of more concussions were those who had lowest relative
M1 glutamate concentration levels and who showed
least learning effects at the SRTT task. In contrast, nei-
ther the time elapsed since the last concussion nor con-
cussion severity were found to significantly correlate
with reduced glutamate levels or learning effects found
in concussed athletes. Although only fragmentary con-
sidering the limited sample size and the retrospective
nature of concussion self-reports, these correlational
findings provide further support for the cumulative dele-
terious effects of concussion on brain dysfunction.

The self-reported concussion history is indeed a major
limitation inherent to these studies on the remote effects
of concussions as blows to the head without loss of con-
sciousness were medically overlooked several decades
ago. As described previously [9], participants who were
uncertain about their answers to the concussion history
form were excluded from further analyses. This precau-
tionary step to restrict data contamination coupled with
the very stringent set of exclusion criteria, however, limit
generalizability of our findings and calls for further repli-
cations of the present study with a broader sample of
former athletes that present with more diverse sports
concussions history characteristics.

Conclusion

In conclusion, findings from this study provide evidence
that the acquisition of a repeated motor sequence is
compromised in former concussed athletes and that
physiological underpinnings could implicate dispropor-
tionate reductions of M1 glutamate concentrations with
advancing age. Longitudinal follow-ups could be useful
to explore how glutamate metabolism in M1 might po-
tentially be involved in the future development of more
severe, debilitating symptoms as former athletes get
older.
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