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Abstract

Background: Multiple types of mononucleate cells reside among the multinucleate myofibers in
skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How
neuromuscular disease might affect different types of muscle mononucleate cells had not been
determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-
deficiency and laminin-a2-deficiency, altered the proliferation and composition of different subsets
of muscle-derived mononucleate cells.

Methods: We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling
to examine proliferation rates and compositions of mononuclear cells in diseased and healthy
mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-
deficient) or Lama2-/- (laminin-a.2-deficient) mice and compared them to cells from healthy control
muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression
patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation.

Results: We found that the proliferation and composition of the mononucleate cells in dystrophin-
deficient and laminin-a2-deficient diseased muscles are different than in healthy muscle. The mdx
and Lama2-- muscles showed similar significant increases in CD45* cells compared to healthy
muscle. Changes in proliferation, however, differed between the two diseases with proliferation
increased in mdx and decreased in Lama2-- muscles compared to healthy muscles. In particular, the
most abundant Sca-|-/CD45- subset, which contains muscle precursor cells, had increased
proliferation in mdx muscle but decreased proliferation in Lama2-- muscles.

Conclusion: The similar increases in CD45* cells, but opposite changes in proliferation of muscle
precursor cells, may underlie aspects of the distinct pathologies in the two diseases.

least in part to a decreasing rate of repair that becomes

Background

In diseased skeletal muscle, damaged myofibers can
sometimes be replaced or repaired by mononucleate mus-
cle precursor cells that can commit to myogenesis and fuse
to form multinucleate myofibers. In some muscle dis-
eases, progressive loss of muscle function may be due at

insufficient to replace lost myofibers. The mononucleate
cells in skeletal muscle include the relatively abundant
muscle satellite cells and their myoblast progeny, as well
as infiltrating inflammatory cells and the much less
numerous muscle stem cells [1-4]. In this study, we
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examine how different subsets of muscle-derived mono-
nucleate cells are affected in the diseased skeletal muscles
of laminin-a2-deficient (Lama2-/-) and dystrophin-defi-
cient (mdx) mice. We examined these two diseases
because both the extracellular laminin-a2 and the intrac-
ellular dystrophin proteins interact with the dystroglycan
complex of membrane proteins, yet the pathologies of the
two diseases are significantly different.

Mice lacking laminin-a2 due to mutations in the Lama2
gene have greatly shortened lifespan, poor muscle growth,
and poor muscle regeneration compared to normal litter-
mates [5,6]. Laminin-a2 is a subunit of the basement
membrane component known as merosin (or laminin 2/
4) and is highly expressed in skeletal muscle [7,8]. Lama2-
/- mice are a model for the severely disabling human dis-
ease, primary laminin-a2-deficient Congenital Muscular
Dystrophy Type 1A [9,10], which is also known as
merosin-deficient congenital muscular dystrophy [11,12].

The mdx mice carry a point mutation in the dystrophin
gene that leads to loss of functional dystrophin protein.
Muscle pathology in 2-4 month old mdx mice is charac-
terized by widespread muscle fiber degeneration and
regeneration [13]. Unlike Lama2-null mice, mdx mice
have almost normal life spans and their muscles show evi-
dence of continuing, successful regeneration [14,15]. The
human disease, Duchenne muscular dystrophy, is also
caused by mutations in the dystrophin gene.

For this study, we classified mononucleate cells derived
from skeletal muscles based on expression of two cell sur-
face proteins: Sca-1 and CD45. Sca-1 (Stem cell antigen 1)
was first described as a hematopoietic stem cell marker
[16] and subsequently found to be expressed by a rare
subset of the mononucleate cells in skeletal muscles [17-
19]. CD45 is a cell surface tyrosine phosphatase found on
all nucleated cells of hematopoietic origin and is also
found on rare muscle-derived cells [1]. The expression
patterns of these two proteins define four subsets of cells.
The double-negative subset includes muscle satellite cells
and their myoblast progeny [20]. The double-positive
subset includes cells that appear to be multi-potential
stem cells [1]. The Sca-1-/CD45* subset includes infiltrat-
ing inflammatory cells; and different subsets of this heter-
ogeneous group of cells are found in dystrophin-deficient
and laminin-a2-deficient muscles [21-27]. The Sca-1+/
CD45- subset includes cells with myogenic and endothe-
lial potential [28].

Previous studies suggested that satellite cells and their
myoblast progeny have higher than normal proliferation
in mdx muscles [15,31], but proliferation rates in Lama2-/
-muscles had not been well studied. In addition, it was
known that injury induced by cardiotoxin leads to an
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increase in the CD45+ cells in skeletal muscles [3,4]. No
previous studies, however, had examined how dys-
trophin-deficiency and laminin-a2-deficiency might alter
the proliferation and composition of different subsets of
muscle-derived mononucleate cells. In this study, there-
fore, we examined proliferation rates and compositions of
the Sca-1 and CD45 defined subsets of skeletal muscle
cells. Our results show that dystrophic muscles (both mdx
and Lama2-/-) have a similarly increased percentage of
CD45+ cells compared to muscles of wild-type mice. Fur-
thermore, we found that most cell subsets in mdx muscles
in vivo had increased proliferation relative to normal mus-
cles, whereas most cell subsets in Lama2-/- muscles had
lower than normal proliferation. The contrasting prolifer-
ation profiles of the different subsets of mononucleate
cells in dystrophin-deficient and laminin-a2-deficient
muscles may explain aspects of the distinct pathologies of
the two diseases.

Methods

Mice, breeding, and genotyping

For dystrophin-deficient muscles, we used mice of the
C57BL/10ScSn-Dmdmdx[] genotype (mdx); and as a normal
muscle control for the dystrophin-deficient mice, we used
C57BL/10ScSn mice (Jackson Laboratory, Bar Harbor
ME). For laminin-a.2-deficient muscles, we used mice that
carry a targeted LacZ insertion that inactivates the Lama2
gene which encodes laminin-a2 [5,32]. This targeted
allele is termed dy-W [5]. Heterozygous Lama2#-W/+ mice
were a gift of Dr. Eva Engvall (Burnham Institute, La Jolla
CA). Breeding of these heterozygotes in our laboratory
was used to obtain homozygous, laminin-a2-null (Lama?2
/-) progeny, as well as heterozygous (Lama2+/-) and nor-
mal (Lama2+/+) littermates. Littermates were genotyped by
analysis of the Lama24-W targeted mutation and the wild-
type allele by PCR of DNA obtained from tail biopsies as
described [5]. Muscles from normal littermates served as
controls for Lama2-- muscles. The Lama2dr-W/d-W homozy-
gotes express only very small amounts of a truncated lam-
inin-a2 that lacks domain VI [6], and they have a severe
neuromuscular disease in which about most mice die by
6 weeks of age [32]. All animal experiments were reviewed
and approved by the Institutional Animal Care and Use
Committee at the Boston Biomedical Research Institute.

Muscle cell isolation and fluorescence-activated cell
sorting

To prepare cells for FACS, Lama2-/-(n = 3 at 3 weeks old),
mdx (n = 2 at 4 weeks old or n = 3 at 7.5 week old), and
the appropriate normal control mice (n = 2 for 4 week old
controls and n = 3 for 3 week and 7.5 week old controls)
were injected intra-peritoneally with 100 pl of 5-bromo-
2'-deoxyuridine (BrdU) (BrdU Flow Kit, BD Biosciences)
solution (1 mg/ml in PBS) at 24 hours and again at 16
hours before sacrifice. Limb muscles were dissected,
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cleaned, and thoroughly minced. The tissue was digested
in 0.2% Pronase (Calbiochem) in HBSS at 37°C for one
hour and successively passed through nylon mesh filters
with cut-offs of 100 um, 40 um, and 10 um. After the final
filtering, cells were re-suspended in 3% heat-inactivated
fetal bovine serum in PBS. Biotinylated Sca-1 antibody
(E13-161.7) and phycoerythrin (PE)-conjugated CD45
antibody (clone 30-F11) (both from Pharmingen, San
Diego CA) were added to the cells at a concentration of 2
pg/ml, and the cells were incubated on ice for one hour.
Cells were washed in PBS and incubated with the second-
ary detecting reagent, allophycocyanin (APC)-streptavi-
din, at 1 pg/ml for 20 minutes on ice. After three
additional washes in PBS, the cells were fixed for 30 min-
utes with a DPBS buffer containing 4% paraformaldehyde
and the detergent saponin, then washed and stored over-
night in staining buffer (from the BrdU flow kit) supple-
mented with 3% fetal bovine serum.

The following day, cells were refixed as above, treated with
300 pg /ml DNase for one hour at 37°C, incubated for 20
minutes with fluorescein isothiocyanate (FITC) conju-
gated anti-BrdU antibody at a 1:50 dilution of the stock
solution provided with the kit, and stained with 20 ul of a
DNA binding dye, 7-amino-actinomycinD (7-AAD)
(BrdU flow kit) for 1 hour. Separate aliquots of cells were
stained with appropriate isotype control antibodies and
used as negative controls. Flow cytometric analysis was
performed using a dual-laser cell sorter (FACSCalibur, BD
Biosciences) to determine the distribution and prolifera-
tion dynamics of the muscle-derived cells. Cell Quest Pro
software (BD Biosciences) was used for data acquisition
and analysis. Debris was first gated out by analyzing par-
ticle morphology based on side and forward scatter. In
vivo proliferation was determined by analyzing the per-
cent of all the cells that incorporated BrdU. Also, we deter-
mined the percent of cells within each sub-population
that were BrdU positive.

Statistical analyses

All data are expressed as mean + standard deviation. Com-
parison among groups was done by analysis of variance
(ANOVA) and individual differences between pairs was
determined by unpaired two-tailed t-test performed with
the Instat program (v2.03, GraphPad, San Diego CA). Sta-
tistical analyses were done either using raw data (prior to
conversion to percentages) or using arcsin-transformed
percentage data [33]. Differences among the disease
groups or between diseased and normal controls was con-
sidered significant when p < 0.05.

Results

We used FACS analysis to identify subsets of the mononu-
cleate cells that reside in skeletal muscle and then deter-
mined how the distribution of cells across the subsets was
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affected by disease. We identified the cell subsets based on
expression or lack of expression of two cell surface mark-
ers: CD45 and Sca-1. Thus, we partitioned the muscle-
derived cells into four subsets: Sca-1*+/CD45+ Sca-1+/
CD45-, Sca-1-/Cd45+ and Sca-1-/CD45-. Cells for sorting
were obtained from muscles of mdx mice and their 10ScSn
normal controls at 4 weeks and 7.5 weeks after birth and
from muscles of Lama2-/- and normal littermates at 3
weeks after birth. The respective myopathies are well in
progress at these times [31,32]. It was not possible to ana-
lyze older Lama2-/-mice for Sca-1 and CD45 expression, as
most died by 5-6 weeks of age and the small muscles did
not consistently provide sufficient cells for the necessary
FACS analyses.

We found that cells from muscles of the two types of nor-
mal control mice that we used (C57Bl/10ScSn at 4 and 7.5
weeks old for mdx and C57BL/6 at 3 weeks old for Lama
2-/-) had similar distributions of cells across the four cell
subsets (Figs. 1 and 2; Table 1). In all healthy muscles, the
majority (>75% of the total) of mononucleate cells were
negative for both Sca-1 and CD45. As noted [20], satellite
cells and their myoblast progeny form multinucleate
myotubes in culture, are Sca-1/CD45-, and thus are
included in this double-negative subset. We confirmed
this result, because we found that (i) the double-negative
cells at the time of isolation also expressed CD34, as
expected for quiescent satellite cells [2]; (ii) >98% of the
double-negative cells expressed desmin, an intermediate
filament protein found in proliferating satellite cells, after
3 days in culture; and (iii) the double-negative cells were
able to form myotubes in culture when switched to low
serum medium (not shown). The rarest mononucleate
cells (<1.5% of the total) in healthy muscles were those
that expressed both Sca-1 and CD45. The remaining two
cell subsets were more abundant than the double-positive
cells, but still much less abundant than the double-nega-
tive cells. Cells that expressed Sca-1 but not CD45
amounted to 2.5 - 12% of the total in healthy muscles;
and cells that expressed CD45 but not Sca-1 amounted to
4.7 - 8.3% of the total. The two Sca-1+* subsets were more
abundant in the 3 and 4 week old than in the 7.5 week old
healthy muscles.

We next found that the distribution profiles of cells from
dystrophin-deficient and laminin-a2-deficient muscles
differed from those of cells from normal muscles, with the
diseased muscles showing a marked increase in the CD45+
cell subsets (Figs. 1 and 2, Table 1). The changes in the
percentage of cells in each subset were similar for cells
derived from Lama2-/-and mdx muscles.

In particular, the rarest subset of double-positive CD45+/
Sca-1+ cells composed a significantly higher percentage of
the mononucleate cells in diseased muscles (Figs. 1 and 2;
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The composition of mononucleate cells was altered in Lama2--and mdx diseased muscles compared to healthy muscles. Mono-
nucleate cells were prepared from muscles of Lama2-- (3 week old), mdx (7.5 weeks old), and age- and strain-matched control

mice and analyzed by FACS for expression of Sca-1 and CD45. A. Scatter-plots of a representative FACS study of the different
cell subsets defined by Sca-1 and CD45 expression patterns in normal C57BL/10ScSn (left) and mdx (right) muscles. B. Scatter-
plots of a representative FACS study of the different cell subsets in normal C57BL/6] (right) and Lama2-"- (left) muscles. Signifi-
cant differences were observed in the distribution of cells between the wild type and disease conditions (see Fig. 2 and Table |

for quantitative and statistical analyses). As also noted in the text, mdx muscles contained several-fold more mononucleate cells

per gram of tissue than Lama2-- muscles.
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The composition of mononucleate cells was altered in dis-
eased mdx and Lama2-- compared to control muscles. As in
Fig. I, mononucleate cells were prepared from muscles of
Lama2-- (3 week old), mdx (4 weeks or 7.5 weeks old), and
appropriate age- and strain-matched control mice and ana-
lyzed by FACS for expression of Sca-1 and CD45. A. Quanti-
tative analysis of the cell subsets defined by Sca-1 and CD45
expression in mdx and normal control muscles showed that
the percentage of cells in the two CD45* subsets was signfi-
cantly higher in mdx muscles at both 4 weeks and 7.5 weeks
of age. B. Similarly, in Lama2-- muscles, the percentage of
cells in the two CD45* subsets was also significantly higher
than in normal healthy muscle. See text for statistical analy-
ses. As also noted in the text, mdx muscles contained sev-
eral-fold more mononucleate cells per gram of tissue than
Lama2-- muscles. Error bars represent standard deviation
with n = 3. * indicates that diseased and healthy control sam-
ples are significantly different at p < 0.05 (see Table | for
quantitative and statistical analyses).
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Table 1). The percentage of double-positive cells was
increased 3-5X in diseased compared to healthy muscles.
As one example, the double-positive cells amounted to
3.3 + 0.4% of the total cells from diseased Lama2/- mus-
cles, but only 1 + 0.4% of the cells from healthy C57BL/6
muscles (n =3, P <0.03).

The subset of CD45+ cells that did not express Sca-1,
which was moderately abundant in healthy muscle and
includes inflammatory cells, also accounted for a higher
percentage of the total mononucleate cells in diseased
muscles than in normal muscles (Figs. 1 and 2; Table 1).
In particular, the Sca-1-/CD45+ cells accounted fora 5 - 8X
higher percentage of the mononucleate cells in diseased
than in healthy muscles. As one example, the 7.5 week old
mdx muscles had a 5.7-fold increase in Sca-1-/CD45+ cells
compared to healthy control muscle (28.9 + 3.6% of the
cells in mdx samples vs. 5.1 + 0.2% in control muscles; n =
3, P < 0.01). These increased percentages reflect the
increased numbers of inflammatory cells that are known
to occur in the skeletal muscles of these disease models
[21-27]. These Sca-1-/CD45+* inflammatory cells are
known to be heterogeneous (e. g, macrophages, eosi-
nophils, neutrophils, B-cells, T-cells; all of which are Sca-
1-/CD45%); and the subsets of inflammatory cells that are
present differ between dystrophin-deficient and laminin-
a2-deficient muscles [21-27,29,30]. Because these differ-
ent subsets of inflammatory cells have been well-charac-
terized in dystrophin-deficient and laminin-a.2-deficient
muscles [21-27], we did not re-examine this heterogeneity
for this study. The increased percentage of CD45+ cells in
diseased muscles was accompanied by a significantly
decreased percentage of cells in the most abundant dou-
ble-negative subset, whereas the percentage of cells in the
Sca-1+/CD45- subset was unchanged by disease (Figs. 1
and 2, Table 1).

Thus, in both dystrophin-deficient and laminin-a.2-defi-
cient diseased muscles, the double negative cells, which
included satellite cells and their myoblast progeny,
became relatively less abundant, whereas cells expressing
the hematopoietic marker CD45 became relatively more
abundant. As in previous studies, however, the absolute
number of Sca-1/CD45- cells (muscle precursor cells)
obtained from a given amount of mdx muscle was consid-
erably larger than the number obtained from the same
amount of control muscle, whereas fewer muscle precur-
sor cells were obtained from Lama2-/- than control mus-
cles. For example, in one experiment using muscles from
5-6 week old mdx and control mice, healthy control mus-
clesyielded 1.3 + 0.4 x 10°> double-negative cells per gram
(the number of cells that can be obtained decreases with
increasing age), whereas mdx muscles yielded many more
at 4.8 + 3.0 x 105 double-negative cells per gram (ave. +
SD, n = 4). In contrast, in an experiment using muscles
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Table I: Patterns of expression of Sca-1 and CD45 by mononucleate cells derived from healthy and diseased skeletal muscles.

Percentage of cells with indicated expression pattern!

Age Genotype Sca-1*/CD45-
3 weeks C57BL/6 59+35
Lama2-- 56+ 1.8
P>0.1
4 weeks C57BL/10 12.0 £ 6.7
mdx 21.0+74
P>0.1
7.5 weeks C57BL/10 25+0.6
mdx 1.8+05
P>0.1

Sca-+/CDA45* Sca-1-/CD45* Sca-|-/CDA45-
1.0+ 04 4717 88.0+53
33+04 389+ 159 522+ 156
P < 0.03* P <0.01* P<0.00*
12+0.2 83+22 78.6 £ 43
64+24 558+ 113 16.7 £ 6.2
P=0.09 P <0.03* P<0.010*
02+0.1 51+02 92.0 £ 0.6
08+0.3 289 + 3.6 68.5 + 4.1

P =0.03* P<0.0I* P<0.00*

'Data are presented as ave. = SD with n = 3 for all except 4 week old values where n = 2.
Unpaired, two-tailed t-tests (see Methods) were used to compare values from each pair of healthy and diseased muscles that were of the same age
and expression pattern. P values are shown below the pair of tested values. P < 0.05 was considered significant and indicated by an asterisk.

from 3 week old Lama2-/- and control mice, we obtained
2.6 + 0.6 x 10° double-negative cells per gram of control
muscle, but only 1.6 + 0.3 x 10> double-negative cells per
gram of Lama2-- muscle (ave. + SD, n = 3). Thus, the sim-
ilar increases in the percentage of CD45+ cells in the two
diseases occurred despite the different directions of
change in total cell numbers.

Though both mdx and Lama2-/- muscles showed similar
increases in CD45+* cells, the two diseases showed oppo-
site changes in mononucleate cell proliferation. In mus-
cles of the two control strains (C57Bl/6]J, the control for
Lama2-/-muscles; and C57BL/10ScSn, the control for mdx
muscles), there was a similar several-fold decrease in BrdU
incorporation from 3-4 weeks to 7.5 weeks after birth,
which is consistent with the slowing of muscle growth
found during this postweaning period (Fig. 3A). At both 4
weeks and 7.5 weeks after birth, BrdU incorporation was
significantly higher in mdx than in control muscles of the
same age (Fig. 3B). In mdx muscles at 7.5 weeks after birth,
for example, the percentage of all mononucleate cells that
incorporated BrdU during 24 h in vivo was 6.9 + 2.6%,
which was significantly higher than 1.9 + 1.1% that incor-
porated BrdU in the 10ScSn control muscles of the same
age (n =3, p<0.05) (Fig. 3B). Consistent with this general
increase of proliferation in mdx muscles, three of the four
Sca-1/CD45 subsets of muscle-derived mdx cells showed
increased BrdU incorporation, indicating a greater
number of proliferating cells compared to normal con-
trols. The exception was the Sca-1/CD45+ cell subset
which had decreased BrdU incorporation in mdx com-
pared to normal muscles (Fig. 4A).

In contrast, at 3 weeks after birth, a much lower percent-
age of cells incorporated BrdU in Lama2-/- muscle than in
normal muscle (Fig. 3B) (6.8 + 1.7% for Lama2-/-vs. 23.5 +
10.0% for normal. n = 3, p < 0.05). Consistent with this
general decrease in proliferation, three of four Sca-1/
CD45 subsets of muscle-derived Lama2-/- cells showed
decreased BrdU incorporation, indicating fewer proliferat-
ing cells compared to normal controls (Fig. 4B). The
exception in this case was the double-positive Sca-1+/
CD45+ cell subset which had approximately the same
BrdU incorporation in Lama2-/- muscles as in normal mus-
cles (Fig. 4B).

Discussion

We found that the composition and proliferation dynam-
ics of mononucleate cells were significantly different in
the diseased muscles of mdx and Lama2-/- mice than in
normal healthy muscles. Dystrophin-deficient mdx mus-
cles and laminin-a2-deficient Lama2-/- muscles showed
similar changes in cell compositions, with CD45+ cells
accounting for a significantly higher percentage of the
total in diseased than in healthy muscles. In contrast, cells
in mdx and Lama2-/- muscles showed opposite changes in
proliferation kinetics, with most cell subsets showing
increased BrdU incorporation in mdx muscles, but
decreased incorporation in Lama2-/- muscles.

With the recognition that adult skeletal muscles contain
rare cells with stem cell properties, a number of markers,
including Sca-1, CD34, CD45, Bcl-2, and c-kit, have been
used alone or in combination to identify and purify the
cells [1,18,19,28,34-37]. In our study, we subdivided
muscle-derived stem cells on the basis of expression or
lack of expression of Sca-1, which is commonly used to
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Figure 3

The percentage of cells that incorporated BrdU decreased
with increased age and was lower in Lama2-- muscles, but
higher in mdx muscles, than in normal control muscles. A.
The percentage of the total population of mononucleate
muscle cells that incorporated BrdU was decreased as post-
natal development proceeded. In muscles of two control
strains (C57BI/6), the control for Lama2-- muscles; and
C57BL/10ScSn, the control for mdx muscles), there was a
similar several-fold decrease in BrdU incorporation from 3—4
weeks to 7.5 weeks after birth, which is consistent with the
slowing of muscle growth found during this period. B. The
percentage of all cells that incorporated BrdU was signifi-
cantly lower in 3 week old Lama2-- muscles than in normal
control muscles of the same age. In contrast, the percentage
of all that incorporated BrdU was signifcantly higher in 4
week old and 7.5 week old mdx muscles than in normal con-
trol muscles of the same age. Error bars represent standard
deviation with n = 3. * indicates diseased and healthy control
samples differ significantly at P < 0.05.

purify hematopoietic stem cells, and CD45, which is a
pan-hematopoietic cell marker. Neither Sca-1 nor CD45 is
expressed by muscle satellite cells and their myoblast
progeny (muscle precursor cells) [20], whereas muscle-
derived cells with hematopoietic potential are almost all
CD45+[1,20].

Though the distribution of cells among the four cell sub-
sets did not significantly change during early postnatal (3
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Figure 4

In most cell subsets, the percentage of cells that incorpo-
rated BrdU was lower in Lama2-- muscles, but higher in mdx
muscles, than in healthy control muscles. A. In all cell subsets
except Sca-1-/CD45%, the percentage of cells that incorpo-
rated BrdU during 24 h in vivo was significantly increased in
mdx cells compared to normal cells (see text for statistics).
B. The percentage of cells that incorporated BrdU in Lama2-
I~ muscles was significantly decreased compared to normal
muscles in all subsets of Lama2-- cells with the exception of
the rare double-positive Sca-1*/CD45* subset in which inco-
poration was similar in diseased and healthy muscles (see
text for statistics). Error bars represent standard deviation
with n = 3. * indicates that the value for the mdx or Lama2--
muscles differed significantly from the corresponding control
at P < 0.05.

to 7.5 weeks) development in normal muscles (compare
controls in Figs. 2A and 2B), there was a significant shift
in the distribution profile in response to muscle disease.
Specifically, diseased muscles had a large increase in the
percentage of cells in both CD45+ subsets, i. e., Sca-1+/
CD45+ and Sca-1-/ CD45+ (Fig. 2, Table 1). The double-
positive Sca-1+/CD45+ cells were likely putative stem cells
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with hematopoietic potential [1], whereas the Sca-1-/
CD45+ cells included the heterogeneous group of inflam-
matory cells. The increase in CD45+ cells was accompa-
nied by a decrease in the double-negative Sca-1-/CD45-
cells, which included satellite cells and their myoblast
progeny. Though the double-negative cells were usually
the most abundant subset, we found that the Sca-1/
CD45+ inflammatory cells became the most abundant
subset in younger four week old mdx muscles, which is
consistent with the rapid myofiber degeneration at this
age.

A previous study showed that double-positive Sca-1+/
CD45+ cells also increase during regeneration of injured
muscle and that a small proportion of the double-positive
cells from injured muscle, unlike those from uninjured
muscles, give rise to myogenic cells in culture [3,4]. Dis-
eased muscles tend to undergo extensive degeneration fol-
lowed by attempted regeneration. At least initially,
regeneration is largely successful in mdx muscles but
abortive in Lama2-/- muscles [5,15,31]. Because the dou-
ble-positive Sca-1+/CD45+ cells increased in both types of
diseased muscle (this study), it is likely that, as in injured
muscles [3,4], these cells play a role in attempted muscle
regeneration.

In contrast to the similar increases in CD45+ cells in both
types of diseased muscles, the mononucleate cells in mdx
and Lama-2-- muscles showed opposite changes in prolif-
eration in vivo, with proliferation increased in mdx mus-
cles but decreased in Lama-2-/- muscles compared to
healthy control muscles.

Total cell proliferation in mdx muscles was known to be
elevated relative to healthy controls [31]. Here we exam-
ined proliferation in subsets of the muscle mononucleate
cells and found that, consistent with the increase in over-
all proliferation, a higher than normal percentage of cells
in three of the four mdx subsets incorporated BrdU. Both
the double-negative cells, which included satellite cells,
and the double-positive cells with hematopoietic poten-
tial, showed increased proliferation. Only cells of the Sca-
1-/CD45+ subset failed to show increased BrdU
incorporation in mdx muscles; and these were likely to be
mostly inflammatory cells (e. g, macrophages, eosi-
nophils, neutrophils, T-cells; all of which are Sca-1-/
CD45+) which do not have hematopoietic stem cell
potential but are known to migrate into and thus
accumulate in diseased muscles [1,21-27]. The increased
percentage of proliferating mdx cells in vivo is likely due to
the altered environment in mdx muscles which includes
increased levels of growth factors; increased extracellular
matrix proteins such as collagen, fibronectin, and laminin
which can promote myoblast proliferation; and perhaps
decreased levels of growth inhibitors [38-42]. Whether

http://www.biomedcentral.com/1471-2377/5/7

cells in different subsets respond to the same or different
growth regulators remains to be determined.

In Lama2-/- muscles, overall BrdU incorporation was sig-
nificantly decreased compared to that in healthy control
muscles. BrdU incorporation was decreased in every
Lama2-/- cell subset except the rare double-positive Sca-1+/
CD45+ subset that includes cells with hematopoietic
potential [1]. The decrease could have arisen if, relative to
normal cells, the Lama2-+/- cells had longer cell cycles or
lower probability of initiating replication from G, if there
was more cell death among dividing than non-dividing
Lama2-/- cells [43], or if some combination of these
occurred. The relative lack of Lama2-/- muscle cell prolifer-
ation could in part explain why regeneration is relatively
unsuccessful in laminin-a.2-deficient muscles [5], though
other mechanisms such as increased apoptosis of both
myoblasts and newly formed myofibers are also likely to
be important.

Laminin-a2 is expressed in skeletal muscle myoblasts and
myotubes [44] where it promotes the survival of satellite
cells in vivo and in vitro as well as myoblast fusion and
myotube formation [5,45,46]. We found that the most
abundant, double-negative subset of muscle cells, which
includes muscle precursor cells, showed significantly less
BrdU incorporation in Lama2-/- muscles. It is likely, there-
fore, that laminin-a.2 not only promotes survival of myo-
tubes as shown previously [45,46] but also influences
division of muscle precursor cells as early as three weeks
after birth, which is a time when extensive myofiber
growth occurs in normal muscles. A recent study has dem-
onstrated that laminin-2 (a2, 81, y1) improves prolifera-
tion of an epithelial cell line through an integrin/ERK
pathway [47]. A similar mechanism could occur in skele-
tal muscle cells, because merosin, of which laminin-a.2 is
a component, influences the level of expression and local-
ization of a7f 1D integrin at the sarcolemma [46] and a
lack of laminin-a2 could, therefore, disrupt merosin/
integrin-mediated signals that regulate proliferation.

Pathogenesis follows distinct courses in Lama2/-and mdx
mice, as well as in humans with corresponding diseases
[48]. Nonetheless, CD45* cells are similarly increased in
both mouse diseases. The role of the double-positive Sca-
1+/CD45+ cells in muscles needs to be defined, perhaps by
tracing fates of their progeny; and the likely heterogeneity
within the cell subsets we studied should be explored. For
example, one study with a specific mAb suggested that sat-
ellite cells are <15% of the mononucleate cells in healthy,
post-weaning skeletal muscles [49], suggesting that there
might be heterogeneity within the double-negative Sca-1-
/CD45- cell subset which we and others [3] found to con-
tain more than half of the mononucleate cells and to con-
tain satellite cells. Some differences between studies might
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be expected because assessment of cell type percentages
likely depends on the particular enzymes used for tissue
dissociation, the antibodies and staining protocols used,
and the selection of fluorescent cut-off limits for cells sort-
ing. Despite these caveats, the general agreement between
our study of healthy vs. diseased muscles and an earlier
study [3] of healthy vs. cardiotoxin-injured muscles pro-
vides confidence in the conclusion that the CD45+ cell
subsets become relatively more abundant in both injured
muscles and in the two types of diseased muscles analyzed
here.

Further experiments in which particular cell subsets have
their fates determined by lineage tracking or are experi-
mentally increased or decreased, perhaps by specific
growth factors or conditional ablation, could determine
how the changes in cell subsets that we observed here may
affect pathogenesis. The Sca-1+/CD45- cell subset, for
example, has been reported to contain cells with myo-
genic and endothelial lineage potentials [28]. Inhibition
of apoptosis ameliorates myopathology and produces a
several-fold increase in lifespan of Lama2-null mice [50],
and could affect mononuclear cell subsets. That not only
Sca-1-/CD45- cells (which included satellite cells), but also
other cell subsets, showed opposite changes of prolifera-
tion in Lama2-/- and mdx muscle, suggests that growth
requirements may be shared among the different subsets
of cells. In addition, the relatively poor proliferation of
Lama2-/- cells may be one of the mechanisms underlying
the lack of successful regeneration in Lama2-/- muscles.
The comparative significance to Lama2-/- pathogenesis of
poor proliferation vs. other mechanisms such as increased
apoptosis remains to be defined.

Conclusion

The similar increases in CD45+ cells, but opposite changes
in proliferation of muscle precursor cells, may underlie
aspects of the distinct pathologies in dystrophin-defi-
ciency and laminin-a.2-deficiency.
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