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Abstract
Background: Interruption of flow through of cerebral blood vessels results in acute ischemic
stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the
development of vasogenic edema and secondary hemorrhage known as hemorrhagic
transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The
current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature
increase the risk of HT and augment ischemic injury.

Methods: Diabetic Goto-Kakizaki (GK) or control rats underwent 3 hours of middle cerebral
artery occlusion and 21 h reperfusion followed by evaluation of infarct size, hemorrhage and
neurological outcome.

Results: Infarct size was significantly smaller in GK rats (10 ± 2 vs 30 ± 4%, p < 0.001). There was
significantly more frequent hematoma formation in the ischemic hemisphere in GK rats as opposed
to controls. Cerebrovascular tortuosity index was increased in the GK model (1.13 ± 0.01 vs 1.34
± 0.06, P < 0.001) indicative of changes in vessel architecture.

Conclusion: These findings provide evidence that there is cerebrovascular remodeling in diabetes.
While diabetes-induced remodeling appears to prevent infarct expansion, these changes in blood
vessels increase the risk for HT possibly exacerbating neurovascular damage due to cerebral
ischemia/reperfusion in diabetes.

Background
Ischemic stroke is a leading cause of death and disability
in the United States and diabetes is the most rapidly
increasing risk factor for stroke. Among patients with

recent stroke, 70% have overt diabetes or prediabetes
characterized by impaired fasting glucose or impaired glu-
cose tolerance [1]. Type 2 diabetes, a disease that affects
more than 17 million Americans with an alarming
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number of new cases, holds a 2–6 fold increased risk for
stroke. Not only is the incidence of stroke increased
among diabetics, but stroke patients with diabetes have a
worse outcome. Mortality is increased in diabetics at one
week, one month and three months after stroke, and dia-
betic stroke survivors have more profound neurologic def-
icits and disability [2]. In addition, diabetes and
hyperglycemia predict early neurologic deterioration fol-
lowing ischemic stroke [3]. A recent study reported that
persistent post-stroke hyperglycemia causes infarct expan-
sion and worse clinical outcome [4]. Vascular complica-
tions of diabetes characterized by vascular dysfunction
and pathological remodeling contribute to increased cardi-
ovascular mortality and morbidity in diabetes, yet, changes
in the cerebrovascular structure remain unknown.

During focal cerebral ischemia, damage to cerebral blood
vessels occurs early and in a progressive fashion [5].
Reperfusion through damaged cerebral blood vessels is
likely to further increase the ultimate tissue damage due to
ischemic stroke. If ischemia is prolonged, cerebral edema
occurs and bleeding into the brain parenchyma known as
hemorrhagic transformation (HT) ensues and worsens
stroke outcome. In experimental transient middle cerebral
artery occlusion (MCAO) models, acute hyperglycemia
induced by glucose administration augments ischemic
injury and increases HT [6-8]. However, the impact of
chronic mild hyperglycemia as seen in majority of Type 2
diabetic patients on cerebral vessel structure and mecha-
nisms and functional consequences especially in the acute
ischemia/reperfusion injury setting are unclear. The cur-
rent study tested the hypothesis that diabetes-induced
changes in the cerebral vasculature increase the risk of HT
and augment ischemic injury.

Methods
Animal and tissue preparation
GK rats, a spontaneous model of Type2 diabetes gener-
ated from selective inbreeding of glucose-intolerant Wis-
tar rats, developed hyperglycemia at 6-weeks of age and
had been diabetic for almost 4–5 weeks prior to stroke
surgery. Regular Wistar rats served as control as reported
[9]. All experiments were performed on male Wistar (Har-
lan, Indianapolis, IN) and Goto-Kakizaki (in-house bred,
derived from the Tampa colony) rats (n = 5–6/group)
within a narrow range of body weight (250–290 g) [10].
All protocols were approved by the Institutional Animal
Care and Use Committee at the VA Medical Center. Ani-
mals were allowed access to food and water ad libitum,
and were maintained on a 12/12 hour light/dark cycle.
During housing, drinking water measurements, weight,
and blood glucose measurements were performed twice
weekly. Glucose measurements were taken from the tail
vein and measured on a commercially available glucose

meter (AccuChek, Roche Diagnostics, Indianapolis, IN)
[9].

Experimental cerebral ischemia
All animals were anesthetized with 2% isoflurane via
inhalation. Focal cerebral ischemia was induced using the
intraluminal suture MCAO model as previously reported
by us and others [11-13]. The right MCA was occluded
with a 19–21 mm 3-0 surgical nylon filament, which was
introduced from the external carotid artery lumen into the
internal carotid artery to block the origin of the MCA. A
significant drop in blood flow as measured by laser Dop-
pler (Perimed, North Royalton, OH) indicated successful
occlusion of the MCA. A similar degree of reduction in
blood flow was achieved in both control and GK rats. The
suture was removed after 3 hours of occlusion and meas-
urement of blood flow was repeated to determine whether
the flow was restored after reperfusion which appeared to
be similar in both groups. The animals were then returned
to their cages.

Neurologic assessment
Neurologic function was quantified prior to reperfusion
and at 24 hours (just prior to sacrifice) using the Bederson
score [11,12]. An animal with no apparent deficits obtains
a 0 on the assessment and a score of 3 is consistent with a
middle cerebral artery occlusion. Only animals with a
score of 3 prior to reperfusion were included in the analy-
sis.

Assessment of infarct size and hemorrhage
At 24 hours after the onset of MCAO, blood glucose was
measured and then the animals were anesthetized with
ketamine 44 mg/kg and xylazine 13 mg/kg I.M. (cocktail),
perfused with saline, sacrificed and brains were removed.
The brain tissue was sliced into seven 2-mm thick slices in
the coronal plane. HT was defined as the presence of visi-
ble bleeding in coronal brain sections prior to staining.
Slices were then stained with a 2% solution of 2, 3, 5-
triphenyltetrazolium chloride (TTC) (Sigma Chemical
Co., USA) for 15–20 minutes. Images of the stained sec-
tions were taken. Grossly visible infarction zones were
quantified using image analysis software (Zeiss-KS300)
[11-13]. The infarct volume was determined as % the con-
tralateral hemisphere to correct for edema.

Visualization of cerebrovasculature and measurement of 
tortuosity index
Additional control and GK animals (250–290 g, n = 5/
group) were anesthetized with sodium pentobarbital and
injected with 40 mg/kg papaverine hydrochloride to
induce maximal vasodilatation as previously described
[14]. The thoracic aorta was clipped and 2 ml of warm
(37°C) latex (Vultex, Chicago Latex Products No. 563)
mixed with carbon black was injected through the can-
Page 2 of 7
(page number not for citation purposes)



BMC Neurology 2007, 7:33 http://www.biomedcentral.com/1471-2377/7/33
nula over a 2-minute period. 15 minutes after the injec-
tion, rats were decapitated, brains were removed and
placed in cold saline. Images of the top and bottom of the
brains were digitized, divided into 6 regions with a grid
and in each section 2 middle size vessels were traced on a
Wacom tablet 493-3 using Image J I-36 software. Tortuos-
ity index (TI) was defined as the ratio of the vessel length
over straight line distance between two vessel ends. Then
the average of 24 measurements was used as the TI per
animal.

Vessel morphometry
MCAs were perfused with Histogel (Richard Allen Scien-
tific, Kalamazoo, MI), then excised and embedded in the
same matrix. Upon gelling of the matrix, the embedded
vessel was placed in 10% formalin, embedded in paraffin,
sectioned at 4 microns and mounted on treated slides.
Sections were stained with Masson trichrome stain. Slides
were viewed using a Zeiss Axiovert microscope (Carl Zeiss,
Inc., Thornwood, NY) and media:lumen ratios (M/L)
were analyzed using Spot software (Diagnostic Instru-
ments, MI). 4 measurements were made per section and
each animal had at least 3 sections as we reported previ-
ously [9].

MMP activity
MCAs were homogenized and processed for MMP activity
by gelatin zymography as we previously reported [9].
Recombinant MMP-2 protein (Calbiochem, San Diego,
CA) was run in parallel with all samples and the band
intensity on zymogram gels was normalized to that of
standard to prevent gel-to-gel variability. Gelatinolytic
activity was assessed by densitometric analysis (Gel-Pro
version 3.1, Media Cybernetics, Carlsbad, CA)

Statistical analysis
Comparisons of tortuosity index and infarct size between
the two groups of rats were made using nonparametric
Student's t-test. HT was analyzed by Fisher's exact test.
Results are expressed as mean ± SEM. Effects were consid-
ered statistically significant at p < 0.05.

Results
Average blood glucose of GK rats prior to surgery was 170
± 6 versus 110 ± 6 mg/dl in control animals and GK rats
had been diabetic for 4–5 weeks prior to surgery. Mean
arterial blood pressure prior to MCAO was 112 ± 5 and
110 ± 3 mmHg in control and GK groups. The metabolic
profile of the colony used in this study was published pre-
viously [9,15]. As shown in a representative image in Fig.
1 Panel A, in all GK rats a polyp shape infarct was local-
ized to subcortical area as opposed to the infarct occupy-
ing almost the entire hemisphere in control rats. In
addition, infarct size was significantly smaller in the dia-
betic group. Edema as assessed by % change from the

non-ischemic hemisphere was significantly less in GK rats
(12.7 ± 1.5 vs 5.3 ± 0.6, p = 0.007).

In all GK rats (n = 9) there was overt hemorrhage in the
subcortical sections where HT is usually observed (Fig. 2).
In the control group, only 2 animal (n = 10) presented
with bleeding. There was no difference in neurological
outcome as determined by Bederson scale (2.6 ± 0.2 vs 2.9
± 0.1).

In order to determine whether these differences in infarct
localization arise from anatomical differences of vessels
that are occluded during stroke surgery and also evaluate
the vascular structure, the cerebrovascular tree was visual-
ized with latex/carbon black mixture. In GK rats, TI was
significantly increased (1.13 ± 0.01 vs 1.34 ± 0.06, 19%)
indicative of increased vascular density and remodeling
(Fig. 3A and 3B). Images of Circle of Willis and branching
arteries including MCA revealed no macroscopic differ-
ences between control and GK rats. Morphometric analy-
sis of MCAs isolated from additional animals (n = 5–9)
that were not exposed to MCAO displayed similar medial

Infarct size is reduced in diabetesFigure 1
Infarct size is reduced in diabetes. (A) A representative image 
showing TTC staining for infarct size and localization in con-
trol Wistar (n = 10) and diabetic GK rats (n = 9). (B) Bar 
graph depicting infarct size in all the animals. Results are 
given mean ± sem and *p < 0.05 vs control.
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thickness and lumen diameter (Fig. 4A). On the other
hand, MMP-2 activity of isolated MCAs was significantly
increased in the diabetic group (Fig. 4B).

Discussion
This study questioned whether and to what extent diabe-
tes-induced changes in the cerebral vasculature increase
the risk of hemorrhage and augment ischemic injury.
There were 3 important findings in this study. First, infarct
size was smaller and localization was different in the dia-
betic rats. Second, hemorrhagic transformation was
increased in this group. Third, despite a very short dura-
tion of mild diabetes, tortuosity of cerebral vessels was sig-
nificantly enhanced. These results provide important and
timely information regarding the potential mechanisms
that may contribute to increased stroke risk and worse
outcome in diabetes.

In recent years, the role of hyperglycemia in the patho-
physiology and outcome of acute ischemic stroke has
gained significant attention. Numerous studies including
the NINDS tPA stroke trial showed that elevated admis-

sion blood sugar was a significant predictor of poor clini-
cal outcome and HT [16-18]. The relative role of acute
versus chronic hyperglycemia in the pathogenesis of this
poor outcome has been debated and has not been deter-
mined unequivocally [10]. However, based on the find-
ings that short-term mortality is higher and final infarct
size is larger in nondiabetic patients who present with
hyperglycemia at admission, several studies have sug-
gested that hyperglycemia and not necessarily diabetes
aggravates ischemic injury and stroke outcome [18,19]. In
experimental models, hyperglycemia has been shown to
increase infarct size and a limited number of studies also
demonstrated augmented HT in hyperglycemic ischemia/
reperfusion injury [6-8]. However, these studies employed
hyperglycemia induced by glucose injection prior to or at
the time of MCA and blood glucose levels were above 300
mg/dl. The intriguing finding of the current study is that
infarct size is smaller but secondary hemorrhage is larger
in diabetic GK rats that present with moderate elevations
in blood glucose (180–250 mg/dl). Consistent with

Increased tortuosity as index of vascular remodeling in diabe-tesFigure 3
Increased tortuosity as index of vascular remodeling in diabe-
tes. (A) A representative image showing superficial cerebral 
vessels in control Wistar (n = 5) and diabetic GK rats (n = 4), 
and (B) Bar graph summarizing results of TI measurements in 
all the animals. Results are given mean ± sem and *p < 0.05 vs 
control.

Incidence of HT is increased in diabetesFigure 2
Incidence of HT is increased in diabetes. (A) A representative 
image showing visible hemorrhage in control Wistar (n = 10) 
and diabetic GK rats (n = 9). (B) Bar graph depicting inci-
dence of HT in all the animals. Results are given mean ± sem 
and *p < 0.05 vs control.
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smaller infarct size, diabetic rats had less edema. Moreo-
ver, the infarct is subcortical as opposed to subcortical and
cortical localization in control rats. These results suggest a
difference in the pathophysiology of ischemic injury in
the diabetic state. It is well established that diabetes pro-
motes ischemic preconditioning in the myocardium [20].
It is also known that ischemic preconditioning is neuro-
protective [21,22]. It is possible that in our model, diabe-
tes induced-changes in the cerebrovasculature result in
ischemic preconditioning and thereby prevent infarct
expansion but promote BBB breakdown and hemorrhage
emphasizing the importance of the neurovascular unit.

During focal cerebral ischemia, disruption of the BBB
complex, which consists of the endothelial cell, its tight
junctions, the basal lamina and the astrocytic foot proc-
esses results in damage to the entire neurovascular unit

[23-25]. If the ischemia is prolonged, breakdown of BBB
increases cerebral injury by the development of vasogenic
edema and secondary hemorrhage known as HT [11,26].
Matrix metalloproteinases (MMPs) are a class of zinc-
dependent endopeptidases that contribute to the break-
down of BBB. Several laboratories have demonstrated that
MMP activity, especially gelatinases MMP-2 and MMP-9,
is increased after focal cerebral ischemia and contributes
to the development of HT [23,25,27,28]. MMPs are also
up-regulated in diabetes. We have also found that MMP
activity is increased in MCAs of GK rats and this increase
is associated with enhanced pathological remodeling after
10–12 weeks of diabetes [9]. The animals used in the cur-
rent study had mild diabetes only for 4–5 weeks. While we
cannot rule out the possibility that in-breeding may cause
alterations in vessel structure, reactivity and mechanics
that may contribute to the changes we observe in this col-
ony of diabetic rats, our data provide evidence that despite
the short duration of diabetes, there was increased MMP-
2 activity and tortuosity suggesting early cerebrovascular
remodeling. This remodeling response may contribute to
increased hemorrhage in diabetes.

Increased tortuosity is commonly measured in evaluation
of coronary vessels. This is an indicator of ischemia-
induced vascular restructuring as it increases vessel surface
area. The current study found that the TI of cerebral vessels
was increased in diabetes. These findings suggest that
there is microvascular remodeling and potential neovas-
cularization in the GK rat, which may contribute to
decreased infarct size. Neovascularization in diabetes is
very complex and regulated in a temporal and tissue spe-
cific manner. It is well established that hyperglycemia-
mediated oxidative damage to microvascular endothelial
cells triggers a cascade of events that lead to changes in
vascular proliferative retinopathy and formation of new
blood vessels on the surface of the retina [29,30]. These
immature vessels then break and leak worsening the reti-
nal damage. Although we do not have direct evidence, it
is highly possible that similar to retina, in the cerebrovas-
culature newly formed or remodeled vessels cannot resist
the impact of ischemia/reperfusion injury and increased
bleeding occurs. Preliminary evaluation of baseline BBB
permeability in the absence of ischemic injury by Evans
blue extravasation method was not sensitive to detect per-
meability differences between control and diabetic ani-
mals. Interestingly, edema after MCAO was significantly
less in GK rats most likely due to smaller infarct size. It has
to be recognized that the current study has several limita-
tions. First, cerebral blood flow was measured to ensure
that similar degree of blood flow is achieved in control
versus diabetic rats during MCAO and after reperfusion
but evaluation of blood flow with more reliable methods
are needed to assess whether changes observed in vessel
structure are associated with alterations in baseline blood

Increased MMP activity in diabetesFigure 4
Increased MMP activity in diabetes. (A) Vessel segments were 
analyzed for morphological changes and collagen deposition 
by Masson staining which did not show any difference 
between control and diabetes groups. (B) A representative 
zymogram showing changes in vascular MMP-2 activity and 
densitometric analysis of lytic bands from all samples indi-
cates an increase in MMP-2 activity. Results are given mean ± 
sem (n = 5–9) and *p < 0.05 vs control.
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flow as well as collateral flow during MCAO. Second, HT
was defined as the presence of visible bleeding in coronal
brain sections and more quantitative methods are needed.
Similarly, vascular remodeling was assessed by visualiza-
tion of the vascular tree, measurement of tortuosity and
morphometry of histogel and not pressure-fixed vessels.
Whether increased tortuosity is due to remodeling of
existing vessels or due to neovascularization or both
remains to be determined. Lastly, the effect(s) glycemic
control on the severity of ischemic injury and outcome
remain to be determined. Nevertheless our findings are
very important and timely.

Conclusion
Given that thrombolytic therapy to open the occluded
artery is the best chance to recover from ischemic damage
and that admission blood glucose levels predict whether
HT will complicate the thrombolytic therapy, better
understanding of the mechanisms underlying increased
bleeding in diabetes will identify novel therapeutic targets
and strategies. The results of this study suggest that differ-
ent mechanisms may contribute to ischemic damage in
hyperglycemia versus diabetes.
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