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Abstract
Background: Kinetic modeling using reference Logan is commonly used to analyze data obtained from
dynamic Positron Emission Tomography (PET) studies on patients with Alzheimer's disease (AD) and
healthy volunteers (HVs) using amyloid imaging agent N-methyl [11C]2-(4'-methylaminophenyl)-6-hydroxy-
benzothiazole, [11C]-PIB. The aim of the present study was to explore whether results obtained using the
newly introduced method, Masked Volume Wise Principal Component Analysis, MVW-PCA, were similar
to the results obtained using reference Logan.

Methods: MVW-PCA and reference Logan were performed on dynamic PET images obtained from four
Alzheimer's disease (AD) patients on two occasions (baseline and follow-up) and on four healthy
volunteers (HVs). Regions of interest (ROIs) of similar sizes were positioned in different parts of the brain
in both AD patients and HVs where the difference between AD patients and HVs is largest. Signal-to-noise
ratio (SNR) and discrimination power (DP) were calculated for images generated by the different methods
and the results were compared both qualitatively and quantitatively.

Results: MVW-PCA generated images that illustrated similar regional binding patterns compared to
reference Logan images and with slightly higher quality, enhanced contrast, improved SNR and DP, without
being based on modeling assumptions. MVW-PCA also generated additional MVW-PC images by using the
whole dataset, which illustrated regions with different and uncorrelated kinetic behaviors of the
administered tracer. This additional information might improve the understanding of kinetic behavior of
the administered tracer.

Conclusion: MVW-PCA is a potential multivariate method that without modeling assumptions generates
high quality images, which illustrated similar regional changes compared to modeling methods such as
reference Logan. In addition, MVW-PCA could be used as a new technique, applicable not only on dynamic
human brain studies but also on dynamic cardiac studies when using PET.
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Background
Imaging modality such as dynamic Positron Emission
Tomography, PET, when using amyloid imaging agent N-
methyl [11C]2-(4'-methylaminophenyl)-6-hydroxy-ben-
zothiazole, [11C]-PIB [1], is increasingly used as a diagnos-
tic tool for providing early diagnosis of patients with
Alzheimer's disease, AD [2-4]. The tracer principle is based
on non-invasive estimation of beta-amyloid (Aβ) plaques
in the brain of patients with AD vs. healthy volunteers
(HVs). The technique is also valuable when exploring
deposition of amyloid in different parts of the brain.

However, images generated using PET contain noise with
different magnitude, spatial dependence and correlation,
which impairs the visualization and affects the precision
in quantification of the generated images. This is due to
limitations of the amount of the radioactivity associated
with the administered tracer, which is usually short-lived,
to different technical limitations and to applied correc-
tions and reconstruction algorithm used [5-7].

To extract quantitative values of a desired physiological
information and to study the kinetic behavior of adminis-
tered tracer in human PET studies, different methods can
be used, such as kinetic modeling using e.g. the Patlak
[4,8,9] and the Logan plots [3,10]. These models need
either the determination of the time course of the
unchanged tracer concentration in arterial plasma or the
definition of a reference region that is devoid of specific
binding. Modeling can also be performed on a pixel-wise
basis, generating parametric images. Prior knowledge and
modeling experience about the kinetic behavior of the
administered tracer in the human brain are needed to find
the most appropriate method for a particular tracer. Fur-
thermore, parametric images generally suffer from poor
quality and a non-optimized signal-to-noise ratio (SNR).
There are also many parameters and variables that need to
be correctly considered to obtain proper results when
applying these techniques.

In previous studies novel approaches for application of
Principal Component Analysis (PCA) on dynamic PET
images such as Masked Volume Wise PCA (MVW-PCA),
were introduced [5,6]. Images generated using MVW-PCA
contained more detailed anatomical information with
higher quality and precision as compared with images
generated using other methods. We explored the perform-
ance of MVW-PCA as a way to both improve detection and
visualization of significant changes in tracer kinetics by
extracting different components and to enhance the dis-
crimination between pathological and healthy regions in
the brain. Several well-known tracers in clinical and
research practice were used such as [11C]-L-deuterium-
deprenyl ([11C]-DED), [11C]-GR205171 ([11C]-GLD),
[11C]-5-hydroxytryptophan ([11C]-HTP), [11C]L-dihy-
droxyphenylalanine ([11C]-L-DOPA) and [11C]-PIB [5].

It was previously shown that MVW-PCA can be used as a
multivariate image analysis technique that without mod-
eling assumptions can extract and separate important
kinetic information into different component images,
MVW-PC images. There are no correlations between the
kinetic information separated in these images [5].

The objectives of the current study were to explore the
capabilities of MVW-PCA compared to kinetic modeling
using the reference Logan method on the same dataset.
The methods were used to extract signals which improve
the discrimination between AD patients and HVs in a
human brain study using PET and [11C]-PIB. In other
words, the aim of the study was to explore whether images
generated by MVW-PCA illustrate similar regional reten-
tion patterns compared to reference Logan images.
Another aim was to study and compare these methods
with respect to signal extraction based on calculating SNR
and discrimination power (DP).

Methods
Dynamic PET data
Data were used from four arbitrarily chosen AD patients
and four HVs recruited for different studies at Uppsala
Imanet, GE Healthcare in collaboration with several
groups such as Karolinska University Hospital Huddinge,
Stockholm, Sweden. The four AD patients were also

Visual comparison between MVW-PC1 images generated by application of MVW-PCA on a first scanned (baseline) of an arbitrarily chosen AD patient (a, c) and parametric images generated using reference Logan (b, d) on the same AD patientFigure 1
Visual comparison between MVW-PC1 images gen-
erated by application of MVW-PCA on a first 
scanned (baseline) of an arbitrarily chosen AD 
patient (a, c) and parametric images generated using 
reference Logan (b, d) on the same AD patient.
Page 2 of 8
(page number not for citation purposes)



BMC Neurology 2009, 9:2 http://www.biomedcentral.com/1471-2377/9/2
recruited in a follow-up (FU) study where they were
scanned a second time at Uppsala Imanet, GE Healthcare
[4]. Data from both the baseline and FU studies were used
in this study. Four HVs were selected randomly from a
study performed at Uppsala Imanet in collaboration with
Karolinska University Hospital Huddinge, Stockholm and
University of Pittsburgh School of Medicine, Pittsburgh,
USA [2].

Data analysis
Masked Volume Wise Principal Component Analysis
PCA [11,12] is a data-driven and well-established multi-
variate analysis technique used to reduce dimensionality
of multivariate input datasets such as dynamic PET
images. PCA converts the projection of the original images
into a new orthogonal coordinate system with lower
dimensions in which the new axes explain the variance in
the images in decreasing order of importance. This is done
by calculating transformation vectors (principal compo-
nents, i.e. PCs or weight factors), which define the direc-
tions of largest variance of the input multi-dimensional
dataset in the multidimensional feature space. Each PC is
orthogonal to all the others in multi-dimensional space;
thus, the first PC (PC1) represents the linear transforma-
tion of the original variables which contain the largest var-
iance. The second component, PC2, is the combination
that contains the remaining variance as much as possible,
orthogonal to the previous one and so on. "PC images"

are generated by simply projecting all observations onto
the PCs in the new multi-dimensional space. This gives
new values along each PC.

If the matrix

XT = [X1, X2, X3, ..., Xp]

where XT is transpose of the input matrix X, which con-
tains pixel values of a single slice from each frame i, (i =
(1, 2, 3, ..., p), as a column vector), has a variance-covari-
ance matrix S with eigenvalues

 = N 1, 2, 3, ..., pQ

and corresponding eigenvectors

e = Ne1, e2, e3, ..., epQ

where

1 ≥ 2 ≥ 3 ≥ ... ≥ p  0

and p corresponds to the number of the input column in
the matrix X. If q = p in which q refers to number of prin-
cipal component, then the qth PC is generated by using Eq.
1:

Yq = e'X = eq1X1 + eq2X2 + eq3X3 + ... + eqpXp (1)

MVW-PC2 and MVW-PC3 images of same AD patient (a, c) and same HV (b, d) as illustrated in Fig 1 and 2, respectivelyFigure 3
MVW-PC2 and MVW-PC3 images of same AD 
patient (a, c) and same HV (b, d) as illustrated in Fig 
1 and 2, respectively.

Visual comparison between MVW-PC1 images generated by application of MVW-PCA (a, c) and parametric images gener-ated using reference Logan (b, d) on a HVFigure 2
Visual comparison between MVW-PC1 images gen-
erated by application of MVW-PCA (a, c) and para-
metric images generated using reference Logan (b, 
d) on a HV.
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The condition Cov(Yq, Yi) = 0 where i ≠ q is required, i.e.
the components are uncorrelated. Principal components
should explain the magnitude of variance in decreasing
order. Here each element within the eigenvectors is used
as weight-factor for creating images.

In a previous work, MVW-PCA was introduced as a new
approach of application of PCA on dynamic PET images
using various compounds, among others [11C]-PIB [5].
This method is based on using noise prenormalized data
that represents whole brain of each time sequence (frame)
as a single variable after the background had been
removed (masked out) before applying PCA. The result is

MVW-PC images, which are separated into different prin-
cipal components, MVW-PCs. The number of compo-
nents is equal to the number of PET time frames. In each
PET dataset, the whole sequence (all frames) was used to
include all information in the dataset. Furthermore, the
MVW-PC images can be seen as images representing dif-
ferent kinetic behaviors of the administered tracer and
contain more detailed anatomical information with
higher precision and quality. They have an improved SNR
and visual contrast between the anatomical structures rep-
resenting both affected and unaffected tissues compared
with other methods [13].

SNR calculated using MVW-PC1 images generated by applying MVW-PCA and parametric images generated by reference Logan on baseline, follow-up AD patients (a, b) and overall SNR (c)Figure 4
SNR calculated using MVW-PC1 images generated by applying MVW-PCA and parametric images generated 
by reference Logan on baseline, follow-up AD patients (a, b) and overall SNR (c). The bars show mean ± standard 
error of the mean (s.e.m.)
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However, in this work, only the first three MVW-PCs were
explored since higher components contained only noise.

The software used for the application of MVW-PCA on
dynamic PET images was developed in-house by one of
the authors (PR) using Matlab 7.2 (The Mathworks, Nat-
ick, Massachusetts) with installed statistical and image
processing toolboxes.

Reference Logan graphical analysis
The reference Logan graphical analysis is a regression
method, which is appropriate for tracers with reversible

kinetics. The method describes the kinetics of the tracer in
a receptor-containing region and in a reference region
devoid of specific binding, such that after a certain time
there is a linear relationship between the reference Logan
variables. The linear slope gives directly the distribution
volume ratio (DVR), which corresponds to the ratio of the
distribution volume (DV) of a receptor-containing region
to the DV of a reference region. The DVR is widely used as
a model parameter in PET studies since it is a linear func-
tion of the receptor availability. Parametric maps, in
which the DVR is calculated for each pixel in the PET
image, were generated using 25–60 min (last six frames)
for 4 × 2 AD patients (each at both baseline and follow-
up) and four HVs.

Eq. 2 is used in the reference Logan graphical analysis is
given by:

where ROI(t) and REF(t) are the radioactivity concentra-
tions in a region of interest and a reference region, respec-

tively. The term int' is the intercept and  is the average
tissue-to-plasma efflux constant. The slope DVR is
obtained from the linear portion of the plot (T > t*),
where T and t* are midframe scanning time and equilib-
rium, respectively. If the ratio ROI(t)/REF(t) is constant,

the DVR can be obtained without the use of .

Signal-to-noise ratio
Signal-to-noise ratio, SNR, measures the strength of the sig-
nals association to the quantity noise of the data in either
sinogram (raw data) or image domain [13]. In this work,
signal is defined as the average pixel value, S, and noise as
the standard deviation of pixel intensities, N, within the
same outlined ROI. SNR is calculated using Eq. 3

The following four ROIs of similar sizes representing dif-
ferent parts of the brain were drawn, in both AD patients
and HVs: frontal cortex sinister (Fsin), frontal cortex dex-
ter (Fdx), parietal cortex sinister (Psin) and parietal cortex
dexter (Pdx). According to the study by Klunk [2] the dif-
ference in [11C]-PIB retention between AD patients and
HVs is largest in these areas. SNR was calculated for all
ROIs in images generated by the different methods and
the mean results of the SNR were compared and plotted.
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SNR (a) and overall SNR (b) are calculated using MVW-PC1 images generated by applying MVW-PCA and parametric image generated by reference Logan on HVsFigure 5
SNR (a) and overall SNR (b) are calculated using 
MVW-PC1 images generated by applying MVW-PCA 
and parametric image generated by reference Logan 
on HVs. The bars show mean ± s.e.m.
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Discrimination power

Discrimination power (DP) is a measurement of quantifi-
cation differences between two independent groups. It is
defined as the difference between absolute value of the

means, , divided by the square root of the aver-

age of the squared standard deviations (σ1 and σ2) [14,15].

DP was calculated using Eq. 4.

where

In this study DPs for both images generated by MVW-PCA
and reference Logan were calculated using the same ROIs
that were used for calculation of SNR (Fsin, Fdx, Psin and
Pdx).

In the current study, Graph Pad Prism v. 4.03 (Graph Pad
Software, Inc, San Diego, USA) was used to perform all
statistical analysis and graphical illustrations.

Results
To allow a visual comparison between the images gener-
ated using the two methods, the image color scale mini-
mum- and maximum-levels were set to the image
minimum and maximum intensity, respectively. The max-
imum and the minimum were calculated from a ROI posi-
tioned on the whole brain in the image.

The images obtained in each of the four AD patients (both
at baseline and follow-up) showed substantial binding of
[11C]-PIB in the cortical regions of the cerebrum. The
binding was highest in the frontal cortex, thus corroborat-
ing the finding in most previous [11C]-PIB studies [2,4].
The binding in the HVs was very low or virtually absent in
the cerebral cortex. No or very little binding of [11C]-PIB
was seen in the cerebellum of either AD patients or HVs.
Fig. 1 and 2 illustrate the comparison of an arbitrary cho-

sen MVW-PC1 image generated by applying MVW-PCA
and reference Logan modeling on AD patients and HVs,
respectively. The MVW-PC1 images correspond to the
kinetics of the tracer in cortical regions such as frontal and
parietal cortex, thus representing regions affected by Aβ
amyloid deposits in the AD patient. In the HVs, the MVW-
PC1 images showed some binding in the thalamus and in
basal ganglia.

In the AD patients, the MVW-PC2 images showed cerebel-
lar cortex (Fig. 3a) which is devoid of amyloid, whereas it
showed [11C]-PIB retention in white matter in the HVs
(Fig. 3b). Finally, the MVW-PC3 images contained infor-
mation of blood flow showing the kinetic behavior of the
tracer in blood (Fig. 3c and 3d).

The SNRs were calculated for the ROIs in images gener-
ated using MVW-PCA and reference Logan. The SNR was
slightly improved and higher in the MVW-PC1 images
than in the reference Logan images in both AD patients
(Fig. 4) and HVs (Fig. 5). The differences were significant
in baseline study in AD patients (p = 0.039) and in HVs (p
< 0.01) (Table 1).

Fig. 6a and 6b illustrate the correlation (Spearman corre-
lation method) between MVW-PC1 and reference Logan.
There was a significant correlation between the two meth-
ods in both AD patients (both baseline and follow-up)
and HVs with correlation coefficients of 0.61 and 0.80,
respectively.

Fig. 7 illustrates the comparison between MVW-PC1 and
parametric images generated using reference Logan with
respect to DP in this study. The quantitative ROI-values
from the four cortical regions between the AD patients
(baseline and follow-up) and the HVs were used in the
calculation of DP. The DP was slightly higher in the MVW-
PC1 image as compared to the parametric images
obtained using reference Logan.

Discussion
Kinetic modeling can be used to estimate physiological
parameters in vivo and to analyze dynamic images in

m m1 2−

DP
m m

sdp
=

−1 2 (4)

sdp = +( ) /s s1
2

2
2 2

Table 1: Table 1 Statistical comparison between different areas in AD patients ( both in baseline and follow up) and HVs when using 
different methods.

Paired t-test, two-tailed P value Mean of differences

SNR, MVW-PCA vs. Ref. Logan, base line 0.0389 1.245

SNR, MVW-PCA vs. Ref. Logan, follow-up 0.4462 0.1021

SNR, MVW-PCA vs. Ref. Logan, HVs 0.0078 1.734

Results obtained performing paired t-test between the ROIs from the frontal and parietal cortices (Fsin, Fdx, Psin and Pdx) in images generated 
using MVW-PCA and reference Logan.
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human PET studies using various tracers. However, prior
knowledge about kinetic behavior of the tracer under
study is needed to select an appropriate modeling method
to analyze the data. For instance, it is necessary to know
whether the administered tracer binds reversibly or irre-
versibly to the target system and whether there is any
proper reference region devoid of specific binding of
administered tracer (if reference region is used as input
function). To overcome these drawbacks we have previ-
ously introduced a new approach for application of PCA,

and more specifically MVW-PCA, on dynamic PET images
[5,6]. The images generated using MVW-PCA, were shown
to contain detailed high quality anatomical information.
One important feature of MVW-PCA, as well as of other
kinetic modeling, is the possibility to separate regions in
different compartments, based on their different kinetic
properties [5,6].

The aim of the present study was to explore whether
results obtained using MVW-PCA give similar results as
using a kinetic modeling method such as reference Logan.
We studied the detection and visualization of regional dif-
ferences in [11C]-PIB retention between affected and unaf-
fected regions in the human brain in patients with AD as
compared with HVs. Moreover, we also compared the
images generated using MVW-PCA and reference Logan
with respect to signal extraction based on calculating SNR
and differentiation between AD patients and HVs using
DP.

Results obtained from this work show that MVW-PCA
generates images which demonstrate similar regional
changes in kinetic behavior of administered tracer in
human brain in both AD patients and HVs as images gen-
erated using reference Logan. Moreover, several MVW-PC
images are generated when applying MVW-PCA, images
that provide additional information by discriminating
and visualizing regions with different types of kinetics in

DP comparison between images generated using MVW-PC1 and reference Logan in which quantitative ROI-values from the four cortical regions between the AD patients (baseline and after follow-up) and the HVs were usedFigure 7
DP comparison between images generated using 
MVW-PC1 and reference Logan in which quantita-
tive ROI-values from the four cortical regions 
between the AD patients (baseline and after follow-
up) and the HVs were used.

a Linear regression showing correlation between MVW-PCA and parametric image generated using reference Logan with respect to signal (mean) in AD patientsFigure 6
a Linear regression showing correlation between 
MVW-PCA and parametric image generated using 
reference Logan with respect to signal (mean) in AD 
patients. ROIs representing four cortical regions (Fsin, Fdx, 
Psin and Pdx) were used for comparison. Slope = 0.015 ± 
0.004 and intercept = 1.310 ± 0.124. b. Linear regression 
showing correlation between MVW-PCA and parametric 
image generated using reference Logan with respect to signal 
(mean) in HVs. ROIs representing four cortical regions (Fsin, 
Fdx, Psin and Pdx) were used for comparison. Slope = 0.028 
± 0.008 and intercept = 0.086 ± 0.292.
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the different MVW-PCs. It is thus possible to obtain sepa-
rate images of e.g. regions with specific binding vs regions
with nonspecific binding or vs. blood compartment. This
is a property of great value that is not obtained when using
reference Logan. This might improve the understanding of
the kinetic behavior of administered tracer by illustrating
additional differences in different parts of the brain. The
MVW-PCA method is automated; faster and fewer num-
bers of clinical experiments are required to determine effi-
ciency of the tracer or tracers of interest used in human
PET studies. Furthermore, these images show slightly
improved SNR and DP compared to the images generated
using reference Logan.

So far, MVW-PCA does not yield absolute quantitative
binding data, but only relative data. The reference Logan
method is however a quantitative method that estimates
the distribution volume ratio of the tracer, which is a lin-
ear function of receptor availability. MVW-PCA retains the
relative proportions between different regions with differ-
ent amyloid retention with higher qualitative values, but
can so far only be used as a qualitative tool. Future studies
will be performed to enable quantitative analysis of
images generated using MVW-PCA.

Conclusion
To conclude, the results obtained from this study demon-
strate the potential of MVW-PCA as a multivariate method
that by using the whole dynamic dataset without mode-
ling assumptions generates high quality images. Gener-
ated images using MVW-PCA demonstrate similar
regional changes in kinetic behavior of administered
tracer as compared with images generated using the refer-
ence Logan kinetic modeling method with the cerebellum
as a reference region. In addition, MVW-PCA generates
images with an enhanced contrast and higher SNR and
DP. The present evaluation shows that MVW-PCA can be
used in the study of beta amyloid distribution in AD
patients as compared to HVs. This might improve the clin-
ical interpretation and diagnosis of the PET studies on the
human brain when using newly developed tracers or
when using existing tracers in new clinical applications
where kinetic behavior of employed tracer is not known.
In addition, MVW-PCA could be used as a new technique,
applicable not only on dynamic human brain studies but
also on dynamic human cardiac studies when using PET.
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