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The diagnostic value of midbrain hyperechogenicity
in ALS is limited for discriminating key ALS
differential diagnoses
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Abstract

Background: Hyperechogenicity of the substantia nigra was recently reported in patients with sporadic ALS with a
frequency similar to PD. Data on the diagnostic utility compared to key differential diagnoses of ALS do not exist
yet.

Methods: We prospectively enrolled 43 patients with ALS, 29 with myasthenia gravis, 25 patients with inflammatory
neuropathy, and 13 with cervical canal stenosis. All patients were examined by a blinded investigator using
transcranial B-mode sonography planimetrically measuring hyperechogenic areas of the midbrain representing the
substantia nigra.

Results: Mean midbrain hyperechogenic area was increased in ALS compared to non-ALS differentials. ROC analysis
revealed only small area under the curve for detecting ALS (AUC: 0.669 [95%CI: 0.56-0.78]; p = 0.006). Highest
Youden index was observed for area size of <0.14 cm2 (Youden index: 0.28). Using this cut-off score and that
generated from normative data of healthy controls, area size measurements provided a sensitivity of only
46-58% and specificity of 69-83% for detecting ALS. No correlations of hyperechogenic area sizes in ALS
patients were found to age, gender, ALS subtype (bulbar versus spinal form), disease duration or ALS-FRS-R score.

Conclusions: Midbrain hyperechogenicity is reproducibly found in ALS patients, but its diagnostic value for
discriminating ALS from its key differentials is limited.

Keywords: Motor neuron disease, Substantia nigra, Myasthenia gravis, Inflammatory neuropathies, Cervical canal
stenosis
Background
Transcranial B-mode sonography (TCS) of the midbrain
is in the meantime well accepted for the differential
diagnosis of Parkinson’s disease (PD) and various move-
ment disorders [1-3]. Nine per cent of healthy 20–80
year old controls also show hyperechogenicity of the
substantia nigra (SN) which is considered to be associ-
ated with a subclinical functional impairment of the
nigrostriatal system [3]. We recently reported a similar
high prevalence of hyperechogenecity of the substantia
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nigra in patients with amyotrophic lateral sclerosis
(ALS) [4]. This was independently confirmed very
recently [5]. No data exist yet on the diagnostic value in
the differential diagnosis of motor neuron diseases
(MND) compared to key clinical differentials of myas-
thenia gravis, inflammatory neuropathies and cervical
canal stenosis.
Alteration of the regional iron metabolism is suspected

to be the underlying neuropathological correlate of SN
hyperechogenicity rather than the neurodegenerative
process itself [6]. Post-mortem studies have reported a
degeneration of the SN in sporadic ALS [7], which re-
sembles stage 3 of the very recently reported neuro-
pathological classification of Braak and Brettschneider
[8,9]. Further preliminary studies reported increased
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iron content in ALS brain tissue [10]. Neuroimaging
studies by the use of PET or SPECT have indeed shown
abnormal pre-synaptic and post-synaptic striatal dopa-
minergic function in ALS patients [11,12].
We here prospectively recruited major differential

diagnoses of MNDs to evaluate the diagnostic value
of SN hyperechogenicity measured by transcranial
sonography.

Methods
Subjects
Patients were recruited at the outpatient clinic of the
Department of Neurology of the University Hospital
Dresden from 2011 to 2013. These included subjects with
definite or probable ALS according to the revised El Es-
corial criteria, antibody proven myasthenia gravis (MG),
inflammatory neuropathies (IN) (including Guillain-Barré
syndrome, chronic inflammatory demyelinating polyneur-
opathy, multifocal motor neuropathy) (clinical diagnosis
according to European Federation of Neurological So-
cieties and the Peripheral Nerve Society (EFNS/PNS)
[13,14]) and cervical canal stenosis (CCS) (clinical
Table 1 Demographic and clinical data of ALS patients and d

ALS MG

No. of patients, n 43 29

Female, n (%) 21 (49%) 12 (41%)

Age (yr), Mean ± SD (range) 64.9 ± 9.6 (42–78) 61.7 ± 14.5 (34

ALS subtype

Bulbar, n (%) 11/43 (17%) -

Spinal, n (%) 28/43 (65%) -

ALS-FRSR, mean ± SD (range) 33.6 ± 9.45 (14–48) -

MG subtype

Ocular, n (%) - 6/28 (21%)

Bulbar, n (%) - 4/28 (14%)

Generalized, n (%) - 17/28 (61%)

IN subtypes

CIDP - -

GBS - -

MMN - -

MADSAM - -

AMSAN - -

Mononeuritis muliplex - -

CCS

Degree; absolute/high - -

Myelopathy, n (%) - -

Paraspasticity, n(%) - -

*Fisher exact test; #One-way two-sided ANOVA. Denominators may differ due to mi
ALS, amyotrophic lateral sclerosis; MG, Myasthenia gravis; IN, inflammatory neuropa
Guillain-Barré-Syndrome; MMN, multifocal motor neuropathy; MADSAM, multifocal
and sensory axonal neuropathy; CCS, cervical canal stenosis.
diagnosis according to [15]). The study was approved
by the institutional review board (EK 11012012; EK
182062012). Altogether, we included the following 110
subjects: 43 with ALS, 29 with myasthenia gravis, 25 with
inflammatory neuropathy and 13 with cervical canal sten-
osis. Demographic and clinical characteristics of the study
cohorts are displayed in Table 1.

Transcranial brain sonography
Data acquisition was performed by a blinded rater.
Transcranial B-mode sonography (TCS) was per-
formed by the use of a Toshiba Aplio MX, SSA-780A,
with a 3 MHz probe located on the temporal bone
window. The technical settings were depth 16 mm,
brightness variable, dynamic range 45 dB. Each side
was measured in three different planes, one above and
one below the orbitomeatal line, parallel to the orbito-
meatal line and the mean value was used for further
analysis. The ipsilateral hyperechogenic SN was mea-
sured planimetrically in the midbrain according to
standardized techniques as described by Berg and
colleagues [3].
ifferentials

IN CCS P value

25 13

9 (36%) 6 (46%) 0.779*

–83) 60.6 ± 16.1 (22–80) 62.5 ± 10.7 (48–81) 0.554#

- - -

- - -

- - -

- - -

- - -

- - -

13/25 (52%) - -

4/25 (16%) - -

4/25 (16%) - -

2/25 (8%) - -

1/25 (4%) - -

1/25 (4%) - -

- 7/3 -

- 10/12 (83%) -

- 3/11 (27%) -

ssing data in some individuals.
thies; CIDP, chronic inflammatory demyelinating polyneuropathy; GBS,
acquired demyelinating sensory and motor neuropathy; AMSAM, acute motor
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Statistical analyses
Data were prospectively analyzed using the software pro-
gram SPSS version 19.0 (SPSS Inc., Chicago, IL). Data
are displayed as mean ± standard deviation (SD) or num-
bers (%), significance level was set at P < 0.05 (two-
sided). ROC plots including calculation of the area under
the curve (AUC) were used to display sensitivity and
specificity of TCS measures for detection of ALS. For
generation of cut-off values from ROC analysis, we used
the Youden index as a measure of the theoretical
optimum of test scores. Normal values of SN echogenic
size were obtained in healthy controls by calculating the
mean + 2 × SD leading to a normal range of <0.20 cm2 as
reported previously [4] and perfectly fitting to the litera-
ture [3]. For the classification of patients with respect to
their SN echogenicity, the mean value of bilateral mea-
surements was used. Statistical comparisons of variables
were calculated using χ2 test or one-way ANOVA with
Bonferroni post-hoc t-test (see Results sections for de-
tails). Spearman’s rank correlation coefficient ρ was used
to examine correlations (ρ < 0.3 was considered a weak,
ρ = 0.3-0.59 a moderate, ρ ≥ 0.6 a strong correlation).

Results
A temporal bone window sufficient for an adequate
sonographic analysis of the SN at least on one side was
Figure 1 Transcranial sonography (TCS) studies in ALS compared to m
cervical canal stenosis (CCS). (A) Representative TCS pictures of axial tran
IN and CCS, respectively. The TCS images show abnormal SN in ALS. In the
seen. (B) Box plots of SN areas measured by TCS in ALS, MG, IN and CCS p
quartile, and 90th percentile for each parameter. Open circles represent the
analyzed. P values are from Bonferroni adjusted post-hoc t-tests. (C) Receive
specificity of SN hyperechogenic area for diagnosis of ALS. Insets indicate A
found in 37 of 43 (86%) ALS patients, 20 of 29 (69%)
MG patients, 22 of 25 (88%) IN patients, and 12 of 13
(92%) CCS patients (P = 0.139; χ2 test). In subjects with
sufficient temporal acoustic bone windows, mean mid-
brain hyperechogenic areas were significantly higher in
ALS compared non ALS patients (P = 0.006; unpaired
two-sided t-test:). Compared to the various differential
diagnoses, ALS patients had only significant higher
mean SN area compared to MG patients (P = 0.015,
Bonferroni adjusted post-hoc t-test), but not to all other
patients with no significant differences between the differ-
ential diagnoses (one-way ANOVA: F-value = 3.4; P = 0.021;
Figure 1B).
ROC analysis revealing sensitivities and specificities of

any particular cut-off value of hyperechogenic SN area
size to detect ALS is displayed in Figure 1C. The inter-
vals between cut-off values for area size were between
0.27 cm2 (90th percentile specificity) and 0.07 cm2 (90th
percentile sensitivity). The highest Youden index was
observed at <0.14 cm2 (Youden index: 0.28). Using
the cut-off from normative data from healthy controls
of <0.20 cm2 [4], hyperechogenicity was found in 46%
(17/37) of ALS patients, in 5% (1/20) of MG patients,
in 23% (5/22) of IN patients and in 25% (3/12) of
CCS patients, representing a sensitivity of 46% (95%
CI: 30-63%) and specificity of 83% (95%CI: 70-91%)
yasthenia gravis (MG), inflammatory neuropathies (IN) and
ssections of the brain at midbrain level in one patient with ALS, MG,
area of the substantia nigra (SN), a marked hyperechogenicity can be
atients. The plots show the 10th percentile, first quartile, median, third
means. Numbers in parentheses indicate the numbers of patients
r operating characteristics (ROC) curves displaying the sensitivity and
UC values, 95% confidence intervals and statistics.
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to detect ALS in our MND mimics cohort. The sensi-
tivity and specificity values obtained at the maximal
Youden index were similar with 58% sensitivity (95%
CI: 41-73%) and 69% specificity (95%CI: 55-81%),
respectively.
Neither age, gender, MND subtype, ALSFRS-R score,

disease duration (r-0.136, p = 0.45) nor pathologically
elevated central motor conduction time in magnetic
evoked potentials correlated with hyperechogenic SN
area.

Discussion
We report data on the diagnostic value of regional mid-
brain hyperechogenicity determined by TCS in ALS
compared to the key differential diagnoses myasthenia
gravis, inflammatory neuropathies, and cervical canal
stenosis. We showed increased echogenicity of the SN in
ALS compared to non ALS differentials, but its diagnos-
tic value is limited, questioning this simple and non-
invasive technique as a useful additional technical tool
in the differential diagnosis of motor neuron diseases.
Hyperechogenic area size in ALS patients did not correl-
ate with age, gender, ALS-FRSR score or disease subtype.
The diagnosis of MND is still done by exclusion of

other diseases which have to be considered, as these are
for example myasthenia gravis, inflammatory neuropa-
thies and cervical canal stenosis. In some cases this can
be particularly difficult in early stages of the disease.
Therefore, any diagnostic finding being able to distin-
guish these challenging differential diagnoses are helpful
for the early diagnosis of motor neuron disease. Showing
a specificity of >80% using the standard cut-off value
TCS seem to be helpful for this purpose, however the
sensitivity is rather low (46%). Major limitations of our
study are the mono-centric recruitment of patients at a
specialized MND centre with a more strongly repre-
sented MND patient cohort compared to the mimics co-
horts, the rather limited sample size of cervical canal
stenosis as an important differential diagnosis the lack-
ing intra-/inter-rater variability measurements.
Our sonography data fits to early pathological studies

showing neurodegeneration of the SN region [7] and in-
creased iron content in sporadic ALS brain tissue [10].
Disease spreading to non-motor systems including the
midbrain regions was recently reported underlining the
hypothesis of a neuronal multisystem disorder [8,9]. Also
other neuroimaging techniques revealed functional im-
pairment of the dopaminergic nigro-striatal pathway
[11,12]. Recently, hypointense signals in the motor cor-
tex were reported in routine cMRI [16]. In a pilot study
using 7 T MRI, this hypointense signal could be local-
ized to deeper cortical layers and – in very preliminary
post-mortem analysis – iron depositions (mainly in
microglial cells) was found in deeper cortical layers [17].
We do not yet know whether these findings are due to
similar neuropathology events as in PD in which the SN
hyperechogenicity is due to increased iron content of
the midbrain [6].

Conclusion
In summary, substantia nigra hyperechogenecity is reliably
and reproducibly observed in ALS patients, but its diag-
nostic value in discriminating ALS from key ALS mimics
is limited. Nevertheless, its value in the diagnostic process
of ALS could become one additional cobblestone if one is
aware of its limitations.
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