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Abstract

Background: Impulse control disorder (ICD) and behaviours (ICB) represent a group of behavioural disorders that
have become increasingly recognised in Parkinson'’s disease (PD) patients who previously used dopaminergic
medications, particularly dopamine agonists and levodopa. It has been suggested that these medications can lead
to the development of ICB through the abnormal modulation of dopaminergic transmission and signalling in the
mesocorticolimbic dopaminergic system. Several studies have reported an association between polymorphisms in
the dopamine receptor (DRD) and N-methyl-D-aspartate 2B (GRIN2B) genes with the development of ICB in PD
(PD-ICB) patients. Thus, this study aimed to investigate the association of selected polymorphisms within the DRD
and GRIN2B genes with the development of ICB among PD patients using high resolution melt (HRM) analysis.

Method: We used high resolution melt (HRM) analysis to genotype 11 polymorphisms in 5 DRD genes [DRD1
(rs4532, 154867798 and rs265981), DRD2 (ANKKT rs1800497, rs104894220 and rs144999500), DRD3 (rs3732783 and
rs6280), DRD4 (rs1800443), and DRD5 (rs144132215)] and 1 polymorphism in GRIN2B (rs7301328) in PD patients
with (cases, n = 52) and without (controls, n = 39) ICB. Cases were obtained from two tertiary movement disorder
centres [UKMMC (n = 9) and UMMC (n = 43)]. At both centres, the diagnosis of ICB was made using the QUIP
questionnaire. Controls were recruited from PD patients who attended UKMMC and were found to be negative
for ICB using the QUIP questionnaire.

Results: The HRM analysis showed that 7 of 11 polymorphisms [DRD1 (rs4532, rs4867798, and rs265981), DRD?2
(ANKKT rs1800497), DRD3 (rs3732783 and rs6280), and GRIN2B (rs7301328)] exhibited a clear distinction between
wild-type and variant alleles. Variants of DRD2/ANKKT rs1800497 (OR = 3.77; 95% Cl, 1.38-10.30; p = 0.0044), DRD1
rs4867798 (OR = 24.53; 95% Cl, 1.68-357.28; p = 0.0054), DRDT rs4532 (OR = 21.33; 95% Cl, 1.97-230.64; p = 0.0024),
and GRIN2B rs7301328 (OR = 25.07; 95% Cl, 1.30-483.41; p = 0.0097) were found to be associated with an increased
risk of developing ICB among PD patients.
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Conclusion: Our findings suggest that polymorphisms in dopamine [DRDT (rs4532 and rs4867798) and DRD2/
ANKKT rs1800497] and glutamate (GRIN2B rs7301328) receptor genes confer increased risk of ICB development

among PD patients.
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Background

Impulse control behaviours/disorders (ICB/ICD) are de-
fined as complex behavioural disorders characterized by
the failure to resist the temptation to perform an act that
is harmful to the individual or to others [1]. ICB/ICD has
been increasingly recognized in PD patients who develop
behaviour disorders, such as pathological gambling (5%),
hypersexuality (3.6%), compulsive shopping (5.7%), and
compulsive eating (4.3%). More than a quarter of PD
patients with ICB (PD-ICB) develop two or more behav-
ioural addictions [2]. Patients can also develop other sub-
syndromic ICB or ICD, such as compulsive medication
use, punding, or hobbyism [3,4]. The primary risk factor
for the development of PD-ICB is the use of dopaminergic
medications. While some studies have shown that the de-
velopment of ICB might be dose-dependent, others have
suggested that genetic predisposition coupled with inher-
ent ‘subconscious’ personality traits are the root cause of
this problem [3,5].

A possible neurobiological explanation for the associ-
ation of PD with the development of ICB centres on the
dopaminergic system, which is involved in reward mech-
anisms, impulsiveness, and decision-making processes.
Dopamine receptors (DRD) play an important role in ac-
tivating or inhibiting downstream signalling in the dopa-
minergic pathway. DRD1 and DRD2 are expressed
abundantly in the ventral striatum [6] and might medi-
ate the motor effects of dopamine replacement therapies.
DRD3 is expressed in the limbic area of the brain, and
has been associated with both behavioural addictions [7]
and substance use disorders [5]. Both DRD4 and DRD5
have been linked to attention deficit hyperactivity dis-
order (ADHD) [8].

Polymorphisms in DRDI, especially rs4532, have been
studied widely to detect genetic associations with neuro-
psychiatric disorders [9]. The DRDI rs4532 polymorph-
ism has been associated with several mental illnesses,
including nicotine addiction [10], bipolar disorder [11],
and ADHD [12]. Additionally, the T=>C nucleotide sub-
stitution located 800 bp upstream of exon 1 (rs265981)
in DRD1 has been reported to be associated with ADHD
[12-14]. Genetic polymorphisms in DRD3 rs6280 have
been reported to be associated with the development of
ICB in Korean PD patients [15]. The DRD2/ANKKI
rs1800497 polymorphism is located close to the ankryin
repeat and kinase domain containing-1 (ANKKI) gene.

The DRD2/ANKKI rs1800497 variant causes a glutamic
acid to lysine substitution in serine/threonine kinase that
might affect substrate binding to the D2 receptor [16].
Moreover, the DRD3 rs6280 variant causes a glycine to
serine substitution at codon 9 [17], which results in low
binding affinity to dopamine [18]. Although DRD4 has
not been linked to the development of PD-ICB, this recep-
tor can also be activated by dopamine and has been linked
to neurological and psychiatric conditions, such as schizo-
phrenia, bipolar disorder, and addictive behaviour [19].
Additional variants that lead to non-synonymous amino
acid substitutions in DRD1-5, such as DRDI rs4867798,
DRD?2 rs104894220 and rs144999500, DRD3 rs3732783,
DRD4 rs1800443, and DRDS5 rs144132215, have not been
studied among ICB subjects and, therefore, were included
in this study.

In addition to DRDs, N-methyl-D-aspartate (NMDA)
receptors are ionotropic glutamate receptors that are in-
volved in glutamate-mediated neurotransmission in the
brain [20]. The NMDA receptor plays a role in PD devel-
opment because the altered expression of both NMDA
receptor subunits and factors that facilitate NMDA recep-
tor activation by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine (MPTP) can modulate glutamate release, which
leads to the death of nigrostriatal dopamine neurons
[21,22]. The NMDA receptor consists of NR1 (GRINI)
and NR2 (GRIN2) subunits. For the NR2 subunit, there
are four subtypes—GRIN2A, GRIN2B, GRIN2C, and
GRIN2D [23]. GRIN2B acts as the agonist binding site for
glutamate and the predominant excitatory neurotransmit-
ter receptor in the mammalian brain [24]. Variants in
GRIN2B (c.366C > G, ¢.2664C>T and c¢.-200 T >C) are
commonly found in Asian populations [25,26]. Other
polymorphisms within GRIN2B in the Ashkenazi Jewish
population has been reported to be associated with bipolar
I disorder, which indicates the involvement of the glutam-
ate signalling pathway [27]. Moreover, the GRIN2B
rs7301328 variant has been reported to be associated with
the development of ICD in Korean PD patients [15].

Thus, in this study we investigated the associations of
selected polymorphisms in DRDs and GRIN2B with the de-
velopment of ICB among PD patients using high resolution
melt (HRM) analysis. We selected 11 polymorphisms
within DRDI (rs4532, rs4867798, and rs265981), DRD2
(ANKKI rs1800497, 1rs104894220, and rs144999500),
DRD3 (rs3732783 and rs6280), DRD4 (rs1800443), DRDS
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(rs144132215), and GRIN2B (rs7301328) for screening.
The association of these polymorphisms with ICB develop-
ment among a cohort of Malaysian PD subjects was
then evaluated.

Methods

Subjects and clinical measures

This study involved samples from 91 PD patients obtained
from two larger clinical studies on ICB among PD pa-
tients, in two tertiary centres in Kuala Lumpur [Universiti
Kebangsaan Malaysia Medical Centre (UKMMC) and
Universiti Malaya Medical Centre (UMMC)]. In both cen-
tres, patients with idiopathic PD (H&Y Stages I-1V), diag-
nosed by two movement disorder neurologists (NMI and
SYL), and on dopaminergic medications were screened for
ICB using the QUIP questionnaire. The diagnosis of ICB
was based on previously established criteria published
elsewhere [28]. The QUIP questionnaire is a validated
questionnaire for the detection of ICB in PD. It consists of
3 sections: Section 1 assesses ICDs (sexual, gambling,
eating, and buying behaviour), Section 2 assesses other
compulsive behaviours, such as compulsive buying, hyper-
sexuality, punding, hobbyism, and walkabout, and Section
3 assesses compulsive medication use [28]. Cases and con-
trols were determined based on QUIP positivity. Fifty-two
cases (QUIP positive or PD-ICB) and 39 controls (QUIP
negative) were selected randomly for this study. This study
was conducted in accordance with the Declaration of
Helsinki and was approved by Institutional Ethics Com-
mittee from both centres (UKM-DLP-2011-048 for
UKMMC and MEC No: 745.81 for UMMC). Written in-
formed consent for participation in the study was obtained
from all recruited participants.

DNA samples

Genomic DNA from blood samples was extracted from
buffy coat leukocytes using a QiaAmp DNA Blood Mini
Kit (Qiagen, Limburg, The Netherlands) according to
the manufacturer’s protocol. The concentration and pur-
ity (1.7-1.9) of DNA samples were measured using
NanoVue™ Plus (GE Healthcare, Berkshire, UK), and the
integrity of DNA was analysed using 0.8% agarose gel
electrophoresis.

Assay design and polymerase chain reaction optimization
Ten primer sets were designed using Primer3Plus to detect
11 polymorphic loci in DRDI (rs4532 and rs4867798),
DRD2 (ANKK1 rs1800497, rs104894220, and rs144999500),
DRD3 (rs3732783 and rs6280), DRD4 rs1800443, DRD5
rs144132215 and GRIN2B rs7301328, which were mined
from the National Center for Biotechnology Information
(NCBI) database. The primer set for DRD1 rs265981 was
synthesized based on a previous study [29]. Secondary
structure was predicted using DINAMelts software, which
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also was used to calculate the melting temperature [30]. All
primers were optimized using gradient polymerase chain
reaction (PCR) and real-time PCR prior to HRM analysis.
Primer sequences and properties are detailed in Table 1.

High resolution melting-Polymerase chain reaction

The HRM analysis was carried out in 10 ul reaction vol-
umes containing 30 ng genomic DNA, 0.7 pM primers,
and 1x Type-It HRM-PCR master mix (HotStarTaq Plus
DNA Polymerase, EvaGreen Dye, and an optimized con-
centration of Q-solution, dNTPs, and MgCly; Qiagen).
The primer pairs used for HRM analysis are summarised
in Table 1. Reactions were run on a 5-plex HRM real-
time PCR machine (Rotor-Gene™ 6000, Qiagen) consist-
ing of 95°C for 5 min for initial denaturation, 45 cycles
of 95°C for 10 sec and 60°C for 30 sec followed by a high
resolution melting phase (65-90°C for 2 sec). Data were
analysed using Rotor-Gene 6000 Series Software 1.7. To
ensure accuracy, raw data were selected according to the
following criteria.

i. The C, value and amplification rate of the samples
based on comparative quantitative analysis must be
less than 30 cycles and more than 1.4 cycles,
respectively.

ii. Samples must show a single peak in a derivative
melt-curve analysis ranging from 75-85°C.

iii. The confidence value for each genotype prediction
must be greater than 90% when compared to the
genotype based on reference samples and confirmed
by DNA sequencing analysis.

Sequencing

A total of 17% of samples were selected for DNA se-
quencing analysis to confirm the HRM genotyping re-
sults. Samples selected from each variant cluster were
purified using a Fragment DNA purification kit (Intron
Biotechnology, South Korea) followed by Sanger sequen-
cing analysis to confirm the nucleotide polymorphisms.
Sequences were analysed and alignments were per-
formed using DNA Baser v3.5.4 software [31]. A Phred
score of 20 or greater was used to indicate high quality
sequencing results.

Data and statistical analysis

SNPStats [32] was used to assess genotypic frequencies,
Hardy—Weinberg equilibrium (HWE) and linkage dis-
equilibrium (LD) among PD patients with or without
ICB. The HWE test was performed to examine the geno-
typic distributions of polymorphisms in PD-ICB patients.
The HWE deviation of allele and genotype frequencies
was assessed by Fisher’s exact analysis. The logistic re-
gression was used to estimate the odds ratio (OR) and
95% confidence interval (CI) for associations between



Table 1 Loci of selected DRD and GRIN2B SNPs and the corresponding primer pairs used for high resolution melt analysis

SNP Chromosome  Location Allele changes  Amino acid changes  Forward primer (5'-3') Reverse primer (5'3) Amplicon size (bp)
DRD1 rs4532 chr 5 (g35.2) 19681423 C>T Nil GAACAGAGAAGTCCCTCTCCAC CTGGAAATCTGACTGACCCCTA 147
DRD1 rs4867798 chr5(g35.2) 19679572 T>C Nil GGGCTCTTCTTAAGTTGGCTTT GGACACAGATAAATGCAAGGTG 189
DRD1 rs265981 chr5(g35.2) 174870940 T>C Nil GCTCTCTCCCAAGGAAGCTC GTGCGTTTGGGGAAAGGATC 141
DRD2/ANKK1 rs1800497  chr 11 (g23.2) 16833244 C>T Glu > Lys CTCTAGGAAGGACATGATGCCC GCAACACAGCCATCCTCAAAG 128
DRD2 rs104894220 chr 11 (923.2) 16850073 G>A Val > lle CATGCCCATGCTGTACAATACG GTACCTGCGTTATTGAGTCCGA 126
DRD2 rs144999500 chr 11 (923.2) 16845792 G>A Pro> Leu GAGCATCTGAGTGGCTTTCTTCTC ~ GAGAAGAATGGGCATGCCAAAG 150
DRD3 rs3732783 chr3(g1331) 20385935 T>C Ala > Ala AGTAGGAGAGGGCATAGTAGGC CTGGGCTATGGCATCTCTGAG 116
DRD3 rs6280 chr3(q13.31) 20385961 C>T Gly > Ser AGTAGGAGAGGGCATAGTAGGC CTGGGCTATGGCATCTCTGAG 116
DRD4 rs1800443 chr 11 (p15.5) 579830 T>G Val > Gly TACTGTGCGGCCTCAACGAC GGGTAGGAAGAAGGAGCACAC 104
DRDS5 rs144132215 chr 4 (p16.1) 966018 G>T Gly >Trp GTCCATCCTCATCTCCTTCATTCC CTGGAGTCACAGTTCTCTGCAT 159
GRIN2B rs7301328 chr 12 (p13.1) 6778901 G>C Pro > Pro CTCCCTGCAGCCCCTTTTTA CGCCCAGATCCTCGATTTCA 109

6551 (5107) Abojoinan DG b 32 UIpIqY [eutez

0l Jo  abeq
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each locus and the presence of PD-ICB. The analysis
was used to estimate the regression coefficient and the
association in the log odds of the subject with a poly-
morphism. The association with disease is modelled de-
pending on the response variable. The variable response
was defined as a binary response (categorical variable)
and logistic regression was used to assess the propor-
tion of variation in the response between the polymor-
phisms and other factors such as gender, age, ethnicity,
dosage of medication and duration of PD. The associ-
ation was based on co-dominant, dominant, recessive,
overdominant, and log-additive models between each
polymorphism in PD-ICB patients. The right model was
selected based on the significant p value and the lowest
Bayesian Information Criterion (BIC) score. Pair-wise
LD statistics (D’ and r?) were used to determine the ro-
bustness of LD between polymorphisms. In all statistical
analyses, comparisons were considered to be significant
when p < 0.0167 after Bonferroni correction for multiple
comparisons [33].

Results

Demographic analysis of subjects

A total of 91 PD patients with (QUIP positive or cases;
n = 52) and without ICB (QUIP negative or controls; n =
39) were recruited from a total of 280 PD patients from
two medical centres and were analysed. Comparison
between the cases and controls in terms of age, sex and
racial distribution is presented in Table 2. The mean dis-
ease duration for the cases and controls were 8.2 + 0.7
and 5.8 £ 0.7 years, respectively. Most PD-ICB patients
received a combination therapy consisting of levodopa
and dopamine agonist (54%) followed by levodopa
monotherapy (29%). In the control group, 39% of pa-
tients received levodopa alone whereas 36% of patient
received a combination of levodopa and dopamine agon-
ist. The other control (15%) and PD-ICB (13%) patients
received dopamine agonist alone. The mean daily leva-
dopa dose and dopamine agonist dose were higher in
the cases than the controls (Table 2).

High resolution melt analyses

In this study, 11 polymorphisms were analysed, but only 7
polymorphisms showed allelic variation [DRDI (rs4532,
rs4867798, 1s265981), DRD2/ANKK1 rs1800497, DRD3
(rs3732783 and rs6280), and GRIN2B rs7301328] (Figure 1).
The other 4 polymorphisms [DRD2 (rs104894220 and
rs144999500), DRD4 rs1800443, and DRDS rs144132215]
screened were found to be monomorphic (Additional
file 1: Figure S1). We have successfully established 11
HRM assays for the detection of polymorphisms in DRDI-
5 and GRIN2B. The HRM assays were very efficient, sensi-
tive, and specific in identifying nucleotide transitions
(C>T or T>C) and transversions (G > C) in our samples.
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Table 2 The demographic and clinical characteristics of

ICB in PD patients

Variables Control Case
(n =39) (n=52)
Age
Mean + SE 6346 + 1344 6242 + 1.087
Median 63.00 63.00
Range 42 -85 42-77
Duration of PD
Mean + SE 5.77 £ 0.745 817 £ 0.725
Median 4.00 8.00
Range 1.0 - 200 00-230
Gender, n (%)
Male 27 (69) 38 (73)
Female 12 (31) 14 (27)
Ethnicity, n (%)
Malay 13 (33) 8 (15)
Chinese 25 (64) 34 (66)
Indian 1(3) 8 (15)
Others 0(0) 24
Drug Medication, n (%)
No Medication 4 (10) 2 (4)
Levadopa only 15 (39) 15 (29)
Dopamine agonist only 6 (15) 7(13)
Levadopa + Dopamine agonist 14 (36) 28 (54)
Dosage of Levadopa
Mean + SE 17279 £ 2689 34598 + 4153
Median 150.00 150.00
Range 0.00 - 675.00 0.00 - 675.00
Dosage of DA
Mean + SE 1.05 +0.19 8279 +12.16
Median 1.00 80.00
Range 0.00 - 5.00 0.00 - 360.00
Diagnosis, n (%)
One repetitive behaviour 0 (0) 30 (57)
>1 repetitive behaviour 103) 15 (29)
Compulsive medication 103 2 (4)
et bbior s 00 s
No repetitive behaviour + 37 (94) 00

Compulsive medication

Approximately 17% of the total numbers of HRM reactions
were sequenced and the results were 100% in agreement
with the HRM profiles. The differential melting curves
for the 7 corresponding polymorphisms (C>T, T>C, or
G > C) clearly distinguished the wild-type from the variant
genotypes. The amplicons derived from the DRDI rs4532,
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Sequencing Analysis
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Figure 1 The HRM profiles and sequence analyses of (a) DRD1 rs4532, (b) DRD1 rs4867798, (c) DRD1 rs265981, (d) DRD2/ANKKT rs1800497,
(e) DRD3 rs3732783, (f) DRD3 rs6280, and (g) GRIN2B rs7301328, which are presented along with their respective sequencing results.
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DRD2/ANKK1 rs1800497, and DRD3 rs6280 mutant
alleles showed a single nucleotide change from C to
T. Polymorphisms in DRD1 rs4867798, DRD1 rs265981,
and DRD3 rs3732783 showed a single nucleotide change
from T to C. Analysis of the amplicons derived from
GRIN2B rs7301328 showed a single nucleotide change
from G to C. All analysed SNPs were deposited in
dbSNP build B145 (http://www.ncbi.nlm.nih.gov/SNP/)
with the following accession numbers; ss1713988434
(rs265981), ss1713988435 (rs4532), ss1713988436 (rs48
67798), ss1713988437 (rs104894220), ss1713988438 (rs14
4999500), ss1713988439 (rs1800497), ss1713988440 (rs37
32783), s$s1713988441 (rs6280), ss1713988442 (rs1800
443), s$s1713988443 (rs144132215) and ss1713988444
(rs7301328).

Genotype distribution in Parkinson’s disease-impulse
control disorder patients

No significant deviation was observed in the distribution of
genotype and allele frequencies for all polymorphisms (ex-
cept for DRD3 rs3732783) based on HWE analysis between
the case and control groups (Table 3). The frequency of
the C allele for DRD3 rs3732783 was significantly higher
(p<0.01) in the PD population. Moreover, pair-wise LD
measurements between polymorphisms in DRDI based on
the D' statistic showed no difference in LD among the poly-
morphisms (rs4532, rs4867798, and rs265981). By contrast,
as expected, DRD3 showed strong LD (D’ >0.99) between
polymorphisms (rs3732783 and rs6280) that could be ob-
served using multiple-SNP analysis (Table 4). In multiple
haplotype analysis of DRDI and DRD3, we detected low
frequencies for all alleles (Additional file 2: Table S1).

Table 3 The distribution of polymorphisms in the case and
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Association of DRDs and GRIN2B polymorphisms with
Parkinson disease-Impulse control disorder

We evaluated the associations between polymorphisms in
DRD and GRIN2B with ICB risk among Malaysian PD pa-
tients (Table 5). Among the 7 polymorphisms examined,
only 4 were associated with the development of ICB among
PD patients. Logistic regression analysis (adjusted for gen-
der, age, ethnicity, dosage of medication and duration of
PD) showed that there was a significantly higher risk of
ICB that was associated with the DRD1 rs4867798 C allele
(OR=24.53; 95% CI, 1.68-357.28; p=0.0054) and the
GRIN2B 157301328 C allele (OR=25.07; 95% CI, 1.30-
483.41; p=0.0097). Similarly, the DRDI rs4532 T allele
(OR =21.33; 95% CI, 1.97-230.64; p = 0.0024) and T allele in
DRD2/ANKKI rs1800497 (OR =3.77; 95% CI, 1.38-10.30;
p =0.0044) were significantly associated with a higher risk
of developing ICB in PD patients. The DRDI rs4867798
and GRIN2B rs7301328 polymorphisms showed a recessive
mode of inheritance, suggesting that the dominant allele
has an advantage over the recessive allele. Notably, DRDI
rs4532 showed an overdominant mode of inheritance in
which heterozygous patients (TC) have an increased risk of
ICB compared to homozygous patients (CC or TT). By con-
trast, the T allele in DRD2/ANKK1 rs1800497 was shown to
have an additive genetic effect, whereby the risk of a patient
with 2 copies of the T allele doubles compared to a hetero-
zygous patient. No association was detected between the
other polymorphisms and ICB in PD patients.

Discussion

This study showed that the rs4532 and rs4867798 vari-
ants in DRDI were associated with ICB in PD patients.

control groups

SNP Allele frequency Genotype frequency p-value
Wild type Heterozygote Mutant
DRD1 rs4532 Control C (0.06) T(0.94) CC (0.02) TC (0.07) TT (0.90) 0.26
Case C(024) T(0.76) CC (0.06) TC (037) TT (0.57)
DRD1 rs4867798 Control T (0.68) C(032) TT (042) TC (0.52) CC (0.06) 0.35
Case T(0.54) C (046) TT (0.36) TC (0.36) CC(0.28)
DRD1 rs265981 Control T(0.18) C(0.82) TT (0.03) TC (032) CC (0.66) 0.51
Case T(0.21) C(0.79) TT (0.02) TC (0.36) CC (0.66)
DRD2/ANKK1 rs1800497 Control C (048 T(0.52) TT (0.30) TC (044) CC (0.26) 0.27
Case c(0.71) T(0.29) TT (0.09) TC (040) CC(051)
DRD3 rs3732783 Control T (1.00) C (0.00) TT (1.00) TC (0.00) CC (0.00) 00014"
Case T (0.95) C (0.05) TT (0.94) TC (0.02) CC (0.04)
DRD3 rs6280 Control C(024) T(0.76) CC (0.05) TC (0.50) TT (0.57) 061
Case C(033) T(0.76) CC (0.08) TC (0.38) TT (0.42)
GRIN2B rs7301328 Control G (0.50) C (0.50) GG (0.57) CG (0.38) CC (0.05) 047
Case G (0.28) C (.72 GG (042) CG (0.50) CC (0.08)

Data were analysed using Fisher's exact test. **, p < 0.01, which indicates a statistically significant difference.
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Table 4 Pairwise linkage disequilibrium among DRD1 and
DRD3 variants by D’ statistic

DRD1 rs4532 rs4867798 rs265981
rs4532 0.250 0.789
rs4867798 0.011
rs265981

DRD3 rs3732783 rs6280

rs3732783 0.996

rs6280

DRD1 encodes one of the major receptors in the brain
that mediate the actions of the neurotransmitter dopa-
mine in various psychomotor functions [10]; data sug-
gest that polymorphisms in the promoter region of
DRDI may play a role in the neurobiology of ICB [29].
Previous studies have shown that the rs4532 polymorph-
ism in the 5'-UTR is significantly associated with com-
pulsive addictive behaviour [11,34,35]. These studies
have shown that the T allele of rs4532 imparts a higher
risk of developing compulsive addictive behaviour in
healthy subjects. Similarly, our study showed that this al-
lele was significantly associated with an increased risk of
developing ICB in PD patients. To date, there has been
no report that the rs4867798 polymorphism in the 3'-
UTR of DRDI was associated with ICB. However, we
found that the C allele of rs4867798 was significantly
associated with a greater risk of developing ICB in PD
patients. In our haplotype-based analysis, we detected
no LD between rs4532 and rs4867798 in DRDI. There-
fore, the rs4532 and rs4867798 variants were independ-
ently associated with the development of ICB among
PD patients.

Both the rs4532 and rs4867798 polymorphisms are lo-
cated outside of the coding region of DRDI. However, to
date, no polymorphism has been found to alter the
amino acid sequence in the DRDI coding region [36].
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Thus, these polymorphisms located in the 3’'- and
5'-UTRs of DRDI are likely to affect mRNA stability,
and to subsequently affect DRDI expression [10]. It is
possible that these two polymorphisms, rs4532 and
rs4867798, interfere with mRNA stability, which could
affect the binding site of microRNA (miRNA) or change
the secondary structure of mRNA. However, further ex-
periments will be needed to test these possibilities.

Among all polymorphisms in DRD2/ANKK1, rs1800497
has been the most frequently implicated in addiction dis-
orders [37]. This polymorphism was previously reported
to be associated with cocaine addiction and pathological
gambling in the general population [38,39]. In our study,
the DRD2/ANKK1 rs1800497 variant was shown to be as-
sociated with PD-ICB, which was consistent with a previ-
ous study of PD-ICD subjects [40]. By contrast, Lee et al.
[15] and Vallelunga et al. [41] showed that there were no
associations of DRD2/ANKKI rs1800497 variants with
ICB/ICD among PD subjects. DRD2 is involved in the
mesocorticolimbic pathway, which is mainly distributed in
the striatum [16] and also affects motor control [15]. The
rs1800497 variant in DRD2/ANKK]I has been associated
with decreased receptor density in the striatum [42]. In
agreement with these speculative points [16,17,41], the
rs1800497 variant in DRD2/ANKKI changes the glutamic
acid to lysine (from an amino acid group with a negatively
charged side chain to positively charged residue) that
might result in a significant protein structure modification
that leads to reduced expression of the receptor and the
development of neuropsychiatric disorders among PD pa-
tients. Therefore, molecular studies of the effect of DRD2/
ANKKI rs1800497 variants should be explored.

In GRIN2B, the rs7301328 variant was previously
found to be associated with PD under a dominant model
[40]. In our study, we found that the same polymorph-
ism exhibited an increased risk of developing ICB among
PD subjects and was in accord with a study conducted

Table 5 Association between PD-ICB and polymorphisms in genotypes among cases and controls

Model Genotype Control (%) Case (%) OR (95% ClI)
DRD1 rs4532 (C>T)
Overdominant CCTT 35 (94.6) 32 (61.5) 1.00

TC 2(54) 20 (38.5) 2133 (197-23064)™
DRD1 rs4867798 (T > C)
Recessive TT-TC 29 (96.7) 32(71.0) 1.00

cC 1(33) 13 (289) 2453 (168-357.28)"
DRD2/ANKK1 rs1800497 (C > T)
Log-additive T- 3.77 (1.38-1030) ™
GRIN2B rs7301328 (G > C)
Recessive GG-CG 24 (82.8) 20 (47.6) 1.00

cC 5(17.2) 22 (524) 2507 (1.30-48341) ™

™, p<0.01, which indicates a statistically significant difference.
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by Lee et al. [15]. The rs7301328 variant causes a syn-
onymous single nucleotide substitution. It alters the
DNA sequence, but does not change the encoded amino
acid sequence. This polymorphism has been found to be
associated with alcohol dependence [43] and schizophre-
nia [26,44]. The association between the NMDA recep-
tor subunits based on polymorphisms in GRINI and
GRIN2B and PD-ICB has not been thoroughly explored.
Thus, screening for polymorphisms in the GRINI sub-
unit and subtypes of GRIN2 genes could provide import-
ant insights into the understanding of gene-to-gene
interactions that influence ICB among PD subjects.

Conclusion

In summary, we have shown that variants in DRDI
rs4867798, DRD1 rs4532, DRD2/ANKK1 rs1800497 and
GRIN2B rs7301328 are associated with an increased ICB
risk among PD patients. Future studies of gene-to-gene in-
teractions and also identifying the miRNA binding site do-
mains could yield an improved understanding of how
synonymous polymorphisms can lead to ICB develop-
ment. Furthermore, the combinatorial effects of individual
polymorphisms in genes that participate in the dopamin-
ergic and glutamategic pathways should be examined.
Additional assessment by psychiatrists will relate the asso-
ciation of these ICB susceptible polymorphisms to ICD.

Availability of supporting data

Two additional files were provided as supporting data.
Additional file 1: Figure S1 contains a supplementary fig-
ure that depicts high resolution melting normalised
curves and DNA sequencing results for selected DRD2,
DRD4 and DRD5 SNPs. Additional file 2: Table S1 con-
tains a supplementary table for haplotype analysis of se-
lected DRDI and DRD3 SNPs.

Additional files

Additional file 1: Figure S1. A High Resolution Melting normalised
curve for (A) DRD2 rs104894220, (B) DRD2 rs144999500, (C) DRD4
rs1800443, and (D) DRD5 rs144132215, which are presented along with
their respective sequencing results.

Additional file 2: Table S1. Haplotype analysis of selected DRD1
and DRD3 SNPs.
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