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Deficits in tongue motor control are linked
to microstructural brain damage in multiple
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Abstract

Background: Deterioration of fine motor control of the tongue is common in Multiple Sclerosis (MS) and has a
major impact on quality of life. However, the underlying neuronal substrate is largely unknown. Here, we aimed to
explore the association of tongue motor dysfunction in MS patients with overall clinical disability and structural
brain damage.

Methods: We employed a force transducer based quantitative-motor system (Q-Motor) to objectively assess tongue
function in 33 patients with MS. The variability of tongue force output (TFV) and the mean applied tongue force
(TF) were measured during an isometric tongue protrusion task. Twenty-three age and gender matched healthy
volunteers served as controls. Correlation analyses of motor performance in MS patients with individual disease
burden as expressed by the Expanded Disability Status Scale (EDSS) and with microstructural brain damage as
measured by the fractional anisotropy (FA) on Diffusion Tensor Imaging were performed.

Results: MS patients showed significantly increased TFV and decreased TF compared to controls (p < 0.02). TFV but
not TF was correlated with the EDSS (p < 0.04). TFV was inversely correlated with FA in the bilateral posterior limb
of the internal capsule expanding to the brain stem (p < 0.001), a region critical to tongue function. TF showed a
weaker, positive and unilateral correlation with FA in the same region (p < 0.001).

Conclusions: Changes in TFV were more robust and correlated better with disease phenotype and FA changes
than TF. TFV might serve as an objective and non-invasive outcome measure to augment the quantitative
assessment of motor dysfunction in MS.
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Background
Articulatory dysfunction and swallowing disorders are
common in multiple sclerosis (MS) and affect up to 60 %
of patients [1–3]. The tongue is critically involved in both
articulatory function and swallowing. Consequently, it has
been suggested that tongue motor function might serve as
a surrogate for dysarthria and dysphagia [4, 5]. Indeed,
MS patients display reduced tongue muscle strength, pre-
mature fatigue, and slowing during repetitive movements
even before clinical dysarthria emerges [6]. However, it is

not known how these deficits are linked to overall disease
burden and the neuropathological substrate of the disease.
Diffusion tensor imaging (DTI) has evolved as a reliable

method to quantify the severity of brain tissue damage in
MS. Specifically, reductions of the fractional anisotropy
(FA) in the cerebral white matter have consistently been
reported in MS patients [7]. In this vein, we have found
previously that decreased FA in the cerebral white matter
adjacent to sensory and visual cortices was linked to in-
creased grip force variability in patients with MS [8].
Here, we utilized a force transducer based experimen-

tal setup to objectively quantify deficits in the fine motor
control of the tongue in a cohort of MS patients and

* Correspondence: Fholtbernd@ukaachen.de
1Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30,
52074 Aachen, Germany
Full list of author information is available at the end of the article

© 2015 Holtbernd et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Holtbernd et al. BMC Neurology  (2015) 15:190 
DOI 10.1186/s12883-015-0451-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-015-0451-9&domain=pdf
mailto:Fholtbernd@ukaachen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


explored whether these deficits were associated with
overall clinical disability and brain microstructural
integrity.

Methods
Subjects
Thirty-three patients with the diagnosis of MS were
recruited through the Department of Neurology at the
University Hospital of Muenster. Their mean age was
38.8 years (SD +/−10.5, range 19–61), 23 were females.
The mean EDSS was 3.8 (+/−1.9, range 1–7.5). Eighteen
patients suffered from relapsing-remitting MS (RRMS),
11 from secondary progressive MS (SPMS) and 4 from
primary progressive MS (PPMS). Twenty-three age-
matched healthy control subjects (38.4 +/−9.3 years,
range 24–55, 16 females) with no former history of
neurological or psychiatric disease served as controls.
Demographical and clinical data of MS patients and
controls are summarized in Table 1. Prior to study
participation, informed consent was obtained from
each participant in accordance with the Declaration
of Helsinki, and the study was approved by the local
ethics committee at the University Clinic of Muenster.
The majority of MS patients and all control subjects
have been part of a previously published study inves-
tigating grip force control in MS [8].

Isometric tongue force assessment (Glossomotography)
The experimental setup of the Q-Motor “glossomotogra-
phy” device (QuantiMedis GmbH, Muenster, Germany)
has been described in detail elsewhere [9]. Briefly, the
subjects protruded their tongue to establish contact with
a circular pre-calibrated force transducer mounted on a
glossomotograph. The subjects had clear sight at a
monitor positioned 30 cm in front of the apparatus. A
horizontal line indicated the target force. Subjects were
instructed to match the indicated force level by generat-
ing an appropriate isometric tongue protrusion force.
Each trial lasted 30 s, a cueing tone signaled start and
end of each trial. Five trials each were performed at a
target force level of 0.5 [N]. Data was sampled at
400 Hz, stored and analyzed on a laboratory computer
system (SC/ZOOM, University of Umea, Sweden). The
applied mean tongue protrusion force (TF) and the

tongue force variability (TFV; defined as the coefficient
of variation: SD(TF)/TF×100[%]) were measured during
the static phase from second 10 to 30 of each trial.
Values obtained from each subject were averaged across
trials and entered into statistical analyses.

DTI protocol and data processing
28 of the 33 MS patients were available for DTI imaging
as described previously [8]. Controls did not undergo
MRI. MRI was conducted using a 3 T whole-body scan-
ner (Gyroscan Intera T30, Philips, Netherlands). Data
were acquired using a single shot echo planar imaging
(EPI) sequence in 72 axial slices (1.8 mm thick, no gap,
FOV 230 × 230 mm, acquired matrix 127 × 128, b
factors: 0 and 1,000 s/mm2 6 gradient directions, 3
averages). For further processing all EPI images were re-
constructed to 2.0 × 2.0 × 2.0 mm3. All images were
spatially registered by the multicontrast image registra-
tion toolbox for optimal spatial pre-processing of DTI
data prior to statistical analysis [10] and corrected for
eddy currents in all three dimensions using a recently
developed technique [11, 12]. After image registration,
all DTI images corresponded to Montreal Neurological
Institute (MNI) coordinate space. Following registration,
data were spatially smoothed (4 mm FHWM).
FA maps for each subject were calculated and voxel

based statistics were applied using SPM (http://
www.fil.ion.ucl.ac.uk/spm). Correlational analyses of
tongue force measures with FA maps were performed
on a voxel by voxel basis using the “simple regression”
model implemented in SPM. We applied a voxel threshold
of p < 0.001, cluster level corrected at p < 0.05. The cluster
extend cutoff was set at 50 voxels. For post-hoc volume of
interest (VOI) analysis, FA values were extracted from
4 mm spheres centered at the peak voxel of each cluster
revealed by the voxel wise searches and correlated with
behavioral measures.

Statistical analysis
Statistical analysis was performed using SPSS®. The
Student’s t-test was used for intergroup comparisons of
behavioral data between MS patients and healthy con-
trols. The Spearman correlation coefficient was applied
for correlation of TF and TFV measures with the EDSS.

Table 1 Demographical and clinical data of patients with multiple sclerosis and healthy controls

Age Gender EDSS Type of MS

MS patients (n = 33) 38.8 ± 10.5 (19–61) 23 F/10 M 3.8 ± 1.9 (1–7.5) 18 RRMS

11 SPMS

4 PPMS

Healthy controls (n = 23) 38.4 ± 9.3 (24–55) 16 F/7 M - -

MS multiple sclerosis, EDSS expanded disability status scale, RRMS relapsing remitting multiple sclerosis, SPMS secondary progressive multiple sclerosis, PPMS
primary progressive multiple sclerosis; values are presented as mean ± SD (range)
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Post-hoc regression analyses of regional DTI measures
with TF and TFV, respectively, were carried out using
the Pearson correlation coefficient. Results were consid-
ered as significant at p < 0.05.

Results
Intergroup comparisons
TFV was significantly increased in MS patients
(35.5+/−18.7 [%] (mean+/−SD)) compared to controls
(24.7+/−7.1 [%]; p < 0.02; Fig. 1a left). In contrast, TF was
significantly decreased in the MS group (0.36+/−0.08 [N]
vs. 0.40+/−0.04 [N]; p < 0.02; Fig. 1a right). Notably, TFV
and TF were inversely correlated in patients (r = −0.89,
p < 0.001; Pearson correlation coefficient), whereas we
did not observe a significant correlation of these mea-
sures in the control group (p > 0.16).

Correlation to disease severity
We found a moderate correlation of TFV with the EDSS
(r = 0.36, p < 0.04) (Fig. 1b). TF did not correlate with
the EDSS (p > 0.10).

Correlation of behavioral measures with FA
TFV was inversely correlated with FA in a region
encompassing the posterior limb of the internal capsule
expanding to the brain stem (Fig. 2a, top). Given the in-
verse relationship of TFV with TF, not surprisingly, we
observed a positive, albeit weaker correlation of TF with
FA unilaterally in the posterior portion of the right
internal capsule (Fig. 2b, top). Post-hoc VOI analysis con-
firmed a significant correlation of FA with TFV and TF
in the posterior internal capsule (p < 0.001; Fig. 2 a/b,
bottom panels).

Discussion
We found an increased variability of force output and
concurrent reductions of the applied mean force during

an isometric tongue protrusion task in MS patients.
These findings are in line with previous studies reporting
reductions of the voluntary force output and increased
force variability in MS patients in a variety of motor
tasks [8 ,13, 14]. We have found earlier that the variabil-
ity of force output showed higher sensitivity than the
mean applied force in assessing alterations of motor
hand function in MS and other neurological conditions,
particularly when deterioration of motor performance
was still mild [8, 15, 16]. Along these lines, it is note-
worthy that TFV but not TF was associated with overall
disability and also exhibited stronger correlations with
FA measures. These findings further support the hypoth-
esis of force variability being superior over mean applied
force to quantify motor dysfunction and its association
to microstructural brain damage in MS [8].
FA measures the degree to which overall diffusion of

water molecules can be described as anisotropic. FA
ranges from 0–1, where 0 indicates completely isotropic
diffusion with no contribution of anisotropic diffusion.
FA typically is high (i.e. diffusion is predominantly aniso-
tropic) in brain regions rich in myelinated fibers such as
the pyramidal tract or corpus callosum and relatively
low (i.e. diffusion is predominantly isotropic) in gray
matter areas [17]. While other DTI metrics (e.g. axial
and radial diffusivity) have been reported in addition to
FA, the latter might be the DTI measure best established
and most widely utilized to assess white matter integrity
and its association with clinical disability in MS (see
e.g.[17, 18] for review). We deliberately chose to meas-
ure FA for correlational analyses with behavioral data
based on our prior findings. In the latter study, we ex-
plored the association of altered hand motor function
with cerebral white matter integrity. We found that only
FA in the white matter adjacent to the primary sensory
and visual cortices, but not other DTI measures, i.e.
mean diffusivity, axial diffusivity and radial diffusivity,

Fig. 1 a Group comparisons of tongue force variability (TFV) and mean applied tongue force (TF) between patients with Multiple Sclerosis (MS)
and normal controls (NL) during an isometric tongue protrusion task. Compared to NL, TFV was significantly increased in MS patients, whereas TF
was significantly decreased in the latter group. b TFV in MS patients correlated with the overall disease burden as assessed by the Expanded
Disability Status Scale (EDSS). Bars express group mean values; the error bars indicate the SEM
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correlated with quantitative measures of hand motor
function, suggesting that FA might be most sensitive to
assess white matter damage associated with motor
dysfunction.
Supporting these findings, TFV was inversely corre-

lated with FA in the posterior limb of the internal cap-
sule expanding to the brain stem, whereas TF showed a
positive correlation with FA in this region. Thus,
decreased microstructural white matter integrity was
indicative of abnormally high tongue force variability
and reduced total force output in the MS patients.
The posterior portion of the internal capsule mainly
incorporates cortico fugal motor fibers comprising the
pyramidal and corticobulbar tracts, and somatosen-
sory fibers. The motor fibers have a somatotopic
organization with the tongue being located in the an-
terior part of the posterior limb [19, 20]. Hence,
structural damage of this structure, particularly its an-
terior portion, is likely to affect tongue function by
disrupting motor output from the motor cortex to
the tongue [21].
Dysphagia and dysarthria are common in MS. A re-

cent meta-analysis conducted by Guan et al. showed that
at least one third of MS patients suffer from dysphagia
[22]. Similar estimates have been suggested for dysarth-
ria in MS patients [1]. Dysphagia can emerge in very
early disease stages in ambulatory patients, and consti-
tutes a major hazard in severely affected patients. Several
studies established a close relationship between overall
clinical disability and the presence of dysphagia, suggesting
that dysphagia is most pronounced in clinically severely

affected patients with an EDSS of 6.5 or higher [2, 3].
Whereas dysphagia is associated with overall clinical dis-
ability, it seems that the MS subtype is not a strong pre-
dictor of dysphagia [23]. However, reports are equivocal
and some authors suggest that patients with progressive
MS forms (SPSS and PPMS) are more likely to de-
velop dysphagia compared to patients with RRMS
[24]. Similarly, the severity of dysarthria has been
found to correlate well with overall disease burden
[25], even though subtle signs of dysarthria have been
revealed in MS patients without manifest speech dis-
order [1]. In line with these findings, we found that
MS patients with high EDSS scores exhibited pro-
nounced variability of tongue force output.
We acknowledge several limitations of this study. Be-

cause of the limited sample size we could not explore
potential differences in FA and its correlation with
tongue function for the MS subtypes in the current set
of data. Moreover, the correlations observed do not ne-
cessarily imply a causal relationship of structure and
function and the specificity of the findings reported re-
mains unclear because healthy controls did not undergo
MRI. That said, the strong and symmetric correlations
of TFV with FA in a region crucial to tongue motor
function are intriguing and indicate a link of increased
TFV to the neuropathological substrate of the disease.
Previous reports suggest that both dysarthria and dys-
phagia are associated with overall disease burden rather
than alterations of single functional systems or subtype
of MS [22, 26]. That being said, for future studies, it
might be worthwhile to additionally apply clinical rating

Fig. 2 Correlation of tongue force variability (TFV) and mean tongue force (TF) with fractional anisotropy (FA) in 28 patients with Multiple
Sclerosis. Results were superimposed on a standard FA template. a Symmetric, negative correlations were found between TFV and FA in the
posterior limb of the internal capsule expanding to the brain stem. b TF exhibited a positive correlation with FA in the right internal capsule only.
Post-hoc analyses of individual FA values extracted from volumes of interest centered at the peak voxel of each cluster confirmed significant
correlations of FA with TFV (a bottom panels) and TF (b bottom panel). aCoordinates are displayed in the Montreal Neurological Institute (MNI)
standard space; the colored bar indicates the T-values; voxel threshold p < 0.005
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scales specifically assessing dysphagia and dysarthria. Fi-
nally, we note that FA is very sensitive to microstructural
brain changes per se [11, 27], but is limited in characteriz-
ing the pathological processes underpinning these struc-
tural alterations. For example, FA changes in afferent
pathways can be caused by both potentially reversible de-
myelination and irreversible axonal degeneration in pa-
tients with MS [28]. A multi-modal imaging approach
including myelin sensitive MRI techniques might help to
better understand the pathological processes underlying
microstructural tissue damage [29, 30].

Conclusions
Our findings suggest that the quantitative motor (Q-Motor)
measurement of tongue function might proof useful as a non-
invasive and cost efficient method to assess motor dysfunction
in MS in addition to categorical scales such as the EDSS.
Avoidance of inter- and intra-rater variability and lack of site-
effects due to the pre-calibration of sensors applied may in-
crease sensitivity and reliability, e.g., in small proof-of-concept
studies. In line with prior studies [8, 9] TFV was a more sensi-
tive surrogate of motor dysfunction and more robustly linked
to overall disease burden and microstructural brain integrity
than TF. Prospective studies are warranted to prove the utility
of TFV to assess longitudinal changes of motor phenotype
and cerebral microstructure in patients with MS.
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